Plant responses to UV-B radiation: signaling, acclimation and stress tolerance

Zhiren Chen, Yuan Dong, Xi Huang

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 51. DOI: 10.1007/s44154-022-00076-9
Review

Plant responses to UV-B radiation: signaling, acclimation and stress tolerance

Author information +
History +

Abstract

Ultraviolet-B (UV-B) light is an intrinsic part of sunlight that reaches the earth’s surface, and affects plant survival and adaptation. How plants respond to UV-B light is regulated by the wavelength, intensity and duration of UV-B radiation, and is also regulated by photosynthetically active radiation perceived by phytochrome and cryptochrome photoreceptors. Non-damaging UV-B light promotes plant photomorphogenesis and UV-B acclimation which enhances plant tolerance against UV-B stress. However, high-level UV-B radiation induces DNA damage, generates reactive oxygen species (ROS) and impairs photosynthesis. Plants have evolved efficient mechanisms to utilize informational UV-B signal, and protect themselves from UV-B stress. UV RESISTANCE LOCUS8 (UVR8) is a conserved plant-specific UV-B photoreceptor. It interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate UV-B-specific light signaling and regulate UV-B responsive gene expression. A set of transcription factors such as ELONGATED HYPOCOTYL5 (HY5) function downstream of the UVR8-COP1 module to promote seedling de-etiolation for photomorphogenic development and biosynthesis of sunscreen flavonoids for UV-B stress tolerance. In addition to UVR8 signaling pathways, plants subjected to damaging UV-B radiation initiate stress protection and repair mechanisms through UVR8-independent pathways. In this review, we summarize the emerging mechanisms underlying UV-B stress acclimation and protection in plants, primarily revealed in the model plant Arabidopsis thaliana.

Keywords

UV-B stress / Photoreceptor / UVR8 / Flavonoid / Transcription factor

Cite this article

Download citation ▾
Zhiren Chen, Yuan Dong, Xi Huang. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. Stress Biology, 2022, 2(1): 51 https://doi.org/10.1007/s44154-022-00076-9

References

[1]
AllorentG, Lefebvre-LegendreL, ChappuisR, KuntzM, TruongTB, NiyogiKK, UlmR, Goldschmidt-ClermontM. UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 2016, 113: 14864-14869
CrossRef Google scholar
[2]
ArongausAB, ChenS, PireyreM, GlocknerN, GalvaoVC, AlbertA, WinklerJB, FankhauserC, HarterK, UlmR. Arabidopsis RUP2 represses UVR8-mediated flowering in noninductive photoperiods. Gene Dev, 2018, 32: 1332-1343
CrossRef Google scholar
[3]
BartelsS, AndersonJC, BesteiroMAG, CarreriA, HirtH, BuchalaA, MetrauxJP, PeckSC, UlmR. Map kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell, 2009, 21: 2884-2897
CrossRef Google scholar
[4]
BesteiroMAG, BartelsS, AlbertA, UlmR. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J, 2011, 68: 727-737
CrossRef Google scholar
[5]
BinkertM, Kozma-BognarL, TerecskeiK, De VeylderL, NagyF, UlmR. UV-B-responsive association of the Arabidopsis bZIP transcription factor ELONGATED HYPOCOTYL5 with target genes, including its own promoter. Plant Cell, 2014, 26: 4200-4213
CrossRef Google scholar
[6]
BinkertM, CroccoCD, EkundayoB, LauK, RaffelbergS, TilbrookK, YinR, ChappuisR, SchalchT, UlmR. Revisiting chromatin binding of the Arabidopsis UV-B photoreceptor UVR8. BMC Plant Biol, 2016, 16: 42
CrossRef Google scholar
[7]
BrittAB. Repair of DNA damage induced by ultraviolet radiation. Plant Physiol, 1995, 108: 891-896
CrossRef Google scholar
[8]
BrittAB. Repair of DNA damage induced by solar UV. Photosynth Res, 2004, 81: 105-112
CrossRef Google scholar
[9]
BrittAB, ChenJJ, WykoffD, MitchellD. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone(6–4) dimers. Science, 1993, 261: 1571-1574
CrossRef Google scholar
[10]
BrownBA, CloixC, JiangGH, KaiserliE, HerzykP, KliebensteinDJ, JenkinsGI. A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA, 2005, 102: 18225-18230
CrossRef Google scholar
[11]
ChenHD, HuangX, GusmaroliG, TerzaghiW, LauOS, YanagawaY, ZhangY, LiJG, LeeJH, ZhuDM, DengXW. Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell, 2010, 22: 108-123
CrossRef Google scholar
[12]
ChristieJM, ArvaiAS, BaxterKJ, HeilmannM, PrattAJ, O’HaraA, KellySM, HothornM, SmithBO, HitomiK, JenkinsGI, GetzoffED. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science, 2012, 335: 1492-1496
CrossRef Google scholar
[13]
CloixC, JenkinsGI. Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant, 2008, 1: 118-128
CrossRef Google scholar
[14]
CulliganKM, RobertsonCE, ForemanJ, DoernerP, BrittAB. ATR and ATM play both distinct and additive roles in response to ionizing radiation. Plant J, 2006, 48: 947-961
CrossRef Google scholar
[15]
D’OrazioJ, JarrettS, Amaro-OrtizA, ScottT. UV radiation and the skin. Int J Mol Sci, 2013, 14: 12222-12248
CrossRef Google scholar
[16]
DaveyMP, SusantiNI, WargentJJ, FindlayJE, QuickWP, PaulND, JenkinsGI. The UV-B photoreceptor UVR8 promotes photosynthetic efficiency in Arabidopsis thaliana exposed to elevated levels of UV-B. Photosynth Res, 2012, 114: 121-131
CrossRef Google scholar
[17]
DemarsyE, Goldschmidt-ClermontM, UlmR. Coping with ‘dark sides of the sun’ through photoreceptor signaling. Trends Plant Sci, 2018, 23: 260-271
CrossRef Google scholar
[18]
DemkuraPV, BallareCL. UVR8 mediates UV-B-induced Arabidopsis defense responses against botrytis cinerea by controlling sinapate accumulation. Mol Plant, 2012, 5: 642-652
CrossRef Google scholar
[19]
DottoM, GomezMS, SotoMS, CasatiP. UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana. Plant Cell Environ, 2018, 41: 1394-1406
CrossRef Google scholar
[20]
FavoryJJ, StecA, GruberH, RizziniL, OraveczA, FunkM, AlbertA, CloixC, JenkinsGI, OakeleyEJ, SeidlitzHK, NagyF, UlmR. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J, 2009, 28: 591-601
CrossRef Google scholar
[21]
FrohnmeyerH, StaigerD. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiol, 2003, 133: 1420-1428
CrossRef Google scholar
[22]
GaoQ, ZhangLX. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol, 2008, 165: 138-148
CrossRef Google scholar
[23]
Gonzalez BesteiroMA, UlmR. ATR and MKP1 play distinct roles in response to UV-B stress in Arabidopsis. Plant J, 2013, 73: 1034-1043
CrossRef Google scholar
[24]
GruberH, HeijdeM, HellerW, AlbertA, SeidlitzHK, UlmR. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc Natl Acad Sci USA, 2010, 107: 20132-20137
CrossRef Google scholar
[25]
HanX, ChangX, ZhangZH, ChenHD, HeH, ZhongBJ, DengXW. Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol Plant, 2019, 12: 847-862
CrossRef Google scholar
[26]
HardelandR, Pandi-PerumalSR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond), 2005, 2: 22
CrossRef Google scholar
[27]
HarlowGR, JenkinsME, PittalwalaTS, MountDW. lsolation od uvhl, an Arabidopsis mutant hypersensitive to ultraviolet light and lonizing radiation. Plant Cell, 1994
CrossRef Google scholar
[28]
HaskirliH, YilmazO, OzgurR, UzildayB, TurkanI. Melatonin mitigates UV-B stress via regulating oxidative stress response, cellular redox and alternative electron sinks in Arabidopsis thaliana. Phytochemistry, 2020, 182: 112592
CrossRef Google scholar
[29]
HeijdeM, UlmR. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci USA, 2013, 110: 1113-1118
CrossRef Google scholar
[30]
HeijdeM, BinkertM, YinR, Ares-OrpelF, RizziniL, Van De SlijkeE, PersiauG, NolfJ, GevaertK, De JaegerG, UlmR. Constitutively active UVR8 photoreceptor variant in Arabidopsis. Proc Natl Acad Sci USA, 2013, 110: 20326-20331
CrossRef Google scholar
[31]
HeilmannM, JenkinsGI. Rapid reversion from monomer to dimer regenerates the ultraviolet-B photoreceptor UV RESISTANCE LOCUS8 in intact Arabidopsis plants. Plant Physiol, 2013, 161: 547-555
CrossRef Google scholar
[32]
HidegE, JansenMA, StridA. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?. Trends Plant Sci, 2013, 18: 107-115
CrossRef Google scholar
[33]
HollosyF. Effects of ultraviolet radiation on plant cells. Micron, 2002, 33: 179-197
CrossRef Google scholar
[34]
HsiehK, HuangAHC. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum-derived flavonoids and alkanes for delivery to the pollen surface. Plant Cell, 2007, 19: 582-596
CrossRef Google scholar
[35]
HuangX, OuyangXH, YangPY, LauOS, LiG, LiJG, ChenHD, DengXW. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell, 2012, 24: 4590-4606
CrossRef Google scholar
[36]
HuangX, OuyangXH, YangPY, LauOS, ChenLB, WeiN, DengXW. Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B. Proc Natl Acad Sci USA, 2013, 110: 16669-16674
CrossRef Google scholar
[37]
HuangX, YangPY, OuyangXH, ChenLB, DengXW. Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. PLoS Genet, 2014, 10: e1004218
CrossRef Google scholar
[38]
JenkinsGI. Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol, 2009, 60: 407-431
CrossRef Google scholar
[39]
JenkinsGI. Structure and function of the UV-B photoreceptor UVR8. Curr Opin Struc Biol, 2014, 29: 52-57
CrossRef Google scholar
[40]
JenkinsGI. Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ, 2017, 40: 2544-2557
CrossRef Google scholar
[41]
JiangCZ, YeeJ, MitchellDL, BrittAB. Photorepair mutants of Arabidopsis. Proc Natl Acad Sci USA, 1997, 94: 7441-7445
CrossRef Google scholar
[42]
JiangL, WangY, LiQF, BjornLO, HeJX, LiSS. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity. Cell Res, 2012, 22: 1046-1057
CrossRef Google scholar
[43]
JobN, LingwanM, MasakapalliSK, DattaS. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. Plant Physiol, 2022
CrossRef Google scholar
[44]
KaiserliE, JenkinsGI. UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B-specific signaling component UVR8 and activates its function in the nucleus. Plant Cell, 2007, 19: 2662-2673
CrossRef Google scholar
[45]
KamiC, LorrainS, HornitschekP, FankhauserC. Light-regulated plant growth and development. Curr Top Dev Biol, 2010, 91: 29-66
CrossRef Google scholar
[46]
KimBC, TennessenDJ, LastRL. UV-B-induced photomorphogenesis in Arabidopsis thaliana. Plant J, 1998, 15: 667-674
CrossRef Google scholar
[47]
KliebensteinDJ, LimJE, LandryLG, LastRL. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol, 2002, 130: 234-243
CrossRef Google scholar
[48]
KondouY, MiyagiY, MoritoT, FujihiraK, MiyauchiW, MoriyamaA, TerasawaT, IshidaS, IwabuchiK, KuboH, NishihamaR, IshizakiK, KohchiT. Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha. Planta, 2019, 249: 1349-1364
CrossRef Google scholar
[49]
LandryLG, StapletonAE, LimJ, HoffmanP, HaysJB, WalbotV, LastRL. An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation. Proc Natl Acad Sci USA, 1997, 94: 328-332
CrossRef Google scholar
[50]
LauK, PodolecR, ChappuisR, UlmR, HothornM. Plant photoreceptors and their signaling components compete for COP1 binding via VP peptide motifs. EMBO J, 2019, 38: e10214010
CrossRef Google scholar
[51]
LiN, TeranishiM, YamaguchiH, MatsushitaT, WatahikiMK, TsugeT, LiSS, HidemaJ. UV-B-induced CPD photolyase gene expression is regulated by UVR8-dependent and -independent pathways in Arabidopsis. Plant Cell Physiol, 2015, 56: 2014-2023
CrossRef Google scholar
[52]
LiHR, LiYX, DengH, SunXC, WangAQ, TangXF, GaoYF, ZhangN, WangLH, YangSZ, LiuYS, WangSH. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2. Sci Rep-Uk, 2018, 8: 609710
CrossRef Google scholar
[53]
LiangT, MeiSL, ShiC, YangY, PengY, MaLB, WangF, LiX, HuangX, YinYH, LiuHT. UVR8 interacts with BES1 and BIM1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev Cell, 2018, 44: 512
CrossRef Google scholar
[54]
LiangT, ShiC, PengY, TanHJ, XinPY, YangY, WangF, LiX, ChuJF, HuangJR, YinYH, LiuHT. Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. Plant Cell, 2020, 32: 3224-3239
CrossRef Google scholar
[55]
LiuX, ZhangQ, YangG, ZhangC, DongH, LiuY, YinR, LinL. Pivotal roles of tomato photoreceptor SlUVR8 in seedling development and UV-B stress tolerance. Biochem Biophys Res Commun, 2020, 522: 177-183
CrossRef Google scholar
[56]
MittlerR. ROS are good. Trends Plant Sci, 2017, 22: 11-19
CrossRef Google scholar
[57]
MittlerR, ZandalinasSI, FichmanY, Van BreusegemF. Reactive oxygen species signalling in plant stress responses. Nat Rev Mol Cell Bio, 2022
CrossRef Google scholar
[58]
MolinierJ, LechnerE, DumbliauskasE, GenschikP. Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet, 2008, 4: e1000093
CrossRef Google scholar
[59]
NakajimaS, SugiyamaM, IwaiS, HitomiK, OtoshiE, KimST, JiangCZ, TodoT, BrittAB, YamamotoK. Cloning and characterization of a gene (UVR3) required for photorepair of 6–4 photoproducts in Arabidopsis thaliana. Nucleic Acids Res, 1998, 26: 638-644
CrossRef Google scholar
[60]
OraveczA, BaumannA, MateZ, BrzezinskaA, MolinierJ, OakeleyEJ, AdamE, SchaferE, NagyF, UlmR. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell, 2006, 18: 1975-1990
CrossRef Google scholar
[61]
OsterlundMT, HardtkeCS, WeiN, DengXW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature, 2000, 405: 462-466
CrossRef Google scholar
[62]
PodolecR, UlmR. Photoreceptor-mediated regulation of the COP1/SPA E3 ubiquitin ligase. Curr Opin Plant Biol, 2018, 45: 18-25
CrossRef Google scholar
[63]
PodolecR, DemarsyE, UlmR. Perception and signaling of ultraviolet-B radiation in plants. Annu Rev Plant Biol, 2021, 72(72):793-822
CrossRef Google scholar
[64]
PodolecR, LauK, WagnonTB, HothornM, UlmR. A constitutively monomeric UVR8 photoreceptor confers enhanced UV-B photomorphogenesis. Proc Natl Acad Sci USA, 2021, 118(6):e2017284118
CrossRef Google scholar
[65]
PodolecR, WagnonTB, LeonardelliM, JohanssonH, UlmR. Arabidopsis B-box transcription factors BBX20-22 promote UVR8 photoreceptor-mediated UV-B responses. Plant J, 2022
CrossRef Google scholar
[66]
PonnuJ, RiedelT, PennerE, SchraderA, HoeckerU. Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis. Proc Natl Acad Sci USA, 2019
CrossRef Google scholar
[67]
PorfirovaS, BergmullerE, TropfS, LemkeR, DormannP. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA, 2002, 99: 12495-12500
CrossRef Google scholar
[68]
QianCZ, MaoWW, LiuY, RenH, LauOS, OuyangXH, HuangX. Dual-source nuclear monomers of UV-B light receptor direct photomorphogenesis in Arabidopsis. Mol Plant, 2016, 9: 1671-1674
CrossRef Google scholar
[69]
QianCZ, ChenZR, LiuQ, MaoWW, ChenYL, TianW, LiuY, HanJP, OuyangXH, HuangX. Coordinated transcriptional regulation by the UV-b photoreceptor and multiple transcription factors for plant UV-B responses. Mol Plant, 2020, 13: 777-792
CrossRef Google scholar
[70]
QuaiteFE, TakayanagiS, RuffiniJ, SutherlandJC, SutherlandBM. DNA damage levels determine cyclobutyl pyrimidine dimer repair mechanisms in alfalfa seedlings. Plant Cell, 1994, 6: 1635-1641
CrossRef Google scholar
[71]
RaiN, O’HaraA, FarkasD, SafronovO, RatanasopaK, WangF, LindforsAV, JenkinsGI, LehtoT, SalojarviJ, BroscheM, StridA, AphaloPJ, MoralesLO. The photoreceptor UVR8 mediates the perception of both UV-B and UV-A wavelengths up to 350 nm of sunlight with responsivity moderated by cryptochromes. Plant Cell Environ, 2020, 43: 1513-1527
CrossRef Google scholar
[72]
RaoMV, PaliyathG, OrmrodDP. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol, 1996, 110: 125-136
CrossRef Google scholar
[73]
RenH, HanJP, YangPY, MaoWW, LiuX, QiuLL, QianCZ, LiuY, ChenZR, OuyangXH, ChenX, DengXW, HuangX. Two E3 ligases antagonistically regulate the UV-B response in Arabidopsis. Proc Natl Acad Sci USA, 2019, 116: 4722-4731
CrossRef Google scholar
[74]
RizziniL, FavoryJJ, CloixC, FaggionatoD, O’HaraA, KaiserliE, BaumeisterR, SchaferE, NagyF, JenkinsGI, UlmR. Perception of UV-B by the Arabidopsis UVR8 protein. Science, 2011, 332: 103-106
CrossRef Google scholar
[75]
RoyS. Impact of UV radiation on genome stability and human health. Adv Exp Med Biol, 2017, 996: 207-219
CrossRef Google scholar
[76]
SancarA, Lindsey-BoltzLA, Unsal-KacmazK, LinnS. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem, 2004, 73: 39-85
CrossRef Google scholar
[77]
SanthanamR, OhY, KumarR, WeinholdA, LuuVT, GrotenK, BaldwinIT. Specificity of root microbiomes in native-grown Nicotiana attenuata and plant responses to UVB increase Deinococcus colonization. Mol Ecol, 2017, 26: 2543-2562
CrossRef Google scholar
[78]
SantiagoJL, Munoz-RodriguezJR, de la Cruz-MorcilloMA, Villar-RodriguezC, Gonzalez-LopezL, AguadoC, Nuncia-CantareroM, Redondo-CalvoFJ, Perez-OrtizJM, Galan-MoyaEM. Characterization of permeability barrier dysfunction in a murine model of cutaneous field cancerization following chronic UV-B irradiation: implications for the pathogenesis of skin cancer. Cancers, 2021, 13: 3935
CrossRef Google scholar
[79]
SharmaA, SharmaB, HayesS, KernerK, HoeckerU, JenkinsGI, FranklinKA. UVR8 disrupts stabilisation of PIF5 by COP1 to inhibit plant stem elongation in sunlight. Nat Commun, 2019, 10: 4417
CrossRef Google scholar
[80]
ShiC, LiuHT. How plants protect themselves from ultraviolet-B radiation stress. Plant Physiol, 2021, 187: 1096-1103
CrossRef Google scholar
[81]
SinhaRP, HaderDP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci, 2002, 1: 225-236
CrossRef Google scholar
[82]
StrackeR, IshiharaH, BarschGHA, MehrtensF, NiehausK, WeisshaarB. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J, 2007, 50: 660-677
CrossRef Google scholar
[83]
StrackeR, FavoryJJ, GruberH, BartelniewoehnerL, BartelsS, BinkertM, FunkM, WeisshaarB, UlmR. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ, 2010, 33: 88-103
CrossRef Google scholar
[84]
SztatelmanO, GrzybJ, GabrysH, BanasAK. The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment. BMC Plant Biol, 2015, 15: 281
CrossRef Google scholar
[85]
TakahashiS, BadgerMR. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci, 2011, 16: 53-60
CrossRef Google scholar
[86]
TakahashiS, MilwardSE, YamoriW, EvansJR, HillierW, BadgerMR. The solar action spectrum of photosystem II damage. Plant Physiol, 2010, 153: 988-993
CrossRef Google scholar
[87]
TakahashiM, TeranishiM, IshidaH, KawasakiJ, TakeuchiA, YamayaT, WatanabeM, MakinoA, HidemaJ. Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. Plant J, 2011, 66: 433-442
CrossRef Google scholar
[88]
TanakaA, SakamotoA, IshigakiY, NikaidoO, SunG, HaseY, ShikazonoN, TanoS, WatanabeH. An ultraviolet-B-resistant mutant with enhanced DNA repair in Arabidopsis. Plant Physiol, 2002, 129: 64-71
CrossRef Google scholar
[89]
TavridouE, PireyreM, UlmR. Degradation of the transcription factors PIF4 and PIF5 under UV-B promotes UVR8-mediated inhibition of hypocotyl growth in Arabidopsis. Plant J, 2020, 101: 507-517
CrossRef Google scholar
[90]
TilbrookK, ArongausAB, BinkertM, HeijdeM, YinR, UlmR. The UVR8 UV-B photoreceptor: perception signaling and response. Arabidopsis Book, 2013, 11: e0164
CrossRef Google scholar
[91]
TilbrookK, DuboisM, CroccoCD, YinR, ChappuisR, AllorentG, Schmid-SiegertE, Goldschmidt-ClermontM, UlmR. UV-B perception and acclimation in Chlamydomonas reinhardtii. Plant Cell, 2016, 28: 966-983
CrossRef Google scholar
[92]
TissotN, UlmR. Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat Commun, 2020, 11: 1323
CrossRef Google scholar
[93]
UlmR, BaumannA, OraveczA, MateZ, AdamE, OakeleyEJ, SchaferE, NagyF. Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 1397-1402
CrossRef Google scholar
[94]
VandenbusscheF, YuN, LiWD, VanhaelewynL, HamshouM, Van Der StraetenD, SmaggheG. An ultraviolet B condition that affects growth and defense in Arabidopsis. Plant Sci, 2018, 268: 54-63
CrossRef Google scholar
[95]
WadaM, KagawaT, SatoY. Chloroplast movement. Annu Rev Plant Biol, 2003, 54: 455-468
CrossRef Google scholar
[96]
WangQ, LinCT. Photoreceptor signaling: when COP1 meets VPs. EMBO J, 2019, 38: e102962
CrossRef Google scholar
[97]
WangYD, WangLX, GuanZY, ChangHF, MaL, ShenCC, QiuL, YanJJ, ZhangDL, LiJ, DengXW, YinP. Structural insight into UV-B-activated UVR8 bound to COP1. Sci Adv, 2022, 8: eabn3337
CrossRef Google scholar
[98]
WargentJJ, GegasVC, JenkinsGI, DoonanJH, PaulND. UVR8 in Arabidopsis thaliana regulates multiple aspects of cellular differentiation during leaf development in response to ultraviolet B radiation. New Phytol, 2009, 183: 315-326
CrossRef Google scholar
[99]
WaszczakC, CarmodyM, KangasjarviJ. Reactive oxygen species in plant signaling. Annu Rev Plant Biol, 2018, 69: 209-236
CrossRef Google scholar
[100]
WuD, HuQ, YanZ, ChenW, YanCY, HuangX, ZhangJ, YangPY, DengHT, WangJW, DengXW, ShiYG. Structural basis of ultraviolet-B perception by UVR8. Nature, 2012, 484: 214-U296
CrossRef Google scholar
[101]
YadavA, BakshiS, YadukrishnanP, LingwanM, DoldeU, WenkelS, MasakapalliSK, DattaS. The B-Box-containing microprotein miP1a/BBX31 regulates photomorphogenesis and UV-B protection. Plant Physiol, 2019, 179: 1876-1892
CrossRef Google scholar
[102]
YadavA, SinghD, LingwanM, YadukrishnanP, MasakapalliSK, DattaS. Light signaling and UV-B-mediated plant growth regulation. J Integr Plant Biol, 2020, 62: 1270-1292
CrossRef Google scholar
[103]
YangY, LiangT, ZhangLB, ShaoK, GuXX, ShangRX, ShiN, LiX, ZhangP, LiuHT. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat Plants, 2018, 4: 98-107
CrossRef Google scholar
[104]
YangY, ZhangL, ChenP, LiangT, LiX, LiuH. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J, 2020, 39: e101928
CrossRef Google scholar
[105]
YaoYN, YouJJ, OuYB, MaJB, WuXL, XuG. Ultraviolet-B protection of ascorbate and tocopherol in plants related with their function on the stability on carotenoid and phenylpropanoid compounds. Plant Physiol Bioch, 2015, 90: 23-31
CrossRef Google scholar
[106]
YaoJW, MaZ, MaYQ, ZhuY, LeiMQ, HaoCY, ChenLY, XuZQ, HuangX. Role of melatonin in UV-B signaling pathway and UV-B stress resistance in Arabidopsis thaliana. Plant Cell Environ, 2021, 44: 114-129
CrossRef Google scholar
[107]
YinRH, ArongausAB, BinkertM, UlmR. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis. Plant Cell, 2015, 27: 202-213
CrossRef Google scholar
[108]
YinRH, SkvortsovaMY, LouberyS, UlmR. COP1 is required for UV-B-induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci USA, 2016, 113: E4415-E4422
CrossRef Google scholar
Funding
National Natural Science Foundation of China(32122011); Fundamental Research Funds for the Central Universities(20720220142)

Accesses

Citations

Detail

Sections
Recommended

/