H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector

Yantao Yang, Damin Pan, Yanan Tang, Jiali Li, Kaixiang Zhu, Zonglan Yu, Lingfang Zhu, Yao Wang, Peng Chen, Changfu Li

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 55. DOI: 10.1007/s44154-022-00078-7
Original Paper

H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector

Author information +
History +

Abstract

Microbial species often occur in complex communities and exhibit intricate synergistic and antagonistic interactions. To avoid predation and compete for favorable niches, bacteria have evolved specialized protein secretion systems. The type VI secretion system (T6SS) is a versatile secretion system widely distributed among Gram-negative bacteria that translocates effectors into target cells or the extracellular milieu via various physiological processes. Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases, and it has three independent T6SSs (H1-, H2-, and H3-T6SS). In this study, we found that the H3-T6SS of highly virulent P. aeruginosa PA14 is negatively regulated by OxyR and OmpR, which are global regulatory proteins of bacterial oxidative and acid stress. In addition, we identified a H3-T6SS effector PA14_33970, which is located upstream of VgrG3. PA14_33970 interacted directly with VgrG3 and translocated into host cells. Moreover, we found that H3-T6SS and PA14_33970 play crucial roles in oxidative, acid, and osmotic stress resistance, as well as in motility and biofilm formation. PA14_33970 was identified as a new T6SS effector promoting biofilm formation and thus named TepB. Furthermore, we found that TepB contributes to the virulence of P. aeruginosa PA14 toward Caenorhabditis elegans. Overall, our study indicates that H3-T6SS and its biofilm-promoting effector TepB are regulated by OxyR and OmpR, both of which are important for adaptation of P. aeruginosa PA14 to multiple stressors, providing insights into the regulatory mechanisms and roles of T6SSs in P. aeruginosa.

Keywords

P. aeruginosa PA14 / Regulation / H3-T6SS / TepB / Stress resistance / Virulence

Cite this article

Download citation ▾
Yantao Yang, Damin Pan, Yanan Tang, Jiali Li, Kaixiang Zhu, Zonglan Yu, Lingfang Zhu, Yao Wang, Peng Chen, Changfu Li. H3-T6SS of Pseudomonas aeruginosa PA14 contributes to environmental adaptation via secretion of a biofilm-promoting effector. Stress Biology, 2022, 2(1): 55 https://doi.org/10.1007/s44154-022-00078-7

References

[1]
AllsoppLP, WoodTE, HowardSA, MaggiorelliF, NolanLM, WettstadtS, FillouxA. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2017, 114: 7707-7712
CrossRef Google scholar
[2]
Al-WrafyF, BrzozowskaE, GorskaS, GamianA. Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig Med Dosw (Online), 2017, 71: 78-91
CrossRef Google scholar
[3]
BalasubramanianD, SchneperL, KumariH, MatheeK. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res, 2013, 41: 1-20
CrossRef Google scholar
[4]
BieleckiP, JensenV, SchulzeW, GodekeJ, StrehmelJ, EckweilerD, et al.. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res, 2015, 43: 6413-6425
CrossRef Google scholar
[5]
BlevesS, ViarreV, SalachaR, MichelGP, FillouxA, VoulhouxR. Protein secretion systems in Pseudomonas aeruginosa: a wealth of pathogenic weapons. Int J Med Microbiol, 2010, 300: 534-543
CrossRef Google scholar
[6]
BondageDD, LinJS, MaLS, KuoCH, LaiEM. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci U S A, 2016, 113: E3931-E3940
CrossRef Google scholar
[7]
BonemannG, PietrosiukA, DiemandA, ZentgrafH, MogkA. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J, 2009, 28: 315-325
CrossRef Google scholar
[8]
BoulantT, BoudehenYM, FillouxA, PlesiatP, NaasT, DortetL. Higher prevalence of PldA, a Pseudomonas aeruginosa trans-kingdom H2-type VI secretion system effector, in clinical isolates responsible for acute infections and in multidrug resistant strains. Front Microbiol, 2018, 9: 2578
CrossRef Google scholar
[9]
BrencicA, LoryS. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol, 2009, 72: 612-632
CrossRef Google scholar
[10]
BurrowsLL. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol, 2012, 66: 493-520
CrossRef Google scholar
[11]
ChenL, ZouY, KronflAA, WuY. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. Microbiologyopen, 2020, 9: e991
CrossRef Google scholar
[12]
ChenL, ZouY, SheP, WuY. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res, 2015, 172: 19-25
CrossRef Google scholar
[13]
Cherny KE, Sauer K (2019) Pseudomonas aeruginosa requires the DNA-specific endonuclease EndA to degrade extracellular genomic DNA to disperse from the biofilm. J Bacteriol 201. https://doi.org/10.1128/JB.00059-19
[14]
CianfanelliFR, MonlezunL, CoulthurstSJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol, 2016, 24: 51-62
CrossRef Google scholar
[15]
CoulthurstS. The type VI secretion system: a versatile bacterial weapon. Microbiology (Reading), 2019, 165: 503-515
CrossRef Google scholar
[16]
da Cruz Nizer WS, Inkovskiy V, Versey Z, Strempel N, Cassol E, Overhage J (2021) Oxidative stress response in Pseudomonas aeruginosa. Pathogens 10. https://doi.org/10.3390/pathogens10091187
[17]
DarbyC, HsuJW, GhoriN, FalkowS. Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature, 2002, 417: 243-244
CrossRef Google scholar
[18]
DurandE, CambillauC, CascalesE, JournetL. VgrG, Tae, Tle, and beyond: the versatile arsenal of type VI secretion effectors. Trends Microbiol, 2014, 22: 498-507
CrossRef Google scholar
[19]
Fei N, Ji W, Yang L, Yu C, Qiao P, Yan J et al (2022) Hcp of the type VI secretion system (T6SS) in Acidovorax citrulli group II strain Aac5 has a dual role as a core structural protein and an effector protein in colonization, growth ability, competition, biofilm formation, and ferric Iron absorption. Int J Mol Sci 23. https://doi.org/10.3390/ijms23179632
[20]
FillouxA. The type VI secretion system: a tubular story. EMBO J, 2009, 28: 309-310
CrossRef Google scholar
[21]
Flemming H-C, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P et al (2022) The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol. https://doi.org/10.1038/s41579-022-00791-0
[22]
Gerken H, Vuong P, Soparkar K, Misra R (2020) Roles of the EnvZ/OmpR two-component system and porins in iron acquisition in Escherichia coli. mBio 11. https://doi.org/10.1128/mBio.01192-20
[23]
GueguenE, DurandE, ZhangXY, d'AmalricQ, JournetL, CascalesE. Expression of a Yersinia pseudotuberculosis type VI secretion system is responsive to envelope stresses through the OmpR transcriptional activator. PLoS One, 2013, 8: e66615
CrossRef Google scholar
[24]
HachaniA, AllsoppLP, OdukoY, FillouxA. The VgrG proteins are “à la Carte” delivery systems for bacterial type VI effectors. J Biol Chem, 2014, 289: 17872-17884
CrossRef Google scholar
[25]
HanY, WangT, ChenG, PuQ, LiuQ, ZhangY, et al.. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog, 2019, 15: e1008198
CrossRef Google scholar
[26]
HoBT, FuY, DongTG, MekalanosJJ. Vibrio cholerae type 6 secretion system effector trafficking in target bacterial cells. Proc Natl Acad Sci U S A, 2017, 114: 9427-9432
CrossRef Google scholar
[27]
HoangTT, KutchmaAJ, BecherA, SchweizerHP. Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid, 2000, 43: 59-72
CrossRef Google scholar
[28]
InoueT, ShingakiR, FukuiK. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol Lett, 2008, 281: 81-86
CrossRef Google scholar
[29]
JiangF, WaterfieldNR, YangJ, YangG, JinQ. A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe, 2014, 15: 600-610
CrossRef Google scholar
[30]
KasettyS, Katharios-LanwermeyerS, O’TooleGA, NadellCD. Differential surface competition and biofilm invasion strategies of Pseudomonas aeruginosa PA14 and PAO1. J Bacteriol, 2021, 203: e0026521
CrossRef Google scholar
[31]
KatoJ, ChakrabartyAM. Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1991, 88: 1760-1764
CrossRef Google scholar
[32]
Kenney LJ, Anand GS (2020) EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically. EcoSal Plus 9. https://doi.org/10.1128/ecosalplus.ESP-0001-2019
[33]
Kim S, Li XH, Hwang HJ, Lee JH (2020) Thermoregulation of Pseudomonas aeruginosa biofilm formation. Appl Environ Microbiol 86. https://doi.org/10.1128/AEM.01584-20
[34]
KumarA, AlamA, RaniM, EhteshamNZ, HasnainSE. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol, 2017, 307: 481-489
CrossRef Google scholar
[35]
LeimanPG, BaslerM, RamagopalUA, BonannoJB, SauderJM, PukatzkiS, et al.. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A, 2009, 106: 4154-4159
CrossRef Google scholar
[36]
LesicB, StarkeyM, HeJ, HazanR, RahmeLG. Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology (Reading), 2009, 155: 2845-2855
CrossRef Google scholar
[37]
Li C, Zhu L, Pan D, Li S, Xiao H, Zhang Z et al (2019) Siderophore-mediated Iron acquisition enhances resistance to oxidative and aromatic compound stress in Cupriavidus necator JMP134. Appl Environ Microbiol 85. https://doi.org/10.1128/AEM.01938-18
[38]
Li C, Zhu L, Wang D, Wei Z, Hao X, Wang Z et al (2021) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME J. https://doi.org/10.1038/s41396-021-01093-8
[39]
LinJ, ChengJ, ChenK, GuoC, ZhangW, YangX, et al.. The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol, 2015, 5: 70
CrossRef Google scholar
[40]
Lin J, Xu L, Yang J, Wang Z, Shen X (2021) Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. Stress Biol 1. https://doi.org/10.1007/s44154-021-00008-z
[41]
LinJ, ZhangW, ChengJ, YangX, ZhuK, WangY, et al.. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun, 2017, 8: 14888
CrossRef Google scholar
[42]
LiuL, HaoS, LanR, WangG, XiaoD, SunH, XuJ. The type VI secretion system modulates flagellar gene expression and secretion in Citrobacter freundii and contributes to adhesion and cytotoxicity to host cells. Infect Immun, 2015, 83: 2596-2604
CrossRef Google scholar
[43]
Martinez-GarciaS, Rodriguez-MartinezS, Cancino-DiazME, Cancino-DiazJC. Extracellular proteases of Staphylococcus epidermidis: roles as virulence factors and their participation in biofilm. APMIS, 2018, 126: 177-185
CrossRef Google scholar
[44]
MauraD, HazanR, KitaoT, BallokAE, RahmeLG. Evidence for direct control of virulence and defense gene circuits by the Pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci Rep, 2016, 6: 34083
CrossRef Google scholar
[45]
MelstromKA Jr, KozlowskiR, HassettDJ, SuzukiH, BatesDM, GamelliRL, ShankarR. Cytotoxicity of Pseudomonas secreted exotoxins requires OxyR expression. J Surg Res, 2007, 143: 50-57
CrossRef Google scholar
[46]
Montenegro BenavidesNA, AlvarezBA, Arrieta-OrtizML, RodriguezRL, BoteroD, TabimaJF, et al.. The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility. BMC Microbiol, 2021, 21: 14
CrossRef Google scholar
[47]
MoscosoJA, MikkelsenH, HeebS, WilliamsP, FillouxA. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol, 2011, 13: 3128-3138
CrossRef Google scholar
[48]
MougousJD, CuffME, RaunserS, ShenA, ZhouM, GiffordCA, et al.. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006, 312: 1526-1530
CrossRef Google scholar
[49]
NanB, ZusmanDR. Novel mechanisms power bacterial gliding motility. Mol Microbiol, 2016, 101: 186-193
CrossRef Google scholar
[50]
O’TooleGA, KolterR. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol, 1998, 30: 295-304
CrossRef Google scholar
[51]
PanP, WangX, ChenY, ChenQ, YangY, WeiC, et al.. Effect of Hcp iron ion regulation on the interaction between Acinetobacter baumannii with human pulmonary alveolar epithelial cells and biofilm formation. Front Cell Infect Microbiol, 2022, 12: 761604
CrossRef Google scholar
[52]
PanmaneeW, CharoenlapN, AtichartpongkulS, MahavihakanontA, WhitesideMD, WinsorG, et al.. The OxyR-regulated phnW gene encoding 2-aminoethylphosphonate:pyruvate aminotransferase helps protect Pseudomonas aeruginosa from tert-butyl hydroperoxide. PLoS One, 2017, 12: e0189066
CrossRef Google scholar
[53]
RashidMH, KornbergA. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2000, 97: 4885-4890
CrossRef Google scholar
[54]
RecordsAR. The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant-Microbe Interact, 2011, 24: 751-757
CrossRef Google scholar
[55]
RussellAB, PetersonSB, MougousJD. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol, 2014, 12: 137-148
CrossRef Google scholar
[56]
SanaTG, BerniB, BlevesS. The T6SSs of Pseudomonas aeruginosa strain PAO1 and their effectors: beyond bacterial-cell targeting. Front Cell Infect Microbiol, 2016, 6: 61
CrossRef Google scholar
[57]
SanaTG, HachaniA, BuciorI, SosciaC, GarvisS, TermineE, et al.. The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem, 2012, 287: 27095-27105
CrossRef Google scholar
[58]
SanaTG, SosciaC, TongletCM, GarvisS, BlevesS. Divergent control of two type VI secretion systems by RpoN in Pseudomonas aeruginosa. PLoS One, 2013, 8: e76030
CrossRef Google scholar
[59]
ShaJ, RosenzweigJA, KozlovaEV, WangS, ErovaTE, KirtleyML, et al.. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology (Reading), 2013, 159: 1120-1135
CrossRef Google scholar
[60]
ShenX, BangaS, LiuY, XuL, GaoP, ShamovskyI, et al.. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol, 2009, 11: 911-926
CrossRef Google scholar
[61]
SiM, WangY, ZhangB, ZhaoC, KangY, BaiH, et al.. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep, 2017, 20: 949-959
CrossRef Google scholar
[62]
SiM, ZhaoC, BurkinshawB, ZhangB, WeiD, WangY, et al.. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A, 2017, 114: E2233-E2242
CrossRef Google scholar
[63]
SongL, PanJ, YangY, ZhangZ, CuiR, JiaS, et al.. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun, 2021, 12: 423
CrossRef Google scholar
[64]
SongY, XiaoX, LiC, WangT, ZhaoR, ZhangW, et al.. The dual transcriptional regulator RovM regulates the expression of AR3- and T6SS4-dependent acid survival systems in response to nutritional status in Yersinia pseudotuberculosis. Environ Microbiol, 2015, 17: 4631-4645
CrossRef Google scholar
[65]
TanMW, Mahajan-MiklosS, AusubelFM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A, 1999, 96: 715-720
CrossRef Google scholar
[66]
Tolker-NielsenT. Biofilm development. Microbiol Spectr, 2015, 3: MB-0001-2014
CrossRef Google scholar
[67]
VinckxT, WeiQ, MatthijsS, CornelisP. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology (Reading), 2010, 156: 678-686
CrossRef Google scholar
[68]
Wadhwa N, Berg HC (2021) Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. https://doi.org/10.1038/s41579-021-00626-4
[69]
WangT, SiM, SongY, ZhuW, GaoF, WangY, et al.. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog, 2015, 11: e1005020
CrossRef Google scholar
[70]
WeberB, HasicM, ChenC, WaiSN, MiltonDL. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol, 2009, 11: 3018-3028
CrossRef Google scholar
[71]
WeiQ, MinhPN, DotschA, HildebrandF, PanmaneeW, ElfarashA, et al.. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res, 2012, 40: 4320-4333
CrossRef Google scholar
[72]
WettstadtS. Should I kill or should I go: T6SS regulation networks in Vibrio. Environ Microbiol, 2020, 22: 1-4
CrossRef Google scholar
[73]
WhiteleyM, BangeraMG, BumgarnerRE, ParsekMR, TeitzelGM, LoryS, GreenbergEP. Gene expression in Pseudomonas aeruginosa biofilms. Nature, 2001, 413: 860-864
CrossRef Google scholar
[74]
WuCF, LienYW, BondageD, LinJS, PilhoferM, ShihYL, et al.. Effector loading onto the VgrG carrier activates type VI secretion system assembly. EMBO Rep, 2020, 21: e47961
CrossRef Google scholar
[75]
XuH, YangJ, GaoW, LiL, LiP, ZhangL, et al.. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature, 2014, 513: 237-241
CrossRef Google scholar
[76]
XuL, ShenX, BryanA, BangaS, SwansonMS, LuoZQ. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog, 2010, 6: e1000822
CrossRef Google scholar
[77]
Yang X, Liu H, Zhang Y, Shen X (2021) Roles of type VI secretion system in transport of metal ions. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.756136
[78]
YangX, PanJ, WangY, ShenX. Type VI secretion systems present new insights on pathogenic Yersinia. Front Cell Infect Microbiol, 2018, 8: 260
CrossRef Google scholar
[79]
YuH, HeX, XieW, XiongJ, ShengH, GuoS, et al.. Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can J Microbiol, 2014, 60: 227-235
CrossRef Google scholar
[80]
Yu KW, Xue P, Fu Y, Yang L (2021) T6SS mediated stress responses for bacterial environmental survival and host adaptation. Int J Mol Sci 22. https://doi.org/10.3390/ijms22020478
[81]
ZhangL, LiS, LiuX, WangZ, JiangM, WangR, et al.. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nat Commun, 2020, 11: 5371
CrossRef Google scholar
[82]
ZhangW, WangY, SongY, WangT, XuS, PengZ, et al.. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol, 2013, 15: 557-569
CrossRef Google scholar
[83]
ZhengY, KahntJ, KwonIH, MackieRI, ThauerRK. Hydrogen formation and its regulation in Ruminococcus albus: involvement of an electron-bifurcating [FeFe]-hydrogenase, of a non-electron-bifurcating [FeFe]-hydrogenase, and of a putative hydrogen-sensing [FeFe]-hydrogenase. J Bacteriol, 2014, 196: 3840-3852
CrossRef Google scholar
[84]
Zhu L, Xu L, Wang C, Li C, Li M, Liu Q et al (2021) T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci U S A 118. https://doi.org/10.1073/pnas.2103526118
[85]
ZouedA, BrunetYR, DurandE, AschtgenMS, LoggerL, DouziB, et al.. Architecture and assembly of the type VI secretion system. Biochim Biophys Acta, 2014, 1843: 1664-1673
CrossRef Google scholar
Funding
Key Technologies Research and Development Program(2021YFA0909600); Young Scientists Fund (CN)(32100034); Young Scientists Fund(32100149); National Natural Science Foundation of China(31970114)

Accesses

Citations

Detail

Sections
Recommended

/