Perspectives on plant virus diseases in a climate change scenario of elevated temperatures

Wei-An Tsai, Christopher A. Brosnan, Neena Mitter, Ralf G. Dietzgen

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 37. DOI: 10.1007/s44154-022-00058-x
Review

Perspectives on plant virus diseases in a climate change scenario of elevated temperatures

Author information +
History +

Abstract

Global food production is at risk from many abiotic and biotic stresses and can be affected by multiple stresses simultaneously. Virus diseases damage cultivated plants and decrease the marketable quality of produce. Importantly, the progression of virus diseases is strongly affected by changing climate conditions. Among climate-changing variables, temperature increase is viewed as an important factor that affects virus epidemics, which may in turn require more efficient disease management. In this review, we discuss the effect of elevated temperature on virus epidemics at both macro- and micro-climatic levels. This includes the temperature effects on virus spread both within and between host plants. Furthermore, we focus on the involvement of molecular mechanisms associated with temperature effects on plant defence to viruses in both susceptible and resistant plants. Considering various mechanisms proposed in different pathosystems, we also offer a view of the possible opportunities provided by RNA -based technologies for virus control at elevated temperatures. Recently, the potential of these technologies for topical field applications has been strengthened through a combination of genetically modified (GM)-free delivery nanoplatforms. This approach represents a promising and important climate-resilient substitute to conventional strategies for managing plant virus diseases under global warming scenarios. In this context, we discuss the knowledge gaps in the research of temperature effects on plant-virus interactions and limitations of RNA-based emerging technologies, which should be addressed in future studies.

Keywords

Elevated temperatures / Virus epidemics / Plant virus control / RNA-based approaches / Nanoparticles

Cite this article

Download citation ▾
Wei-An Tsai, Christopher A. Brosnan, Neena Mitter, Ralf G. Dietzgen. Perspectives on plant virus diseases in a climate change scenario of elevated temperatures. Stress Biology, 2022, 2(1): 37 https://doi.org/10.1007/s44154-022-00058-x

References

[1]
Abebe DA, van Bentum S, Suzuki M, Ando S, Takahashi H, Miyashita S (2021) Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism. Commun Biol 4(1):947. https://doi.org/10.1038/s42003-021-02482-7
[2]
Abobatta WF (2019) Influence of Climate Change on Citrus Growth and Productivity (Effect of Temperature). Adv Agricultural Technol Plant Sci 2:180036 hors: Waleed Abobatta. https://doi.org/10.15406/mojes.2019.04.00168
[3]
Akhter MS, Nakahara KS, Masuta C (2021) Resistance induction based on the understanding of molecular interactions between plant viruses and host plants. Virol J 18(1):176. https://doi.org/10.1186/s12985-021-01647-4
[4]
Alallam B, Altahhan S, Taher M, Mohd Nasir MH, Doolaanea AA (2020) Electrosprayed alginate nanoparticles as CRISPR plasmid DNA delivery carrier: preparation, optimization, and characterization. Pharmaceuticals 13(8):158. https://doi.org/10.3390/ph13080158
[5]
Alamillo JM, Saénz P, García JA (2006) Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. Plant J 48(2):217–227 https://doi.org/10.1111/j.1365-313x.2006.02861.x
[6]
Alcaide C, Rabadán MP, Moreno-Pérez MG, Gómez P (2020) Implications of mixed viral infections on plant disease ecology and evolution. Adv Virus Res 106:145–169.  https://doi.org/10.1016/bs.aivir.2020.02.001
[7]
Alcaide C, Sardanyés J, Elena SF, Gómez P (2021) Increasing temperature alters the within-host competition of viral strains and influences virus genetic variability. Virus Evol 7(1):veab017. https://doi.org/10.1093/ve/veab017
[8]
Ali S, Mehmood A, Khan N (2021) Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. J Nanomater 2021:6677616 https://doi.org/10.1155/2021/6677616
[9]
Ali Z, Ali S, Tashkandi M, SS-e-A Z, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci Rep 6(1):26912  https://doi.org/10.1038/srep26912
[10]
Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19(1):1 https://doi.org/10.1186/s13059-017-1381-1
[11]
Amari K, Huang C, Heinlein M (2021) Potential impact of global warming on virus propagation in infected plants and agricultural productivity. Front Plant Sci 12:478 https://doi.org/10.3389/fpls.2021.649768
[12]
Anfoka G, Moshe A, Fridman L, Amrani L, Rotem O, Kolot M, Zeidan M, Czosnek H, Gorovits R (2016) Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep 6:19715 https://doi.org/10.1038/srep19715
[13]
Antignus Y, Vunsh R, Lachman O, Pearlsman M, Maslenin L, Hananya U, Rosner A (2004) Truncated Rep gene originated from Tomato yellow leaf curl virus-Israel [Mild] confers strain-specific resistance in transgenic tomato. Ann Appl Biol 144(1):39–44 https://doi.org/10.1111/j.1744-7348.2004.tb00314.x
[14]
Aragão FJL, Nogueira EOPL, Tinoco MLP, Faria JC (2013) Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J Biotechnol 166(1):42–50 https://doi.org/10.1016/j.jbiotec.2013.04.009
[15]
Bao D, Ganbaatar O, Cui X, Yu R, Bao W, Falk BW, Wuriyanghan H (2018) Down-regulation of genes coding for core RNAi components and disease resistance proteins via corresponding microRNAs might be correlated with successful Soybean mosaic virus infection in soybean. Mol Plant Pathol 19(4):948–960 https://doi.org/10.1111/mpp.12581
[16]
Bao W, Wan Y, Baluska F (2017) Nanosheets for delivery of biomolecules into Plant Cells. Trends Plant Sci 22(6):445–447 https://doi.org/10.1016/j.tplants.2017.03.014
[17]
Bao W, Wang J, Wang Q, O’Hare D, Wan Y (2016) Layered double hydroxide nanotransporter for molecule delivery to intact plant cells. Sci Rep 6(1):26738 https://doi.org/10.1038/srep26738
[18]
Baruah A, Sivalingam PN, Fatima U, Senthil-Kumar M (2020) Non-host resistance to plant viruses: What do we know? Physiol Mol Plant Pathol 111:101506 https://doi.org/10.1038/srep26738
[19]
Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11(5):781–792 https://doi.org/10.2307/3870814
[20]
Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16(12):727–741 https://doi.org/10.1038/nrm4085
[21]
Boyko V, Ferralli J, Heinlein M (2000) Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J 22(4):315–325. https://doi.org/10.1046/j.1365-313x.2000.00740.x
[22]
Bulgarelli D, Biselli C, Collins NC, Consonni G, Stanca AM, Schulze-Lefert P, Valè G (2010) The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One 5(9):e12599. https://doi.org/10.1371/journal.pone.0012599
[23]
Cadman CH, Harrison BD (1959) Studies on the properties of soil-borne viruses of the tobacco-rattle type occurring in scotland. Ann Appl Biol 47(3):542–556. https://doi.org/10.1111/j.1744-7348.1959.tb07286.x
[24]
Cagliari D, Dias NP, Galdeano DM, dos Santos EÁ, Smagghe G, Zotti MJ (2019) Management of pest insects and plant diseases by non-transformative RNAi. Front Plant Sci:10:1319.  https://doi.org/10.3389/fpls.2019.01319
[25]
Calil IP, Fontes EPB (2016) Plant immunity against viruses: antiviral immune receptors in focus. Ann Bot 119(5):711–723. https://doi.org/10.1093/aob/mcw200
[26]
Canto T, Aranda MA, Fereres A (2009) Climate change effects on physiology and population processes of hosts and vectors that influence the spread of hemipteran-borne plant viruses. Global Change Biol 15(8):1884–1894. https://doi.org/10.1111/j.1365-2486.2008.01820.x
[27]
Canto-Pastor A, Santos BAMC, Valli AA, Summers W, Schornack S, Baulcombe DC (2019) Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. Proc Natl Acad Sci USA 116(7):2755–2760 https://doi.org/10.1101/396564
[28]
Caranta C, Lefebvre V, Palloix A (1997) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant Microbe Interact 10(7):872–878. https://doi.org/10.1094/mpmi.1997.10.7.872
[29]
Cervera H, Ambrós S, Bernet GP, Rodrigo G, Elena SF (2018) Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host’s Transcriptome: The Tobacco Etch Potyvirus—Tobacco Case Study. Mol Biol Evol 35(7):1599–1615. https://doi.org/10.1093/molbev/msy038
[30]
Cesari S (2018) Multiple strategies for pathogen perception by plant immune receptors. New Phytol 219(1):17–24. https://doi.org/10.1111/nph.14877
[31]
Chappell TM, Beaudoin ALP, Kennedy GG (2013) Interacting virus abundance and transmission intensity underlie tomato spotted wilt virus incidence: An example weather-based model for cultivated tobacco. PLoS One 8(8):e73321. https://doi.org/10.1371/journal.pone.0197565
[32]
Chaubey, AN, Mishra, RS (2017) Survey of chilli leaf curl complex disease in eastern part of Uttar Pradesh. Biomed J Sci Tech Res 1:7.   https://doi.org/10.26717/bjstr.2017.01.000589
[33]
Chellappan P, Vanitharani R, Ogbe F, Fauquet CM (2005) Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol 138(4):1828–1841. https://doi.org/10.1104/pp.105.066563
[34]
Choi KS, Del Toro F, Tenllado F, Canto T, Chung BN (2017) A model to explain temperature dependent systemic infection of potato plants by potato virus Y. Plant Pathol J 33(2):206–211. https://doi.org/10.5423/ppj.nt.06.2016.0144
[35]
Chung BN, Choi KS, Ahn JJ, Joa JH, Do KS, Park K-S (2015) Effects of temperature on systemic infection and symptom expression of turnip mosaic virus in chinese cabbage (Brassica campestris). Plant Pathol J 31(4):363–370. https://doi.org/10.5423/ppj.nt.06.2015.0107
[36]
Chung BN, Lee J-H, Kang B-C, Koh SW, Joa JH, Choi KS, Ahn JJ (2018) HR-mediated defense response is overcome at high temperatures in capsicum Species. Plant Pathol J 34(1):71–77. https://doi.org/10.5423/ppj.nt.06.2017.0120
[37]
Cillo F, Palukaitis P (2014) Chapter Two - Transgenic Resistance. In: Loebenstein G, Katis N (eds) Adv Virus Res, vol 90. Academic Press, pp 35–146. https://doi.org/10.1016/b978-0-12-801246-8.00002-0
[38]
Close R (1964) Some effects of other viruses and of temperature on the multiplication of potato virus X. Ann Appl Biol 53(1):151–164. https://doi.org/10.1111/j.1744-7348.1964.tb03788.x
[39]
Cobos A, Montes N, López-Herranz M, Gil-Valle M, Pagán I, Simon Anne E (2019) Within-Host Multiplication and Speed of Colonization as Infection Traits Associated with Plant Virus Vertical Transmission. J Virol 93(23):e01078–e01019. https://doi.org/10.1128/jvi.01078-19
[40]
Curin M, Ojangu EL, Trutnyeva K, Ilau B, Truve E, Waigmann E (2007) MPB2C, a microtubule-associated plant factor, is required for microtubular accumulation of tobacco mosaic virus movement protein in plants. Plant Physiol 143(2):801–811. https://doi.org/10.1104/pp.106.091488
[41]
Dalakouras A, Jarausch W, Buchholz G, Bassler A, Braun M, Manthey T, Krczal G, Wassenegger M (2018) Delivery of hairpin RNAs and small RNAs Into woody and herbaceous plants by trunk injection and petiole absorption. Front Plant Sci 9:1253. https://doi.org/10.3389/fpls.2018.01253
[42]
Dalakouras A, Wassenegger M, Dadami E, Ganopoulos I, Pappas ML, Papadopoulou K (2020) Genetically modified organism-free RNA interference: Exogenous application of RNA molecules in plants. Plant Physiol 182(1):38–50. https://doi.org/10.1104/pp.19.00570
[43]
Damase TR, Sukhovershin R, Boada C, Taraballi F, Pettigrew RI, Cooke JP (2021) The limitless future of RNA therapeutics. Front Bioeng. Biotechnol 9:628137.  https://doi.org/10.3389/fbioe.2021.628137
[44]
de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:307–307 https://doi.org/10.3389/fpls.2014.00307
[45]
de Ronde D, Lohuis D, Kormelink R (2019) Identification and characterization of a new class of Tomato spotted wilt virus isolates that break Tsw-based resistance in a temperature-dependent manner. Plant Pathol 68(1):60–71. https://doi.org/10.1111/ppa.12952
[46]
Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313(5783):68–71. https://doi.org/10.3410/f.1002046.374330
[47]
DeLucia EH, Nabity PD, Zavala JA, Berenbaum MR (2012) Climate change: resetting plant-insect interactions. Plant Physiol 160(4):1677–1685. https://doi.org/10.1104/pp.112.204750
[48]
Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthomé R (2021) Fight hard or die trying: when plants face pathogens under heat stress. New Phytol 229(2):712–734. https://doi.org/10.1111/nph.16965
[49]
Dietzgen RG, Mann KS, Johnson KN (2016) Plant virus–insect vector interactions: current and potential future research directions. Viruses 8(11):303. https://doi.org/10.3390/v8110303
[50]
Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426. https://doi.org/10.1016/j.cell.2007.07.039
[51]
Doreste V, Ramos PL, Enríquez GA, Rodríguez R, Peral R, Pujol M (2002) Transgenic potato plants expressing the potato virus X (PVX) coat protein gene developed resistance to the viral infection. Phytoparasitica 30(2):177. https://doi.org/10.1007/bf02979700
[52]
Dubrovina AS, Kiselev KV (2019) Exogenous RNAs for gene regulation and plant resistance. Int J Mol Sci 20(9):2282. https://doi.org/10.3390/ijms20092282
[53]
Dunoyer P, Himber C, Ruiz-Ferrer V, Alioua A, Voinnet O (2007) Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat Genet 39(7):848–856. https://doi.org/10.1038/ng2081
[54]
Ebrahimi V, Hashemi A (2020) Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 753:144813. https://doi.org/10.1016/j.gene.2020.144813
[55]
Elena SF, Lalić J (2013) Plant RNA virus fitness predictability: contribution of genetic and environmental factors. Plant Pathol 62(S1):10–18. https://doi.org/10.1111/ppa.12102
[56]
Fletcher SJ, Reeves PT, Hoang BT, Mitter N (2020) A perspective on RNAi-based biopesticides. Front Plant Sci. p 11. https://doi.org/10.3389/fpls.2020.00051
[57]
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39(8):1033–1037. https://doi.org/10.3410/f.1090373.544205
[58]
Friebe B, Qi L, Wilson D, Chang Z, Seifers D, Martin T, Fritz A, Gill B (2009) Wheat–Thinopyrum Intermedium recombinants resistant to wheat streak mosaic virus and triticum mosaic virus. Crop Sci 49:2009–1221. https://doi.org/10.2135/cropsci2008.09.0513
[59]
Froissart R, Doumayrou J, Vuillaume F, Alizon S, Michalakis Y (2010) The virulence-transmission trade-off in vector-borne plant viruses: a review of (non-)existing studies. Philos Transact R Soc Lond B Biol Sci 365(1548):1907–1918. https://doi.org/10.1098/rstb.2010.0068
[60]
Fu L, Wang Z, Dhankher OP, Xing B (2020) Nanotechnology as a new sustainable approach for controlling crop diseases and increasing agricultural production. J Exp Bot 71(2):507–519. https://doi.org/10.1093/jxb/erz314
[61]
Gallois JL, Moury B, German-Retana S (2018) Role of the genetic background in resistance to plant viruses. Int J Mol Sci 19(10):2856.  https://doi.org/10.3390/ijms19102856
[62]
Gangappa SN, Berriri S, Kumar SV (2017) PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr Biol 27(2):243–249. https://doi.org/10.1016/j.cub.2016.11.012
[63]
Garrett KA, Dendy SP, Frank EE, Rouse MN, Travers SE (2006) Climate change effects on plant disease: genomes to ecosystems. Annu Rev Phytopathol 44:489–509. https://doi.org/10.1146/annurev.phyto.44.070505.143420
[64]
Ghoshal B, Sanfacon H (2014) Temperature-dependent symptom recovery in Nicotiana benthamiana plants infected with tomato ringspot virus is associated with reduced translation of viral RNA2 and requires ARGONAUTE 1. Virology 456–457:188–197. https://doi.org/10.1016/j.virol.2014.03.026
[65]
Ghoshal B, Sanfacon H (2015) Symptom recovery in virus-infected plants: Revisiting the role of RNA silencing mechanisms. Virology 479–480:167–179. https://doi.org/10.1016/j.virol.2015.01.008
[66]
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB (2017) Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 7:2139–2139. https://doi.org/10.3389/fmicb.2016.02139
[67]
Grulke NE (2011) The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytol 189(1):8–11. https://doi.org/10.1111/j.1469-8137.2010.03568.x
[68]
Hashimoto M, Neriya Y, Yamaji Y, Namba S (2016) Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front Microbiol 7:1695–1695. https://doi.org/10.3389/fmicb.2016.01695
[69]
Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather Clim Extrem. 10:4–10. https://doi.org/10.1016/j.wace.2015.08.001
[70]
Hildebrand EM (1958) Masked virus infection in plants. Annu Rev Microbiol 12(1):441–468. https://doi.org/10.1146/annurev.mi.12.100158.002301
[71]
Hohn T (2007) Plant virus transmission from the insect point of view. Proc Natl Acad Sci USA 104(46):17905. https://doi.org/10.1073/pnas.0709178104
[72]
Hullé M, Coeur d’acier A, Bankhead-Dronnet S, Harrington R (2010) Aphids in the face of global changes. C R Biol 333:497–503. https://doi.org/10.1016/j.crvi.2010.03.005
[73]
Hunjan MS, Lore JS (2020) Climate Change: Impact on Plant Pathogens, Diseases, and Their Management. In: Jabran K, Florentine S, Chauhan BS (eds) Crop Protection Under Changing Climate. Springer International Publishing, Cham, pp 85–100. https://doi.org/10.1007/978-3-030-46111-9_8
[74]
IPCC (2014) Climate change 2014: synthesis report. Core Writing Team. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva. https://doi.org/10.1017/cbo9781107415416
[75]
Jeger MJ (2020) The epidemiology of plant virus disease: Towards a new synthesis. Plants 9(12):1768. https://doi.org/10.3390/plants9121768
[76]
Jeger MJ, Madden LV, van den Bosch F (2018) Plant virus epidemiology: applications and prospects for mathematical modeling and analysis to improve understanding and disease control. Plant Dis 102(5):837–854. https://doi.org/10.1094/pdis-04-17-0612-fe
[77]
Jiang N, Meng J, Cui J, Sun G, Luan Y (2018) Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic Res 5(1):9. https://doi.org/10.1038/s41438-018-0017-2
[78]
Jo A, Ringel-Scaia VM, McDaniel DK, Thomas CA, Zhang R, Riffle JS, Allen IC, Davis RM (2020) Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmid. J Nanobiotechnol 18(1):16. https://doi.org/10.1186/s12951-019-0564-1
[79]
Johnson J (1921) The relation of air temperatures to certain plant diseases. Phytopathology 11:446–458
[80]
Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329. https://doi.org/10.1038/nature05286
[81]
Jones RAC (2009) Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res 141(2):113–130. https://doi.org/10.1016/j.virusres.2008.07.028
[82]
Jones RAC (2014) Plant virus ecology and epidemiology: historical perspectives, recent progress and future prospects. Ann Appl Biol 164(3):320–347. https://doi.org/10.1111/aab.12123
[83]
Jones RAC (2016) Future scenarios for plant virus pathogens as climate change progresses. Adv Virus Res 95:87–147. https://doi.org/10.1016/bs.aivir.2016.02.004
[84]
Jones RAC, Coutts BA (2015) Spread of introduced viruses to new plants in natural ecosystems and the threat this poses to plant biodiversity. Mol Plant Pathol 16(6):541–545. https://doi.org/10.1111/mpp.12268
[85]
Jones RAC, Naidu RA (2019) Global dimensions of plant virus diseases: current status and future perspectives. Annu Rev Virol 6(1):387–409. https://doi.org/10.1146/annurev-virology-092818-015606
[86]
Keller KE, Johansen IE, Martin RR, Hampton RO (1998) Potyvirus genome-linked protein (VPg) determines pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol Plant-Microbe Interact 11(2):124–130. https://doi.org/10.1094/mpmi.1998.11.2.124
[87]
Khalid A, Zhang Q, Yasir M, Li F (2017) Small RNA based genetic engineering for plant viral resistance: application in crop protection. Front Microbiol 8:43 https://doi.org/10.3389/fmicb.2017.00043
[88]
Kim Y, Kim YJ, Paek KH (2021) Temperature-specific vsiRNA confers RNAi-mediated viral resistance at elevated temperature in Capsicum annuum. J Exp Bot 72(4):1432–1448. https://doi.org/10.1093/jxb/eraa527
[89]
Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17(6):1004–1006. https://doi.org/10.1111/pbi.13077
[90]
Koch A, Kogel KH (2014) New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing. Plant Biotechnol J 12(7):821–831. https://doi.org/10.1111/pbi.12226
[91]
Koch A, Wassenegger M (2021) Host-induced gene silencing – mechanisms and applications. New Phytol 231(1):54–59. https://doi.org/10.1111/nph.17364
[92]
Konakalla NC, Kaldis A, Berbati M, Masarapu H, Voloudakis AE (2016) Exogenous application of double-stranded RNA molecules from TMV p126 and CP genes confers resistance against TMV in tobacco. Planta 244(4):961–969. https://doi.org/10.1007/s00425-016-2567-6
[93]
Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78. https://doi.org/10.1016/j.mib.2017.05.008
[94]
Korner CJ, Klauser D, Niehl A, Dominguez-Ferreras A, Chinchilla D, Boller T, Heinlein M, Hann DR (2013) The immunity regulator BAK1 contributes to resistance against diverse RNA viruses. Mol Plant-Microbe Interact 26(11):1271–1280. https://doi.org/10.1094/mpmi-06-13-0179-r
[95]
Kørner CJ, Pitzalis N, Peña EJ, Erhardt M, Vazquez F, Heinlein M (2018) Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. Nature Plants 4(3):157–164. https://doi.org/10.1038/s41477-018-0117-x
[96]
Kumar G, Dasgupta I (2021) Variability, functions and interactions of plant virus movement proteins: What do we know so far? Microorganisms 9(4):695.  https://doi.org/10.3390/microorganisms9040695
[97]
Kumar R, Kumar V, Kadiri S, Palicherla SR (2016) Epidemiology and diagnosis of chilli leaf curl virus in central India, a major chilli growing region. Indian Phytopathol 69(4s):61–64. https://doi.org/10.1111/j.1439-0434.2011.01876.x
[98]
Kuroiwa K, Thenault C, Nogué F, Perrot L, Mazier M, Gallois J-L (2022) CRISPR-based knock-out of eIF4E2 in a cherry tomato background successfully recapitulates resistance to pepper veinal mottle virus. Plant Sci 316:111160. https://doi.org/10.1016/j.plantsci.2021.111160
[99]
Kwak S-Y, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua N-H, Strano MS (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 14(5):447–455. https://doi.org/10.1038/s41565-019-0375-4
[100]
Lavina A, Battle A (1993) First report of Tomato spotted wilt virus infection of ficus species in Spain. Plant Dis 77:536. https://doi.org/10.1094/pd-77-0536c
[101]
Lebeurier G, Hirth L (1966) Effect of elevated temperatures on the development of two strains of tobacco mosaic virus. Virology 29(3):385–395. https://doi.org/10.1016/0042-6822(66)90214-5
[102]
Lefeuvre P, Martin DP, Elena SF, Shepherd DN, Roumagnac P, Varsani A (2019) Evolution and ecology of plant viruses. Nat Rev Microbiol 17(10):632–644. https://doi.org/10.1038/s41579-019-0232-3
[103]
Lellis A, Kasschau K, Whitham S, Carrington J (2002) Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF (iso)4E during potyvirus Infection. Curr Biol 12:1046–1051. https://doi.org/10.1016/s0960-9822(02)00898-9
[104]
Leonetti P, Stuttmann J, Pantaleo V (2021) Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol J 18(1):194. https://doi.org/10.1186/s12985-021-01664-3
[105]
Li B, Ferreira MA, Huang M, Camargos LF, Yu X, Teixeira RM, Carpinetti PA, Mendes GC, Gouveia-Mageste BC, Liu C, Pontes CSL, Brustolini OJB, Martins LGC, Melo BP, Duarte CEM, Shan L, He P, Fontes EPB (2019) The receptor-like kinase NIK1 targets FLS2/BAK1 immune complex and inversely modulates antiviral and antibacterial immunity. Nat Commun 10(1):4996. https://doi.org/10.1038/s41467-019-12847-6
[106]
Liu H, Soyars CL, Li J, Fei Q, He G, Peterson BA, Meyers BC, Nimchuk ZL, Wang X (2018) CRISPR/Cas9-mediated resistance to cauliflower mosaic virus. Plant Direct 2(3):e00047. https://doi.org/10.1002/pld3.47
[107]
Liu W, Seifers DL, Qi LL, Friebe B, Gill BS (2011) A compensating Wheat–Thinopyrum intermedium Robertsonian translocation conferring resistance to wheat streak mosaic virus and triticum mosaic virus. Crop Sci 51(6):2382–2390. https://doi.org/10.2135/cropsci2011.03.0118
[108]
Llamas-Llamas ME, Zavaleta-Mejia E, Gonzalez-Hernandez VA, Cervantes-Diaz L, Santizo-Rincon JA, Ochoa-Martinez DL (1998) Effect of temperature on symptom expression and accumulation of tomato spotted wilt virus in different host species. Plant Pathol 47(3):341–347. https://doi.org/10.1046/j.1365-3059.1998.00249.x
[109]
Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139(2):935–948. https://doi.org/10.1104/pp.105.066803
[110]
Luo Q (2011) Temperature thresholds and crop production: a review. Clim Change 109(3):583–598. https://doi.org/10.1007/s10584-011-0028-6
[111]
Madden LV, Jeger MJ, van den Bosch F (2000) A theoretical assessment of the effects of vector-virus transmission mechanism on plant virus disease epidemics. Phytopathology 90(6):576–594. https://doi.org/10.1094/phyto.2000.90.6.576
[112]
Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M (2018) Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with potato virus Y. Front Microbiol 9:2582. https://doi.org/10.3389/fmicb.2018.02582
[113]
Makhotenko AV, Khromov AV, Snigir EA, Makarova SS, Makarov VV, Suprunova TP, Kalinina NO, Taliansky ME (2019) Functional Analysis of Coilin in Virus Resistance and Stress Tolerance of Potato Solanum tuberosum using CRISPR-Cas9 Editing. Dokl Biochem Biophys 484(1):88–91. https://doi.org/10.1134/s1607672919010241
[114]
Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22(12):3879–3889. https://doi.org/10.1105/tpc.110.080671
[115]
Mang H-G, Qian W, Zhu Y, Qian J, Kang H-G, Klessig DF, Hua J (2012) Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. Plant Cell 24(3):1271–1284. https://doi.org/10.1105/tpc.112.096198
[116]
Marques de Carvalho L, Benda ND, Vaughan MM, Cabrera AR, Hung K, Cox T, Abdo Z, Allen LH, Teal PEA (2015) Mi-1-Mediated Nematode Resistance in Tomatoes is Broken by Short-Term Heat Stress but Recovers Over Time. J Nematol 47(2):133–140. https://doi.org/10.21236/ad0610741
[117]
Martín S, Elena SF (2009) Application of game theory to the interaction between plant viruses during mixed infections. J Gen Virol 90(Pt 11):2815–2820. https://doi.org/10.1099/vir.0.012351-0
[118]
Masuta C, Nishimura M, Morishita H, Hataya T (1999) A single amino Acid change in viral genome-associated protein of potato virus y correlates with resistance breaking in “virgin a mutant” tobacco. Phytopathology 89(2):118–123. https://doi.org/10.1094/phyto.1999.89.2.118
[119]
Matsukura K, Towata T, Sakai J, Onuki M, Okuda M, Matsumura M (2013) Dynamics of Southern rice black-streaked dwarf virus in Rice and Implication for Virus Acquisition. Phytopathology 103(5):509–512. https://doi.org/10.1094/phyto-10-12-0261-r
[120]
Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Liwenga E, Pradhan P, Rivera-Ferre MG, Sapkota T, Tubiello FN, Xu Y, 2019. Food Security. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, eds P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.- O. Pörtner, D. C. Roberts, et al. Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.1038/s43016-020-0031-z
[121]
McLeish MJ, Fraile A, García-Arenal F (2020) Population Genomics of Plant Viruses: The Ecology and Evolution of Virus Emergence. Phytopathology 111(1):32–39. https://doi.org/10.1094/phyto-08-20-0355-fi
[122]
Menna A, Nguyen D, Guttman DS, Desveaux D (2015) Elevated Temperature Differentially Influences Effector-Triggered Immunity Outputs in Arabidopsis. Front Plant Sci 6:995–995. https://doi.org/10.3389/fpls.2015.00995
[123]
Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207. https://doi.org/10.3410/f.727189150.793551310
[124]
Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37(3):118–125. https://doi.org/10.1016/j.tibs.2011.11.007
[125]
Mlotshwa S, Pruss GJ, Vance V (2008) Small RNAs in viral infection and host defense. Trends Plant Sci 13(7):375–382. https://doi.org/10.1016/j.tplants.2008.04.009
[126]
Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357. https://doi.org/10.1016/j.pbi.2012.05.006
[127]
Moon JY, Park JM (2016) Cross-Talk in Viral Defense Signaling in Plants. Front Microbiol 7:2068–2068. https://doi.org/10.3389/fmicb.2016.02068
[128]
Chang F-P, Kuang L-Y, Huang C-A, Jane W-N, Hung Y, Hsing Y-i C, Mou C-Y (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279-5287. https://doi.org/10.1039/c3tb20529k
[129]
Moury B, Palloix A, Selassie K, Marchoux G (1997) Hypersensitive resistance to tomato spotted wilt virus in three Capsicum chinense accessions is controlled by a single gene and is overcome by virulent strains. Euphytica 94:45–52. https://doi.org/10.1023/a:1002997522379
[130]
Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistant in pepper. Genome 43:137–142. https://doi.org/10.1139/g99-098
[131]
Moury B, Selassie KG, Marchoux G, Daubèze A-M, Palloix A (1998) High temperature effects on hypersensitive resistance to Tomato Spotted Wilt Tospovirus (TSWV) in pepper (Capsicum chinense Jacq.). Eur J Plant Pathol 104(5):489–498. https://doi.org/10.1023/A:1008618022144
[132]
Muhammad T, Zhang F, Zhang Y, Liang Y (2019) RNA Interference: a natural immune system of plants to counteract biotic stressors. Cells 8(1):38. https://doi.org/10.3390/cells8010038
[133]
Mujtaba M, Wang D, Carvalho LB, Oliveira JL, Pereira ES, Ad SR, Jogaiah S, Paidi MK, Wang L, Ali Q, Fraceto LF (2021) Nanocarrier-Mediated Delivery of miRNA, RNAi, and CRISPR-Cas for Plant Protection: Current Trends and Future Directions. ACS Agric Sci Technol 1(5):417–435. https://doi.org/10.1021/acsagscitech.1c00146
[134]
Nancarrow N, Constable FE, Finlay KJ, Freeman AJ, Rodoni BC, Trebicki P, Vassiliadis S, Yen AL, Luck JE (2014) The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Res 186:97–103. https://doi.org/10.1016/j.virusres.2013.12.023
[135]
Nicaise V, Candresse T (2017) Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity. Mol Plant Pathol 18(6):878–886. https://doi.org/10.1111/mpp.12447
[136]
Nicaise V, German-Retana S, Sanjuán R, Dubrana M-P, Mazier M, Maisonneuve B, Candresse T, Caranta C, LeGall O (2003) The Eukaryotic Translation Initiation Factor 4E Controls Lettuce Susceptibility to the Potyvirus Lettuce mosaic virus. Plant Physiol 132(3):1272–1282. https://doi.org/10.1104/pp.102.017855
[137]
Nicolas O, Dunnington SW, Gotow LF, Pirone TP, Hellmann GM (1997) Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 237(2):452–459. https://doi.org/10.1006/viro.1997.8780
[138]
Niehl A, Wyrsch I, Boller T, Heinlein M (2016) Double-stranded RNAs induce a pattern-triggered immune signaling pathway in plants. New Phytol 211(3):1008–1019. https://doi.org/10.1111/nph.13944
[139]
Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temperature 4(4):371–405. https://doi.org/10.1080/23328940.2017.1377812
[140]
Nunome T, Fukumoto F, Terami F, Hanada K, Hirai M (2002) Development of Breeding Materials of Transgenic Tomato Plants with a Truncated Replicase Gene of Cucumber Mosaic Virus for Resistance to the Virus. Breed Sci 52(3):219–223. https://doi.org/10.1270/jsbbs.52.219
[141]
Obrepalska-Steplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P (2015) Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. Front Plant Sci 6:903. https://doi.org/10.3389/fpls.2015.00903
[142]
Omarov RT, Ciomperlik JJ, Scholthof HB (2007) RNAi-associated ssRNA-specific ribonucleases in Tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex. Proc Natl Acad Sci USA 104(5):1714–1719. https://doi.org/10.1073/pnas.0608117104
[143]
Parent B, Tardieu F (2012) Temperature responses of developmental processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytol 194(3):760–774. https://doi.org/10.1111/j.1469-8137.2012.04086.x
[144]
Paudel DB, Ghoshal B, Jossey S, Ludman M, Fatyol K, Sanfacon H (2018) Expression and antiviral function of ARGONAUTE 2 in Nicotiana benthamiana plants infected with two isolates of tomato ringspot virus with varying degrees of virulence. Virology 524:127–139. https://doi.org/10.1016/j.virol.2018.08.016
[145]
Paudel DB, Sanfacon H (2018) Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. Front Plant Sci 9:1575. https://doi.org/10.3389/fpls.2018.01575
[146]
Pérez-de-Luque A (2017) Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Front Environ Sci 5:12
[147]
Pilet-Nayel M-L, Moury B, Caffier V, Montarry J, Kerlan M-C, Fournet S, Durel C-E, Delourme R (2017) Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci 8:1838. https://doi.org/10.3389/fpls.2017.01838
[148]
Pitzalis N, Heinlein M (2017) The roles of membranes and associated cytoskeleton in plant virus replication and cell-to-cell movement. J Exp Bot 69(1):117–132. https://doi.org/10.1093/jxb/erx334
[149]
Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849–1866. https://doi.org/10.1104/pp.113.221044
[150]
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ (2018) Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens. Mol Plant 11(12):1427–1439. https://doi.org/10.1016/j.molp.2018.10.002
[151]
Qin C, Li B, Fan Y, Zhang X, Yu Z, Ryabov E, Zhao M, Wang H, Shi N, Zhang P, Jackson S, Tör M, Cheng Q, Liu Y, Gallusci P, Hong Y (2017) Roles of dicer-like proteins 2 and 4 in intra- and intercellular antiviral silencing. Plant Physiol 174(2):1067. https://doi.org/10.1104/pp.17.00475
[152]
Qu F, Ye X, Hou G, Sato S, Clemente TE, Morris TJ (2005) RDR6 has a broad-spectrum but temperature-dependent antiviral defense role in Nicotiana benthamiana. J Virol 79(24):15209–15217. https://doi.org/10.1128/jvi.79.24.15209-15217.2005
[153]
Rank AP, Koch A (2021) Lab-to-Field Transition of RNA Spray Applications – How Far Are We? Front Plant Sci 12:755203
[154]
Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276(5318):1558–1560. https://doi.org/10.1126/science.276.5318.1558
[155]
Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene Silencing without DNA: RNA-Mediated Cross-Protection between Viruses. Plant Cell 11(7):1207–1215. https://doi.org/10.1105/tpc.11.7.1207
[156]
Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA. rna-mediated cross-protection between viruses. Plant Cell 11(7):1207–1216. https://doi.org/10.2307/3870743
[157]
Ray DK, West PC, Clark M, Gerber JS, Prishchepov AV, Chatterjee S (2019) Climate change has likely already affected global food production. PLoS One 14(5):e0217148. https://doi.org/10.1371/journal.pone.0217148
[158]
Reynaud B, Delatte H, Peterschmitt M, Fargette D (2009) Effects of temperature increase on the epidemiology of three major vector-borne viruses. Eur J Plant Pathol 123(3):269–280. https://doi.org/10.1007/s10658-008-9363-5
[159]
Roggero P, Dellavalle G, Ciuffo M, Pennazio S (1999) Effects of temperature on infection in Capsicum sp. and Nicotiana benthamiana by Impatiens necrotic spot tospovirus. Eur J Plant Pathol 105:509–512. https://doi.org/10.1007/978-1-4020-4585-1_1164
[160]
Romero AM, Kousik CS, Ritchie DF (2002) Temperature Sensitivity of the Hypersensitive Response of Bell Pepper to Xanthomonas axonopodis pv. vesicatoria. Phytopathology 92(2):197–203. https://doi.org/10.1094/phyto.2002.92.2.197
[161]
Rosa C, Kuo YW, Wuriyanghan H, Falk BW (2018) RNA Interference Mechanisms and Applications in Plant Pathology. Annu Rev Phytopathol 56:581–610. https://doi.org/10.1146/annurev-phyto-080417-050044
[162]
Roy B, Dubey S, Ghosh A, Shukla SM, Mandal B, Sinha P (2021) Simulation of leaf curl disease dynamics in chili for strategic management options. Sci Rep 11(1):1010. https://doi.org/10.1038/s41598-020-79937-0
[163]
Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32(6):1067–1075. https://doi.org/10.1046/j.1365-313x.2002.01499.x
[164]
Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genomics 274:346–353. https://doi.org/10.1007/s00438-005-0003-x
[165]
Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF (iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87(7):2089–2098
[166]
Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnology 15(1):33. https://doi.org/10.1186/s12951-017-0268-3
[167]
Rykaczewska K (2015) The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. Am J Potato Res 92(3):339–349. https://doi.org/10.1007/s12230-015-9436-x
[168]
Sammons R, Ivashuta S, Liu H, Wang D, Feng P, Kouranov A, Andersen S (2011) Polynucleotide molecules for gene regulation in plants. Monsanto Technology LLC, St. Louis. https://doi.org/10.1089/blr.2011.9897
[169]
Sanfaçon H (2015) Plant Translation Factors and Virus Resistance. Viruses 7(7):3392–3419. https://doi.org/10.3390/v7072778
[170]
Santovito E, Mascia T, Siddiqui SA, Minutillo SA, Valkonen JPT, Gallitelli D (2014) Infection Cycle of Artichoke Italian Latent Virus in Tobacco Plants: Meristem Invasion and Recovery from Disease Symptoms. PLoS One 9(6):e99446. https://doi.org/10.1371/journal.pone.0099446
[171]
Sastry KS (2013) Seed-borne plant virus diseases
[172]
Sawada H, Takeuchi S, Hamada H, Kiba A, Matsumoto M, Hikichi Y (2004) A New Tobamovirus-resistance Gene, L1a, of Sweet Pepper (Capsicum annuum L.). J Jpn Soc Hortic Sci 73(6):552–557. https://doi.org/10.2503/jjshs.73.552
[173]
Shaw J, Love AJ, Makarova SS, Kalinina NO, Harrison BD, Taliansky ME (2014) Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa. Nucleus 5(1):85–94. https://doi.org/10.4161/nucl.28315
[174]
Shin H, Park S-J, Yim Y, Kim J, Choi C, Won C, Min D-H (2018) Recent Advances in RNA Therapeutics and RNA Delivery Systems Based on Nanoparticles. Adv Ther 1(7):1800065. https://doi.org/10.1002/adtp.201800065
[175]
Siddiqui S, Sarmiento C, Kiisma M, Koivumäki S, Lemmetty A, Truve E, Lehto K (2008) Effects of viral silencing suppressors on tobacco ringspot virus infection in two Nicotiana species. J Gen Virol 89:1502–1508. https://doi.org/10.1099/vir.0.83621-0
[176]
Silhavy D, Molnár A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyán J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21(12):3070–3080. https://doi.org/10.1093/emboj/cdf312
[177]
Singh A, Permar V, Basavaraj A, Bhoopal ST, Praveen S (2018) Effect of Temperature on Symptoms Expression and Viral RNA Accumulation in Groundnut Bud Necrosis Virus Infected Vigna unguiculata. Iran J Biotechnol 16(3):227–234. https://doi.org/10.21859/ijb.1846
[178]
Singh DP, Turner NC, Rawson HM (1982) Effects of radiation, temperature and humidity on photosynthesis, transpiration and water use efficiency of oilseed rape (Brassica campestris L.). Biol Plant 24(2):130. https://doi.org/10.1007/bf02902859
[179]
Sisterson MS (2009) Transmission of insect-vectored pathogens: effects of vector fitness as a function of infectivity status. Environ Entomol 38(2):345–355. https://doi.org/10.1603/022.038.0206
[180]
Stevens RB (1960) Plant Pathology: An Advanced Treatise, volume III: The Diseases Population Epidemics and Control, 357–429 pp. Academic Press Inc., London. https://doi.org/10.1016/b978-0-12-395678-1.50016-3
[181]
Sun S, Lian S, Feng S, Dong X, Wang C, Li B, Liang W (2017) Effects of temperature and moisture on sporulation and infection by Pseudoperonospora cubensis. Plant Dis 101(4):562–567. https://doi.org/10.1094/pdis-09-16-1232-re
[182]
Syller J, Grupa A (2016) Antagonistic within-host interactions between plant viruses: molecular basis and impact on viral and host fitness. Mol Plant Pathol 17(5):769–782. https://doi.org/10.1111/mpp.12322
[183]
Szajko K, Yin Z, Marczewski W (2019) Accumulation of miRNA and mRNA Targets in Potato Leaves Displaying Temperature-Dependent Responses to Potato Virus Y. Potato Res 62(4):379–392. https://doi.org/10.1007/s11540-019-9417-4
[184]
Szittya G, Silhavy D, Molnár A, Havelda Z, Lovas A, Lakatos L, Bánfalvi Z, Burgyán J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22(3):633–640. https://doi.org/10.1093/emboj/cdg74
[185]
Takahashi H, Kai A, Yamashita M, Ando S, Sekine K-T, Kanayama Y, Tomita H (2012) Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to Cucumber mosaic virus in Arabidopsis thaliana. Physiol Mol Plant Pathol 79:40–48. https://doi.org/10.1016/j.pmpp.2012.03.003
[186]
Taliansky M, Samarskaya V, Zavriev SK, Fesenko I, Kalinina NO, Love AJ (2021) RNA-Based Technologies for Engineering Plant Virus Resistance. Plants 10(1):82.  https://doi.org/10.3390/plants10010082
[187]
Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X (2012) Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods 58(2):118–125. https://doi.org/10.1016/j.ymeth.2012.10.006
[188]
Tenllado F, Diaz-Ruiz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75(24):12288–12297. https://doi.org/10.1128/jvi.75.24.12288-12297.2001
[189]
Tenllado F, Martínez-García B, Vargas M, Díaz-Ruíz JR (2003) Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnol 3(1):3. https://doi.org/10.1080/14620316.2014.11513122
[190]
Teotia S, Singh D, Tang X, Tang G (2016) Essential RNA-Based Technologies and Their Applications in Plant Functional Genomics. Trends Biotechnol 34(2):106–123. https://doi.org/10.1016/j.tibtech.2015.12.001
[191]
Tsai WA, Shafiei-Peters JR, Mitter N, Dietzgen RG (2022) Effects of Elevated Temperature on the Susceptibility of Capsicum Plants to Capsicum Chlorosis Virus Infection. Pathogens 11(2):200. https://doi.org/10.3390/pathogens11020200
[192]
Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771. https://doi.org/10.1101/gad.1410506
[193]
Velasquez AC, Castroverde CDM, He SY (2018) Plant-Pathogen Warfare under Changing Climate Conditions. Curr Biol 28(10):R619-r634. https://doi.org/10.1016/j.cub.2018.03.054
[194]
Velázquez K, Renovell A, Comellas M, Serra P, García ML, Pina JA, Navarro L, Moreno P, Guerri J (2010) Effect of temperature on RNA silencing of a negative-stranded RNA plant virus: Citrus psorosis virus. Plant Pathol 59(5):982–990. https://doi.org/10.1111/j.1365-3059.2010.02315.x
[195]
Venkatesh J, Kang BC (2019) Current views on temperature-modulated R gene-mediated plant defense responses and tradeoffs between plant growth and immunity. Curr Opin Plant Biol 50:9–17. https://doi.org/10.1016/j.pbi.2019.02.002
[196]
Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206. https://doi.org/10.1146/annurev.phyto.050908.135202
[197]
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exp Bot 61(3):199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
[198]
Wang A, Krishnaswamy S (2012) Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 13(7):795–803. https://doi.org/10.1111/j.1364-3703.2012.00791.x
[199]
Wang W-N, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanoparticle Res 15(1):1417. https://doi.org/10.1007/s11051-013-1417-8
[200]
Wang X, Kohalmi SE, Svircev A, Wang A, Sanfaçon H, Tian L (2013) Silencing of the host factor eIF (iso)4E gene confers plum pox virus resistance in plum. PLoS One 8(1):e50627. https://doi.org/10.1371/journal.pone.0050627
[201]
Wang Y, Bao Z, Zhu Y, Hua J (2009) Analysis of temperature modulation of plant defense against biotrophic microbes. Mol Plant-Microbe Interact 22(5):498–506. https://doi.org/10.1094/mpmi-22-5-0498
[202]
Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93(16):8776–8781. https://doi.org/10.1073/pnas.93.16.8776
[203]
Widyasari K, Alazem M, Kim K-H (2020) Soybean Resistance to Soybean Mosaic Virus. Plants 9(2):219. https://doi.org/10.3390/plants9020219
[204]
Wingard S (1928) Hosts and symptoms of ring spot, a virus disease of plants. J Agricult Res 37:26
[205]
Worrall EA, Bravo-Cazar A, Nilon AT, Fletcher SJ, Robinson KE, Carr JP, Mitter N (2019) Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Front Plant Sci 10(265). https://doi.org/10.3389/fpls.2019.00265
[206]
Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G (2012) Effective Small RNA Destruction by the Expression of a Short Tandem Target Mimic in Arabidopsis. Plant Cell 24(2):415–427. https://doi.org/10.37099/mtu.dc.etdr/601
[207]
Yang S, Hua J (2004) A Haplotype-Specific Resistance Gene Regulated by BONZAI1 Mediates Temperature-Dependent Growth Control in Arabidopsis. Plant Cell 16(4):1060–1071. https://doi.org/10.1105/tpc.020479
[208]
Yin G, Sun Z, Liu N, Zhang L, Song Y, Zhu C, Wen F (2009) Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system. Appl Microbiol Biotechnol 84(2):323–333. https://doi.org/10.1007/s00253-009-1967-y
[209]
Yu I, Parker J, Bent AF (1998) Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA 95(13):7819. https://doi.org/10.1073/pnas.95.13.7819
[210]
Zhan X, Zhang F, Zhong Z, Chen R, Wang Y, Chang L, Bock R, Nie B, Zhang J (2019) Generation of virus-resistant potato plants by RNA genome targeting. Plant Biotechnol J 17(9):1814–1822. https://doi.org/10.1111/pbi.13102
[211]
Zhang K, Chooi WH, Liu S, Chin JS, Murray A, Nizetic D, Cheng D, Chew SY (2020) Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering. Biomaterials 256:120225. https://doi.org/10.1016/j.biomaterials.2020.120225
[212]
Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J 16(8):1415–1423. https://doi.org/10.1111/pbi.12881
[213]
Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20(3):569–581. https://doi.org/10.1007/s11248-010-9440-3
[214]
Zhang X, Zhang X, Singh J, Li D, Qu F (2012) Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires DCL2, AGO2, and HEN1. J Virol 86(12):6847–6854. https://doi.org/10.1128/jvi.00497-12
[215]
Zhao F, Li Y, Chen L, Zhu L, Ren H, Lin H, Xi D (2016) Temperature dependent defence of Nicotiana tabacum against cucumber mosaic virus and recovery occurs with the formation of dark green islands. J Plant Biol 59(3):293–301. https://doi.org/10.1007/s12374-016-0035-2
[216]
Zhao Y, Yang X, Zhou G, Zhang T (2020) Engineering plant virus resistance: from RNA silencing to genome editing strategies. Plant Biotechnol J 18(2):328–336. https://doi.org/10.1111/pbi.13278
[217]
Zhu Y, Qian W, Hua J (2010) Temperature modulates plant defense responses through NB-LRR proteins. PLoS Path 6(4):e1000844–e1000844. https://doi.org/10.1371/journal.ppat.1000844
[218]
Zotti MJ, Smagghe G (2015) RNAi technology for insect management and protection of beneficial insects from diseases: lessons, challenges and risk assessments. Neotrop Entomol 44(3):197–213. https://doi.org/10.1007/s13744-015-0291-8
[219]
Zvereva AS, Golyaev V, Turco S, Gubaeva EG, Rajeswaran R, Schepetilnikov MV, Srour O, Ryabova LA, Boller T, Pooggin M (2016) Viral protein suppresses oxidative burst and salicylic acid-dependent autophagy and facilitates bacterial growth on virus-infected plants. New Phytol 211(3):1020–1034. https://doi.org/10.1111/nph.13967

Accesses

Citations

Detail

Sections
Recommended

/