Electrophysiology and fluorescence to investigate cation channels and transporters in isolated plant vacuoles
Antonella Gradogna, Armando Carpaneto
Electrophysiology and fluorescence to investigate cation channels and transporters in isolated plant vacuoles
The plant vacuole plays a fundamental role in cell homeostasis. The successful application of patch-clamp technique on isolated vacuoles allows the determination of the functional characteristics of tonoplast ion channels and transporters. The parallel use of a sensor-based fluorescence approach capable of detecting changes in calcium and proton concentrations opens up new possibilities for investigation. In excised patch, the presence of fura-2 in the vacuolar solution reveals the direct permeation of calcium in plant TPC channels. In whole-vacuole, the activity of non-electrogenic NHX potassium proton antiporters can be measured by using the proton sensitive dye BCECF loaded in the vacuolar lumen by the patch pipette. Both vacuolar NHXs and CLCa (chloride/nitrate antiporter) are inhibited by the phosphoinositide PI(3,5)P2, suggesting a coordinated role of these proteins in salt accumulation. Increased knowledge in the molecular mechanisms of vacuolar ion channels and transporters has the potential to improve our understanding on how plants cope with a rapidly changing environment.
Patch-clamp / Fura-2 / BCECF / TPC channels / Potassium / Calcium / NHX antiporters / Proton
[1] |
Bak G, Lee E-J, Lee Y, Kato M, Segami S, Sze H, Maeshima M, Hwang J-U, Lee Y (2013) Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25:2202–2216. https://doi.org/10.1105/tpc.113.110411
|
[2] |
Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137. https://doi.org/10.1152/physrev.00028.2012
|
[3] |
Benkerrou D, Minicozzi V, Gradogna A, Milenkovic S, Bodrenko IV, Festa M, Lagostena L, Cornara L, D’Amore A, Ceccarelli M et al (2019) A perspective on the modulation of plant and animal two pore channels (TPCs) by the flavonoid naringenin. Biophys Chem 254:106246. https://doi.org/10.1016/j.bpc.2019.106246
|
[4] |
Bertl A, Blumwald E, Coronado R, Eisenberg R, Findlay G, Gradmann D, Hille B, Köhler K, Kolb HA, MacRobbie E (1992) Electrical measurements on endomembranes. Science 258:873–874. https://doi.org/10.1126/science.1439795
|
[5] |
Boccaccio A, Scholz-Starke J, Hamamoto S, Larisch N, Festa M, Gutla PVK, Costa A, Dietrich P, Uozumi N, Carpaneto A (2014) The phosphoinositide PI (3, 5) P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cell Mol Life Sci 71:4275–4283. https://doi.org/10.1007/s00018-014-1623-2
|
[6] |
Bregante M, Carpaneto A, Pastorino F, Gambale F (1997) Effects of mono- and multi-valent cations on the inward-rectifying potassium channel in isolated protoplasts from maize roots. Eur Biophys J 26:381–391. https://doi.org/10.1007/s002490050092
|
[7] |
Bregante M, Yang Y, Formentin E, Carpaneto A, Schroeder JI, Gambale F, Lo Schiavo F, Costa A (2008) KDC1, a carrot shaker-like potassium channel, reveals its role as a silent regulatory subunit when expressed in plant cells. Plant Mol Biol 66:61–72. https://doi.org/10.1007/s11103-007-9252-x
|
[8] |
Carpaneto A, Accardi A, Pisciotta M, Gambale F (1999a) Chloride channels activated by hypotonicity in N2A neuroblastoma cell line. Exp Brain Res 124:193–199. https://doi.org/10.1007/s002210050614
|
[9] |
Carpaneto A, Boccaccio A, Lagostena L, Di Zanni E, Scholz-Starke J (2017) The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ exchange activity. EMBO Rep 18:1100–1107. https://doi.org/10.15252/embr.201643814
|
[10] |
Carpaneto A, Cantù AM, Gambale F (1999b) Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett 442:129–132. https://doi.org/10.1016/s0014-5793(98)01642-1
|
[11] |
Carpaneto A, Cantù AM, Gambale F (2001) Effects of cytoplasmic Mg2+ on slowly activating channels in isolated vacuoles of Beta vulgaris. Planta 213:457–468. https://doi.org/10.1007/s004250100519
|
[12] |
Carpaneto A, Cantu’ AM, Busch H, Gambale F (1997) Ion channels in the vacuoles of the seagrass Posidonia oceanica. FEBS Lett 412:236–240. https://doi.org/10.1016/s0014-5793(97)00786-2
|
[13] |
Carpaneto A, Dalla Serra M, Menestrina G, Fogliano V, Gambale F (2002) The phytotoxic lipodepsipeptide syringopeptin 25A from pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. J Membr Biol 188:237–248. https://doi.org/10.1007/s00232-001-0187-x
|
[14] |
Carpaneto A, Gradogna A (2018) Modulation of calcium and potassium permeation in plant TPC channels. Biophys Chem 236:1–7. https://doi.org/10.1016/j.bpc.2018.02.006
|
[15] |
Carpaneto A, Koepsell H, Bamberg E, Hedrich R, Geiger D (2010) Sucrose-and H+-dependent charge movements associated with the gating of sucrose transporter ZmSUT1. PLoS One 5:e12605. https://doi.org/10.1371/journal.pone.0012605
|
[16] |
Carpaneto A, Naso A, Paganetto A, Cornara L, Pesce E-R, Gambale F (2004) Properties of ion channels in the protoplasts of the Mediterranean seagrass Posidonia oceanica. Plant Cell Environ 27:279–292. https://doi.org/10.1111/j.1365-3040.2003.01139.x
|
[17] |
Costa A, Carpaneto A, Varotto S, Formentin E, Marin O, Barizza E, Terzi M, Gambale F, Lo Schiavo F (2004) Potassium and carrot embryogenesis: are K+ channels necessary for development? Plant Mol Biol 54:837–852. https://doi.org/10.1007/s11103-004-0236-9
|
[18] |
Costa A, Gutla PVK, Boccaccio A, Scholz-Starke J, Festa M, Basso B, Zanardi I, Pusch M, Schiavo FL, Gambale F et al (2012) The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl−/H+ exchanger CLC-7. J Physiol 590:3421–3430. https://doi.org/10.1113/jphysiol.2012.230227
|
[19] |
Derrer C, Wittek A, Bamberg E, Carpaneto A, Dreyer I, Geiger D (2013) Conformational changes represent the rate-limiting step in the transport cycle of maize sucrose transporter1. Plant Cell 25:3010–3021. https://doi.org/10.1105/tpc.113.113621
|
[20] |
Dickinson MS, Lu J, Gupta M, Marten I, Hedrich R, Stroud RM (2022) Molecular basis of multistep voltage activation in plant two-pore channel 1. Proc Natl Acad Sci U S A 119:e2110936119. https://doi.org/10.1073/pnas.2110936119
|
[21] |
Dindas J, Dreyer I, Huang S, Hedrich R, Roelfsema MRG (2021) A voltage-dependent Ca2+ homeostat operates in the plant vacuolar membrane. New Phytol 230:1449–1460. https://doi.org/10.1111/nph.17272
|
[22] |
Eisenach C, Francisco R, Martinoia E (2015) Plant vacuoles. Curr Biol 25:R136–R137. https://doi.org/10.1016/j.cub.2014.11.056
|
[23] |
Festa M, Lagostena L, Carpaneto A (2016) Using the plant vacuole as a biological system to investigate the functional properties of exogenous channels and transporters. Biochim Biophys Acta 1858:607–612. https://doi.org/10.1016/j.bbamem.2015.09.022
|
[24] |
Festa M, Minicozzi V, Boccaccio A, Lagostena L, Gradogna A, Qi T, Costa A, Larisch N, Hamamoto S, Pedrazzini E et al (2022) Current methods to unravel the functional properties of lysosomal ion channels and transporters. Cells 11:921. https://doi.org/10.3390/cells11060921
|
[25] |
Filippini A, D’Amore A, Palombi F, Carpaneto A (2020) Could the inhibition of endo-lysosomal two-pore channels (TPCs) by the natural flavonoid naringenin represent an option to fight SARS-CoV-2 infection? Front Microbiol 11:970. https://doi.org/10.3389/fmicb.2020.00970
|
[26] |
Gambale F, Cantu AM, Carpaneto A, Keller BU (1993) Fast and slow activation of voltage-dependent ion channels in radish vacuoles. Biophys J 65:1837–1843. https://doi.org/10.1016/s0006-3495(93)81241-4
|
[27] |
Gradogna A, Scholz-Starke J, Gutla PVK, Carpaneto A (2009) Fluorescence combined with excised patch: measuring calcium currents in plant cation channels. Plant J 58:175–182. https://doi.org/10.1111/j.1365-313x.2008.03762.x
|
[28] |
Gradogna A, Scholz-Starke J, Pardo JM, Carpaneto A (2021) Beyond the patch-clamp resolution: functional activity of nonelectrogenic vacuolar NHX proton/potassium antiporters and inhibition by phosphoinositides. New Phytol 229:3026–3036. https://doi.org/10.1111/nph.17021
|
[29] |
Guo J, Zeng W, Jiang Y (2017) Tuning the ion selectivity of two-pore channels. Proc Natl Acad Sci U S A 114:1009–1014. https://doi.org/10.1073/pnas.1616191114
|
[30] |
Gutla PVK, Boccaccio A, De Angeli A, Gambale F, Carpaneto A (2012) Modulation of plant TPC channels by polyunsaturated fatty acids. J Exp Bot 63:6187–6197.https://doi.org/10.1093/jxb/ers272
|
[31] |
Hedrich R (1995) Technical approaches to studying specific properties of ion channels in plants. In: Sakmann B, Neher E (eds) Single-Channel Rec. Springer US, Boston, pp 277–305
|
[32] |
Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811. https://doi.org/10.1152/physrev.00038.2011
|
[33] |
Hedrich R, Mueller TD, Becker D, Marten I (2018) Structure and function of TPC1 vacuole SV channel gains shape. Mol Plant 11:764–775. https://doi.org/10.1016/j.molp.2018.03.017
|
[34] |
Hedrich R, Neher E (1987) Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles. Nature 329:833. https://doi.org/10.1038/329833a0
|
[35] |
Kirsch SA, Kugemann A, Carpaneto A, Böckmann RA, Dietrich P (2018) Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cell Mol Life Sci CMLS 75:3803–3815. https://doi.org/10.1007/s00018-018-2829-5
|
[36] |
Martinoia E (2018) Vacuolar transporters – companions on a longtime journey. Plant Physiol 176:1384–1407. https://doi.org/10.1104/pp.17.01481
|
[37] |
Navarro-Retamal C, Schott-Verdugo S, Gohlke H, Dreyer I (2021) Computational analyses of the AtTPC1 (Arabidopsis Two-Pore Channel 1) permeation pathway. Int J Mol Sci 22:10345. https://doi.org/10.3390/ijms221910345
|
[38] |
Paganetto A, Carpaneto A, Gambale F (2001) Ion transport and metal sensitivity of vacuolar channels from the roots of the aquatic plant Eichhornia crassipes. Plant Cell Environ 24:1329–1336. https://doi.org/10.1046/j.1365-3040.2001.00777.x
|
[39] |
Pei Z-M, Ward JM, Schroeder JI (1999) Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles. Plant Physiol 121:977. https://doi.org/10.1104/pp.121.3.977
|
[40] |
Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+−activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408. https://doi.org/10.1038/nature03381
|
[41] |
Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I (2008) Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J Exp Bot 59:3845–3855. https://doi.org/10.1093/jxb/ern225
|
[42] |
Picco C, Scholz-Starke J, Festa M, Costa A, Sparla F, Trost P, Carpaneto A (2015) Direct recording of trans-plasma membrane electron currents mediated by a member of the cytochrome b561 family of soybean. Plant Physiol 169:986–995. https://doi.org/10.1104/pp.15.00642
|
[43] |
Porée F, Wulfetange K, Naso A, Carpaneto A, Roller A, Natura G, Bertl A, Sentenac H, Thibaud J-B, Dreyer I (2005) Plant Kin and Kout channels: approaching the trait of opposite rectification by analyzing more than 250 KAT1-SKOR chimeras. Biochem Biophys Res Commun 332:465–473. https://doi.org/10.1016/j.bbrc.2005.04.150
|
[44] |
Pottosin I, Dobrovinskaya O (2022) Major vacuolar TPC1 channel in stress signaling: what matters, K+, Ca2+ conductance or an ion-flux independent mechanism? Stress Biol 2:31. https://doi.org/10.1007/s44154-022-00055-0
|
[45] |
Pottosin II, Tikhonova LI, Hedrich R, Schönknecht G (1997) Slowly activating vacuolar channels can not mediate Ca2+−induced Ca2+ release. Plant J 12:1387–1398. https://doi.org/10.1046/j.1365-313x.1997.12061387.x
|
[46] |
Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch 411:204–211. https://doi.org/10.1007/bf00582316
|
[47] |
Scholz-Starke J, Carpaneto A, Gambale F (2006) On the interaction of neomycin with the slow vacuolar channel of Arabidopsis thaliana. J Gen Physiol 127:329–340. https://doi.org/10.1085/jgp.200509402
|
[48] |
Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434:43–50. https://doi.org/10.1016/j.abb.2004.06.017
|
[49] |
Ye F, Xu L, Li X, Zeng W, Gan N, Zhao C, Yang W, Jiang Y, Guo J (2021) Voltage-gating and cytosolic Ca2+ activation mechanisms of Arabidopsis two-pore channel AtTPC1. Proc Natl Acad Sci U S A 118:e2113946118. https://doi.org/10.1073/pnas.2113946118
|
/
〈 | 〉 |