Reducing potassium deficiency by using sodium fertilisation

Sarah J. Thorne, Frans J. M. Maathuis

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 45. DOI: 10.1007/s44154-022-00070-1
Review

Reducing potassium deficiency by using sodium fertilisation

Author information +
History +

Abstract

Potassium (K) is the most abundant cation in the vast majority of plants. It is required in large quantities which, in an agronomic context, typically necessitates application of K in the form of potash or other K fertilisers. Recently, the price of K fertiliser has risen dramatically, a situation that is paralleled by increasing K deficiency of soils around the globe. A potential solution to this problem is to reduce crop K fertiliser dependency by replacing it with sodium (Na) fertiliser which carries a much smaller price tag. In this paper we discuss the physiological roles of K and Na and the implications of Na fertilisation for crop cultivation and soil management. By using greenhouse growth assays we show distinct growth promotion after Na fertilisation in wheat, tomato, oilseed and sorghum. Our results also show that up to 60% of tissue K can be substituted by Na without growth penalty. Based on these data, simple economic models suggest that (part) replacement of K fertiliser with Na fertiliser leads to considerable savings.

Keywords

Deficiency / Fertiliser / Nutrient / Potassium / Salinity / Sodium

Cite this article

Download citation ▾
Sarah J. Thorne, Frans J. M. Maathuis. Reducing potassium deficiency by using sodium fertilisation. Stress Biology, 2022, 2(1): 45 https://doi.org/10.1007/s44154-022-00070-1

References

[1]
Ahmad I, Maathuis FJM (2014) Cellular and tissue distribution of potassium; physiological relevance, mechanisms and regulation. J Plant Physiol 171:708–714. https://doi.org/10.1016/j.jplph.2013.10.016
[2]
Alfaro MA, Jarvis SC, Gregory PJ (2004) Factors affecting potassium leaching in different soils. Soil Use Manag 20: 182–189, https://doi.org/https://doi.org/10.1111/j.1475-2743.2004.tb00355.x
[3]
Álvarez-Aragón R, Rodríguez-Navarro A (2017) Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions. Plant J 91(2):208–219. https://doi.org/10.1111/tpj.13556 Epub 2017 Jun 6. PMID: 28370621
[4]
[5]
Benito B, Haro R, Amtmann A, Cuin TA, Dreyer (2014) The twins K+ and Na+ in plants. J Plant Physiol 171(9):723–731.  https://doi.org/10.1016/j.jplph.2013.10.014
[6]
Benlloch-Gonzalez M, Romera J, Cristescu S, Harren F, Fournier JM, Benlloch M (2010) K+ starvation inhibits water-stressinduced stomatal closure via ethylene synthesis in sunflower plants. J Exp Bot 61:1139–1145. https://doi.org/10.1093/jxb/erp379
[7]
Black AS, Abdul-Hakim BMS (1984) Soil structure effects and leaching of sodium following sodium chloride fertiliser applications. N Z J Agric Res 27(3):399–403. https://doi.org/10.1080/00288233.1984.10430641
[8]
[9]
Chen S, Lu F, Wang X (2015) Estimation of greenhouse gases emission factors for China's nitrogen, phosphate, and potash fertilizers. Acta Ecol Sin 35(19):6371–6383. https://doi.org/10.5846/stxb201402210304
[10]
Ciceri D, Manning DAC, Allanore A (2015) Historical and technical developments of potassium resources. Sci Total Environ 502:590–601. https://doi.org/10.1016/j.scitotenv.2014.09.013
[11]
CushnahanA, GordonFJ, BaileyJS, MayneCS. A note on the effect of sodium fertilisation of pasture on the performance of lactating dairy cows. Irish J Agricultural Food Res, 1996, 35(1):43-47 http://www.jstor.org/stable/25562269
[12]
Demidchik V, Maathuis FJM (2007) Physiological roles of non-selective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404. https://doi.org/10.1111/j.1469-8137.2007.02128.x
[13]
Demidchik V, Tester M (2002). Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128(2):379–387. doi: https://doi.org/10.1104/pp.010524. PMID: 11842142; PMCID: PMC148901
[14]
Dobermann A, Cassman KG, Mamari CP, Sheehy JE (1998) Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice. Field Crop Res 56:113–138. https://doi.org/10.1016/S0378-4290(97)00124-X
[15]
Dougherty CT, Wells KL, Mitchell GE (1995) Sodium in pasture species and grazing livestock. Agronomy Notes. 37. https://uknowledge.uky.edu/pss_notes/37
[16]
[17]
Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115(3):419–431. https://doi.org/10.1093/aob/mcu217
[18]
Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber AP, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476(7361):472–475. https://doi.org/10.1038/nature10250
[19]
Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94(5):647–655. https://doi.org/10.1016/s0092-8674(00)81606-2 
[20]
Gobert A, Isayenkov S, Voelker C, Czempinski K, Maathuis FJM (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis. Proc Natl Acad Sci U S A 104(25):10726–10731. https://doi.org/10.1073/pnas.0702595104 
[21]
Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006) Arabidopsis thaliana cyclic nucleotide Gated Channel 3 mediates uptake of monovalent cations. J Ex Bot 57:791–800. https://doi.org/10.1093/jxb/erj064
[22]
Haro R, Bañuelos MA, Rodríguez-Navarro A (2010) High-affinity sodium uptake in land plants. Plant Cell Physiol 51(1):68–79. https://doi.org/10.1093/pcp/pcp168 Epub 2009 Nov 24. PMID: 19939835
[23]
Hope, R. M. (2013). Rmisc: Ryan miscellaneous. [online]. Available at: https://cran.r-project.org/package=Rmisc
[24]
Hoxha A, Christensen B (2019) The carbon footprint of fertiliser production: regional reference values. Proceeding 805, International Fertiliser Society ISBN 978–0–85310-442-1 (ISSN 1466–1314)
[25]
ICL fertilizer footprints. (2021) ESG Report https://icl-group-sustainability.com/reports/ carbonfootprints/
[26]
Isayenkov SV, Maathuis FJM (2018) Plant salinity stress; many unanswered questions remain. Frontiers Plant Science 10:80. https://doi.org/10.3389/fpls.2019.00080
[27]
Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conéjéro G, Rodríguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C, Véry AA (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150(4):1955–1971. https://doi.org/10.1104/pp.109.138008
[28]
Jiang X, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav. 5(7):792–5. doi: https://doi.org/10.4161/psb.5.7.11767. Epub 2010 Jul 1. PMID: 20495345; PMCID: PMC3014531
[29]
Krishnasamy K, Bell R (2014) Ma Q (2014) wheat responses to sodium vary with potassium use efficiency of cultivars. Front Plant Sci 11(5):631. https://doi.org/10.3389/fpls.2014.00631
[30]
Kronzucker HJ, Coskun D, Schulze LM, Wong JR, Britto DT (2013) Sodium as nutrient and toxicant. Plant Soil 369:1–23. https://doi.org/10.1007/s11104-013-1801-2
[31]
Lenth, R. V. (2021). Emmeans: estimated marginal means, aka least-squares means. [online]. Available at: https://cran.r-project.org/package=emmeans
[32]
Liu R, Cui B, Lu X, Song J (2021) The positive effect of salinity on nitrate uptake in Suaeda salsa. Plant Physiol Biochem 166:958–963. https://doi.org/10.1016/j.plaphy.2021.07.010
[33]
Lu D, Dong Y, Chen X, Wang H, Zhou J (2022) Comparison of potential potassium leaching associated with organic and inorganic potassium sources in different arable soils in China. Pedosphere 32(2):330–338. https://doi.org/10.1016/S1002-0160(21)60077-2
[34]
Maathuis FJM (2009) Physiological functions of mineral macronutrients. Current Opin Plant Biol 12:250–258. https://doi.org/10.1016/j.pbi.2009.04.003
[35]
Maathuis FJM (2013) Sodium in plants: perception, signalling, and regulation of sodium fluxes. J Ex Bot 65:849–858. https://doi.org/10.1093/jxb/ert326
[36]
Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133. https://doi.org/10.1006/anbo.1999.0912
[37]
Maathuis FJM, Diatloff E (2013) Roles and functions of plant mineral nutrients. Meth Mol Biology 953:1–21. https://doi.org/10.1007/978-1-62703-152-3_1
[38]
Maathuis FJM, Sanders D (1995) Contrasting roles in ion transport of two K+ channel types in root cells of Arabidopsis thaliana. Planta 197:456–464. https://doi.org/10.1007/bf00196667
[39]
Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127(4):1617–1625. https://doi.org/10.1104/pp.010502
[40]
Maathuis FJM, Verlin D, Smith FA, Sanders D, Fernandez JA, Walker NA (1996) The physiological relevance of Na+−coupled K+-transport. Plant Physiol 112:1609–1616. https://doi.org/10.1104/pp.112.4.1609
[41]
Mano H, Hasebe M (2021) Rapid movements in plants. J Plant Res. 134(1):3–17. https://doi.org/10.1007/s10265-020-01243-7
[42]
MarschnerH. Mineral nutrition of higher plants, 2012 Elsevier Amsterdam Third Edition
[43]
[44]
Mian A, Oomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Véry AA (2011) Overexpression of a Na+ and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 63:468–479. https://doi.org/10.1111/j.1365-313x.2011.04701.x
[45]
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
[46]
Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695. https://doi.org/10.1016/j.jplph.2013.09.021
[47]
Pathak H, Mohanty S, Jain N, Bhatia A (2010) Nitrogen, phosphorus, and potassium budgets in Indian agriculture. Nutr Cycl Agroecosyst 86:287–299. https://doi.org/10.1007/s10705-009-9292-5
[48]
Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+−activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408. https://doi.org/10.1038/nature03381
[49]
R Core Team. (2020). R: A language and environment for statistical computing. [Online]. Available at: https://www.r-project.org/
[50]
Rao X, Dixon RA (2016) The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than Decarboxylating enzymes. Front Plant Sci 13(7):1525. https://doi.org/10.3389/fpls.2016.01525
[51]
Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57(5):1149–1160. doi: https://doi.org/10.1093/jxb/erj068. Epub 2006 Jan 31. PMID: 16449373
[52]
Römheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180. https://doi.org/10.1007/s11104-010-0520-1
[53]
Roth MG, Mourtzinis S, Gaska JM, Mueller B, Roth A, Smith DL, Conley SP (2021) Wheat grain and straw yield, grain quality, and disease benefits associated with increased management intensity. Agron J 113:308–320. https://doi.org/10.1002/agj2.20477
[54]
Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270(5242):1660–1663. https://doi.org/10.1126/science.270.5242.1660
[55]
Rubio F, Nieves-Cordones M, Alemán F, Martinez V (2008) Relative contribution of AtHAK5 and AtAKT1 to K+ uptake in the high-affinity range of concentrations. Physiol Plant 134:598–608. https://doi.org/10.1111/j.1399-3054.2008.01168.x
[56]
Santa-María GE, Danna CH (2000) Czibener C (2000) high-affinity potassium transport in barley roots. Ammonium-sensitive and -insensitive pathways Plant Physiol 123(1):297–306. https://doi.org/10.1104/pp.123.1.297
[57]
Sheldrick WF, Lingard J (2002) The use of nutrient audits to determine nutrient balances in Africa. Food Policy 29:61–98. https://doi.org/10.1016/j.foodpol.2004.01.004
[58]
Sheldrick WF, Syers JK, Lingard J (2003) Soil nutrient audits for China to estimate nutrient balances and output/input relationships. Agric Ecosyst Environ 94:341–354. https://doi.org/10.1016/s0167-8809(02)00038-5
[59]
Shin R (2014) Strategies for improving potassium use efficiency in plants. Mol Cells 37(8): 575–584. doi: https://doi.org/10.14348/molcells.2014.0141. PMID: 24938230; PMCID: PMC4145368
[60]
Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium—a functional plant nutrient. Crit Rev Plant Sci 22:391–416
[61]
Subbarao GV, Wheeler RM, Stutte GW, Levine LH (1999) How far can sodium substitute for potassium in red beet? J Plant Nutr 22:1745–1761. https://doi.org/10.1080/01904169909365751
[62]
Sustr M, Soukup A, Tylova E (2019) potassium in root growth and development. Plants (Basel) 2019;8(10):435. doi: https://doi.org/10.3390/plants8100435. PMID: 31652570; PMCID: PMC6843428
[63]
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058
[64]
Thorne SJ, Stirnberg PM, Hartley SE, Maathuis FJM (2022) Silicon effect during salt stress varies among rice cultivars and critically impacts on the economic feasibility of silicon fertilisation. Rice 15(1):8. https://doi.org/10.1186/s12284-022-00555-7
[65]
Timsina J, Singh VK, Majumdar K (2013) Potassium management in rice-maize systems in South Asia. J Plant Nutr Soil Sci 176:317–330. https://doi.org/10.1002/jpln.201200253
[66]
Titler RV (2012) Chemical analysis of major constituents and trace contaminants of rock salt. https://files.dep.state.pa.us/Water/Wastewater%20Management/WastewaterPortalFiles/Rock%20Salt%20Paper%20final%20052711.pdf
[67]
Vašák M, Schnabl J (2016) Sodium and potassium ions in proteins and enzyme catalysis. Met Ions Life Sci 16:259–290. https://doi.org/10.1007/978-3-319-21756-7_8 PMID: 26860304
[68]
Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci U S A 93(19):10510–10514. https://doi.org/10.1073/pnas.93.19.10510 PMID: 11607707
[69]
Wang X, Hao L, Zhu B (2018) Jiang Z (2018) plant calcium signaling in response to potassium deficiency. Int J Mol Sci 19(11):3456. https://doi.org/10.3390/ijms19113456 PMID: 30400321
[70]
WickhamH. ggplot2: elegant graphics for data analysis, 2016 New York Springer-Verlag Online]. Available at: http://ggplot2.org
CrossRef Google scholar
[71]
Zhang JL, Flowers TJ, Wang SM (2010) Mechanisms of sodium uptake by roots of higher plants. Plant and Soil 326:45– 60.

Accesses

Citations

Detail

Sections
Recommended

/