Root osmotic sensing from local perception to systemic responses

Lucille Gorgues, Xuelian Li, Christophe Maurel, Alexandre Martinière, Philippe Nacry

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 36. DOI: 10.1007/s44154-022-00054-1
Review

Root osmotic sensing from local perception to systemic responses

Author information +
History +

Abstract

Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.

Keywords

Drought / Water deficit perception / Local signaling / Long distance signaling / Local water deficit / Adaptive development

Cite this article

Download citation ▾
Lucille Gorgues, Xuelian Li, Christophe Maurel, Alexandre Martinière, Philippe Nacry. Root osmotic sensing from local perception to systemic responses. Stress Biology, 2022, 2(1): 36 https://doi.org/10.1007/s44154-022-00054-1

References

[1]
AbdallahMMS, El-BassiounyHMS, AbouSeedaMA. Potential role of kaolin or potassium sulfate as anti-transpirant on improving physiological, biochemical aspects and yield of wheat plants under different watering regimes. Bull Natl Res Cent, 2019, 43(1):134
CrossRef Google scholar
[2]
Al-BabiliS, BouwmeesterHJ. Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 2015, 66: 161-186
CrossRef Google scholar
[3]
AttachaS, SolbachD, BelaK, MoselerA, WagnerS, SchwarzländerM, AllerI, MüllerSJ, MeyerAJ. Glutathione peroxidase-like enzymes cover five distinct cell compartments and membrane surfaces in Arabidopsis thaliana: subcellular localization of GPXLs in Arabidopsis. Plant Cell Environ, 2017, 40(8):1281-1295
CrossRef Google scholar
[4]
BaceteL, SchulzJ, EngelsdorfT, BartosovaZ, VaahteraL, YanG, GerholdJM, TicháT, ØvstebøC, Gigli-BiscegliaN, Johannessen-StarheimS, MargueritatJ, KollistH, DehouxT, McAdamSAM, HamannT. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2022, 119(1
CrossRef Google scholar
[5]
BanerjeeAK, LinT, HannapelDJ. Untranslated regions of a mobile transcript mediate RNA metabolism. Plant Physiol, 2009, 151 4):1831-1843
CrossRef Google scholar
[6]
BaoY, AggarwalP, RobbinsNE, SturrockCJ, ThompsonMC, TanHQ, ThamC, DuanL, RodriguezPL, VernouxT, MooneySJ, BennettMJ, DinnenyJR. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci, 2014, 111(25):9319-9324
CrossRef Google scholar
[7]
BassRB, StropP, BarclayM, ReesDC. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 2002, 298(5598):1582-1587
CrossRef Google scholar
[8]
BasuD, HaswellES. The mechanosensitive Ion Channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings. Curr Biol, 2020, 30(14):2716-2728.e6
CrossRef Google scholar
[9]
BasuD, ShootsJM, HaswellES. Interactions between the N- and C-termini of the mechanosensitive ion channel at MSL10 are consistent with a three-step mechanism for activation. J Exp Bot, 2020, 71(14):4020-4032
CrossRef Google scholar
[10]
BeffL, GüntherT, VandoorneB, CouvreurV, JavauxM. Three-dimensional monitoring of soil water content in a maize field using electrical resistivity tomography. Hydrol Earth Syst Sci, 2013, 17(2):595-609
CrossRef Google scholar
[11]
Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince A, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in arabidopsis thaliana. New Phytol 208(4):1138–1148. https://doi.org/10.1111/nph.13550
[12]
BevenK, GermannP. Macropores and water flow in soils. Water Resour Res, 1982, 18(5):1311-1325
CrossRef Google scholar
[13]
BienertGP, MøllerALB, KristiansenKA, SchulzA, MøllerIM, SchjoerringJK, JahnTP. Specific Aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem, 2007, 282(2):1183-1192
CrossRef Google scholar
[14]
Boisson-DernierA, LituievDS, NestorovaA, FranckCM, ThirugnanarajahS, GrossniklausU. ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biol, 2013, 11(11
CrossRef Google scholar
[15]
BoursiacY, BoudetJ, PostaireO, LuuD-T, Tournaire-RouxC, MaurelC. Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization: Aquaporins and reactive oxygen species. Plant J, 2008, 56 2):207-218
CrossRef Google scholar
[16]
BrewsterJL, GustinMC. Positioning of cell growth and division after osmotic stress requires a map kinase pathway. Yeast, 1994, 10(4):425-439
CrossRef Google scholar
[17]
CardinaleF, Korwin KrukowskiP, SchubertA, VisentinI. Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. J Exp Bot, 2018, 69(9):2291-2303
CrossRef Google scholar
[18]
CarellaP, WilsonDC, KempthorneCJ, CameronRK. Vascular sap proteomics: providing insight into long-distance signaling during stress. Front Plant Sci, 2016, 7: 651
CrossRef Google scholar
[19]
Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A 113(37). https://doi.org/10.1073/pnas.1608449113
[20]
ChenL-Q, QuX-Q, HouB-H, SossoD, OsorioS, FernieAR, FrommerWB. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335(6065):207-211
CrossRef Google scholar
[21]
ChenQ, HuT, LiX, SongC-P, ZhuJ-K, ChenL, ZhaoY. Phosphorylation of SWEET sucrose transporters regulates plant root:shoot ratio under drought. Nat Plants, 2022, 8(1):68-77
CrossRef Google scholar
[22]
ChristmannA, GrillE, HuangJ. Hydraulic signals in long-distance signaling. Curr Opin Plant Biol, 2013, 16(3):293-300
CrossRef Google scholar
[23]
ChristmannA, WeilerEW, SteudleE, GrillE. A hydraulic signal in root-to-shoot signalling of water shortage. Plant J, 2007, 52(1):167-174
CrossRef Google scholar
[24]
Codjoe JM, Richardson RA, Haswell ES (2022) Unbiased proteomic and forward genetic screens reveal that mechanosensitive ion channel MSL10 functions at ER-plasma membrane contact sites in Arabidopsis thaliana. bioRxiv. https://doi.org/10.1101/2022.05.23.493056
[25]
CramerGR, UranoK, DelrotS, PezzottiM, ShinozakiK. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol, 2011, 11: 163
CrossRef Google scholar
[26]
Cuevas-VelazquezCL, DinnenyJR. Organization out of disorder: liquid–liquid phase separation in plants. Curr Opin Plant Biol, 2018, 45: 68-74
CrossRef Google scholar
[27]
CutlerSR, RodriguezPL, FinkelsteinRR, AbramsSR. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol, 2010, 61(1):651-679
CrossRef Google scholar
[28]
CutoloE, ParvinN, RugeH, PirayeshN, RoustanV, WeckwerthW, TeigeM, GriecoM, LarosaV, VothknechtUC. The high light response in Arabidopsis requires the calcium sensor protein CAS, a target of STN7- and STN8-mediated phosphorylation. Front Plant Sci, 2019, 10: 974
CrossRef Google scholar
[29]
DaviesWJ, ZhangJ. Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42(1):55-76
CrossRef Google scholar
[30]
DbaraS, HaworthM, EmilianiG, Ben MimounM, Gómez-CadenasA, CentrittoM. Partial root-zone drying of olive (Olea europaea var. ‘Chetoui’) induces reduced yield under field conditions. PLoS One, 2016, 11(6
CrossRef Google scholar
[31]
De la HeraML, RomeroP, Gómez-PlazaE, MartinezA. Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?. Agric Water Manag, 2007, 87 3):261-274
CrossRef Google scholar
[32]
DevireddyAR, ZandalinasSI, FichmanY, MittlerR. Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J, 2021, 105(2):459-476
CrossRef Google scholar
[33]
DietrichD, PangL, KobayashiA, FozardJA, BoudolfV, BhosaleR, AntoniR, NguyenT, HiratsukaS, FujiiN, MiyazawaY, BaeT-W, WellsDM, OwenMR, BandLR, DysonRJ, JensenOE, KingJR, TracySR, SturrockCJ, MooneySJ, RobertsJA, BhaleraoRP, DinnenyJR, RodriguezPL, NagataniA, HosokawaY, BaskinTI, PridmoreTP, De VeylderL, TakahashiH, BennettMJ. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nat Plants, 2017, 3(6):17057
CrossRef Google scholar
[34]
DoddAN, KudlaJ, SandersD. The language of calcium signaling. Annu Rev Plant Biol, 2010, 61(1):593-620
CrossRef Google scholar
[35]
DoroneY, BoeynaemsS, FloresE, JinB, HateleyS, BossiF, LazarusE, PenningtonJG, MichielsE, De DeckerM, VintsK, BaatsenP, BasselGW, OteguiMS, HolehouseAS, Exposito-AlonsoM, SukenikS, GitlerAD, RheeSY. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation. Cell, 2021, 184(16):4284-4298.e27
CrossRef Google scholar
[36]
DuT, KangS, ZhangJ, LiF. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-West China. Irrig Sci, 2008, 26(2):147-159
CrossRef Google scholar
[37]
DuanQ, KitaD, LiC, CheungAY, WuH-M. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. Proc Natl Acad Sci U S A, 2010, 107(41):17821-17826
CrossRef Google scholar
[38]
EvansMJ, ChoiW-G, GilroyS, MorrisRJ. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 Cation Channel propagates the systemic response to salt stress. Plant Physiol, 2016, 171(3):1771-1784
CrossRef Google scholar
[39]
EvansMJ, MorrisRJ. Chemical agents transported by xylem mass flow propagate variation potentials. Plant J, 2017, 91(6):1029-1037
CrossRef Google scholar
[40]
FangX, WangL, IshikawaR, LiY, FiedlerM, LiuF, CalderG, RowanB, WeigelD, LiP, DeanC. Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes. Nature, 2019, 569(7755):265-269
CrossRef Google scholar
[41]
FarmerEE, GaoY-Q, LenzoniG, WolfenderJ-L, WuQ. Wound- and mechanostimulated electrical signals control hormone responses. New Phytol, 2020, 227(4):1037-1050
CrossRef Google scholar
[42]
FarmerEE, GasperiniD, AcostaIF. The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol, 2014, 204(2):282-288
CrossRef Google scholar
[43]
FeiguelmanG, FuY, YalovskyS. ROP GTPases structure-function and signaling pathways. Plant Physiol, 2018, 176(1):57-79
CrossRef Google scholar
[44]
Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu M-C, Maman J, Steinhorst L, Schmitz-Thom I, Yvon R, Kudla J, Wu H-M, Cheung AY, Dinneny JR (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28(5):666–675.e5. https://doi.org/10.1016/j.cub.2018.01.023
[45]
FergusonBJ, MensC, HastwellAH, ZhangM, SuH, JonesCH, ChuX, GresshoffPM. Legume nodulation: the host controls the party. Plant Cell Environ, 2019, 42(1):41-51
CrossRef Google scholar
[46]
Fichman Y, Mittler R (2021) Integration of electric, calcium, reactive oxygen species and hydraulic signals during rapid systemic signaling in plants. Plant J. 107(1):7–20. https://doi.org/10.1111/tpj.15360
[47]
FichtnerF, LunnJE. The role of Trehalose 6-phosphate (Tre6P) in plant metabolism and development. Annu Rev Plant Biol, 2021, 72: 737-760
CrossRef Google scholar
[48]
FichtnerF, OlasJJ, FeilR, WatanabeM, KrauseU, HoefgenR, StittM, LunnJE. Functional features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an essential enzyme in Arabidopsis. Plant Cell, 2020, 32(6):1949-1972
CrossRef Google scholar
[49]
FigueroaCM, LunnJE. A tale of two sugars: Trehalose 6-phosphate and sucrose. Plant Physiol, 2016, 172(1):7-27
CrossRef Google scholar
[50]
FleglerVJ, RasmussenA, BorbilK, BotenL, ChenH-A, DeinleinH, HalangJ, HellmanzikK, LöfflerJ, SchmidtV, MakbulC, KraftC, HedrichR, RasmussenT, BöttcherB. Mechanosensitive channel gating by delipidation. Proc Natl Acad Sci U S A, 2021, 118(33
CrossRef Google scholar
[51]
FranksPJ, FarquharGD. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol, 2007, 143 1):78-87
CrossRef Google scholar
[52]
FuF, LiF, KangS. Alternate partial root-zone drip irrigation improves water– and nitrogen– use efficiencies of sweet-waxy maize with nitrogen fertigation. Sci Rep, 2017, 7(1):17256
CrossRef Google scholar
[53]
FuruichiT, IidaH, SokabeM, TatsumiH. Expression of Arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. Plant Signal Behav, 2012, 7(8):1022-1026
CrossRef Google scholar
[54]
GambleRL, QuX, SchallerGE. Mutational analysis of the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol, 2002, 128(4):1428-1438
CrossRef Google scholar
[55]
GelawTA, Sanan-MishraN. Non-coding RNAs in response to drought stress. Int J Mol Sci, 2021, 22(22):12519
CrossRef Google scholar
[56]
GonneauM, DesprezT, MartinM, DoblasVG, BaceteL, MiartF, SormaniR, HématyK, RenouJ, LandreinB, MurphyE, Van De CotteB, VernhettesS, De SmetI, HöfteH. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr Biol, 2018, 28(15):2452-2458.e4
CrossRef Google scholar
[57]
GuoS, ZhangJ, SunH, SalseJ, LucasWJ, ZhangH, ZhengY, MaoL, RenY, WangZ, MinJ, GuoX, MuratF, HamB-K, ZhangZ, GaoS, HuangM, XuY, ZhongS, BombarelyA, MuellerLA, ZhaoH, HeH, ZhangY, ZhangZ, HuangS, TanT, PangE, LinK, HuQ, KuangH, NiP, WangB, LiuJ, KouQ, HouW, ZouX, JiangJ, GongG, KleeK, SchoofH, HuangY, HuX, DongS, LiangD, WangJ, WuK, XiaY, ZhaoX, ZhengZ, XingM, LiangX, HuangB, LvT, WangJ, YinY, YiH, LiR, WuM, LeviA, ZhangX, GiovannoniJJ, WangJ, LiY, FeiZ, XuY. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet, 2013, 45(1):51-58
CrossRef Google scholar
[58]
GuptaA, Rico-MedinaA, Cano-DelgadoAI. The physiology of plant responses to drought. Science, 2020, 368(6488):266-269
CrossRef Google scholar
[59]
HaCV, Leyva-GonzalezMA, OsakabeY, TranUT, NishiyamaR, WatanabeY, TanakaM, SekiM, YamaguchiS, DongNV, Yamaguchi-ShinozakiK, ShinozakiK, Herrera-EstrellaL, TranL-SP. Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci, 2014, 111(2):851-856
CrossRef Google scholar
[60]
HaiNN, ChuongNN, TuNHC, KisialaA, HoangXLT, ThaoNP. Role and regulation of cytokinins in plant response to drought stress. Plants (Basel), 2020, 9(4):E422
CrossRef Google scholar
[61]
HaiderI, Andreo-JimenezB, BrunoM, BimboA, FlokovaK, AbuaufH, NtuiVO, GuoX, CharnikhovaT, Al-BabiliS, BouwmeesterHJ, Ruyter-SpiraC. The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot, 2018, 69(9):2403-2414
CrossRef Google scholar
[62]
Hakeem A, Liu Y, Xie L, Samiullah HJ, Ata-Ul-Karim S, Rehmani MIA, Rehmani MIA (2016) Comparative effects of alternate partial root-zone drying and conventional deficit irrigation on growth and yield of field grown maize (Zea mays L.) hybrid. J Environ Agric Sci 6:23–31
[63]
HamB-K, LucasWJ. Phloem-Mobile RNAs as systemic signaling agents. Annu Rev Plant Biol, 2017, 68(1):173-195
CrossRef Google scholar
[64]
HamiltonES, JensenGS, MaksaevG, KatimsA, SherpAM, HaswellES. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science, 2015, 350(6259):438-441
CrossRef Google scholar
[65]
HanS, TangR, AndersonLK, WoernerTE, PeiZ-M. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature, 2003, 425(6954):196-200
CrossRef Google scholar
[66]
HanadaK, Higuchi-TakeuchiM, OkamotoM, YoshizumiT, ShimizuM, NakaminamiK, NishiR, OhashiC, IidaK, TanakaM, HoriiY, KawashimaM, MatsuiK, ToyodaT, ShinozakiK, SekiM, MatsuiM. Small open reading frames associated with morphogenesis are hidden in plant genomes. Proc Natl Acad Sci U S A, 2013, 110(6):2395-2400
CrossRef Google scholar
[67]
HanadaK, ZhangX, BorevitzJO, LiW-H, ShiuS-H. A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res, 2007, 17(5):632-640
CrossRef Google scholar
[68]
HartmannL, PedrottiL, WeisteC, FeketeA, SchierstaedtJ, GottlerJ, KempaS, KrischkeM, DietrichK, MuellerMJ, Vicente-CarbajosaJ, HansonJ, Droge-LaserW. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell, 2015, 27(8):2244-2260
CrossRef Google scholar
[69]
Hartung W, Sauter A, Hose E (2002) Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53(366):27–32. https://doi.org/10.1093/jexbot/53.366.27
[70]
Haswell ES (2007) MscS-Like proteins in plants. In: Current topics in membranes. Academic Press 58:329–359. https://doi.org/10.1016/S1063-5823(06)58013-5
[71]
HaswellES, PeyronnetR, Barbier-BrygooH, MeyerowitzEM, FrachisseJ-M. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol, 2008, 18(10):730-734
CrossRef Google scholar
[72]
HématyK, SadoP-E, Van TuinenA, RochangeS, DesnosT, BalzergueS, PelletierS, RenouJ-P, HöfteH. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol, 2007, 17(11):922-931
CrossRef Google scholar
[73]
HouC, TianW, KleistT, HeK, GarciaV, BaiF, HaoY, LuanS, LiL. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res, 2014, 24(5):632-635
CrossRef Google scholar
[74]
HouS, LiuD, HuangS, LuoD, LiuZ, XiangQ, WangP, MuR, HanZ, ChenS, ChaiJ, ShanL, HeP. The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nat Commun, 2021, 12(1):5494
CrossRef Google scholar
[75]
HouwinkAL. The conduction of excitation in Mimosa pudica. Recl Trav Bot Neerl, 1935, 32: 51-91
[76]
HuangF, LuoJ, NingT, CaoW, JinX, ZhaoH, WangY, HanS. Cytosolic and nucleosolic calcium signaling in response to osmotic and salt stresses are independent of each other in roots of Arabidopsis seedlings. Front Plant Sci, 2017, 8: 1648
CrossRef Google scholar
[77]
HuangH, LiuB, LiuL, SongS. Jasmonate action in plant growth and development. J Exp Bot, 2017, 68(6):1349-1359
CrossRef Google scholar
[78]
Hutchison CE, Kieber JJ (2002) Cytokinin Signaling in Arabidopsis. The Plant Cell 14(S1):S47–S59. https://doi.org/10.1105/tpc.010444
[79]
Iqbal N, Hussain S, Raza MA, Yang C-Q, Safdar ME, Brestic M, Aziz A, Hayyat MS, Asghar MA, Wang XC, Zhang J, Yang W, Liu J (2019) Drought tolerance of soybean (Glycine max L. Merr.) by improved photosynthetic characteristics and an efficient antioxidant enzyme activities under a Split-root system. Front Physiol 10:786. https://doi.org/10.3389/fphys.2019.00786
[80]
IqbalR, RazaMAS, ToleikieneM, AyazM, HashemiF, Habib-ur-RahmanM, ZaheerMS, AhmadS, RiazU, AliM, AslamMU, HaiderI. Partial root-zone drying (PRD), its effects and agricultural significance: a review. Bull Natl Res Centre, 2020, 44(1):159
CrossRef Google scholar
[81]
Ivanov VY, Fatichi S, Jenerette GD, Espeleta JF, Troch PA, Huxman TE (2010) Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of vegetation: SOIL MOISTURE SPATIAL HETEROGENEITY. Water Resour Res 46(9). https://doi.org/10.1029/2009WR008611
[82]
JalihalAP, PitchiayaS, XiaoL, BawaP, JiangX, BediK, ParoliaA, CieslikM, LjungmanM, ChinnaiyanAM, WalterNG. Multivalent proteins rapidly and reversibly phase-separate upon osmotic cell volume change. Mol Cell, 2020, 79(6):978-990.e5
CrossRef Google scholar
[83]
JarvisNJ. A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci, 2007, 58(3):523-546
CrossRef Google scholar
[84]
JiangF, HartungW. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot, 2008, 59(1):37-43
CrossRef Google scholar
[85]
Jiménez-NopalaG, Salgado-EscobarAE, Cevallos-PortaD, CárdenasL, Sepúlveda-JiménezG, CassabG, PortaH. Autophagy mediates hydrotropic response in Arabidopsis thaliana roots. Plant Sci, 2018, 272: 1-13
CrossRef Google scholar
[86]
JohnsS, HagiharaT, ToyotaM, GilroyS. The fast and the furious: rapid long-range signaling in plants. Plant Physiol, 2021, 185(3):694-706
CrossRef Google scholar
[87]
Jojoa-CruzS, SaotomeK, MurthySE, TsuiCCA, SansomMS, PatapoutianA, WardAB. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife, 2018, 7: e41845
CrossRef Google scholar
[88]
JulkowskaMM, KleiK, FokkensL, HaringMA, SchranzME, TesterinkC. Natural variation in rosette size under salt stress conditions corresponds to developmental differences between Arabidopsis accessions and allelic variation in the LRR-KISS gene. EXBOTJ, 2016, 67(8):2127-2138
CrossRef Google scholar
[89]
JungJ-H, BarbosaAD, HutinS, KumitaJR, GaoM, DerwortD, SilvaCS, LaiX, PierreE, GengF, KimS-B, BaekS, ZubietaC, JaegerKE, WiggePA. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585(7824):256-260
CrossRef Google scholar
[90]
Kamano S, Kume S, Iida K, Lei K-J, Nakano M, Nakayama Y, Iida H (2015) Transmembrane topologies of Ca2+−permeable mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana. J Biol Chem 290(52):30901–30909. https://doi.org/10.1074/jbc.M115.692574
[91]
KangS, HuX, GoodwinI, JerieP. Soil water distribution, water use, and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard. Sci Hortic, 2002, 92(3):277-291
CrossRef Google scholar
[92]
KangS, LiangZ, PanY, ShiP, ZhangJ. Alternate furrow irrigation for maize production in an arid area. Agric Water Manag, 2000, 45(3):267-274
CrossRef Google scholar
[93]
KangS, ZhangJ. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J Exp Bot, 2004, 55(407):2437-2446
CrossRef Google scholar
[94]
KangS, ZhangL, HuX, LiZ, JerieP. An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots. Sci Hortic, 2001, 89(4):257-267
CrossRef Google scholar
[95]
KehrJ, KraglerF. Long distance RNA movement. New Phytol, 2018, 218(1):29-40
CrossRef Google scholar
[96]
KirdaC, CetinM, DasganY, TopcuS, KamanH, EkiciB, DericiMR, OzguvenAI. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric Water Manag, 2004, 69(3):191-201
CrossRef Google scholar
[97]
KobayashiA, TakahashiA, KakimotoY, MiyazawaY, FujiiN, HigashitaniA, TakahashiH. A gene essential for hydrotropism in roots. Proc Natl Acad Sci U S A, 2007, 104(11):4724-4729
CrossRef Google scholar
[98]
KoenigAM, Hoffmann-BenningS. The interplay of phloem-mobile signals in plant development and stress response. Biosci Rep, 2020, 40(10):BSR20193329
CrossRef Google scholar
[99]
KongD, HaoY, CuiH. The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Mol Plant, 2016, 9(2):261-270
CrossRef Google scholar
[100]
KorkmazhanE, TompaP, DunnAR. The role of ordered cooperative assembly in biomolecular condensates. Nat Rev Mol Cell Biol, 2021, 22(10):647-648
CrossRef Google scholar
[101]
KriegerG, ShkolnikD, MillerG, FrommH. Reactive oxygen species tune root tropic responses. Plant Physiol, 2016, 172(2):1209-1220
CrossRef Google scholar
[102]
KudlaJ, BatističO, HashimotoK. Calcium signals: the lead currency of plant information processing. Plant Cell, 2010, 22(3):541-563
CrossRef Google scholar
[103]
KudlaJ, BeckerD, GrillE, HedrichR, HipplerM, KummerU, ParniskeM, RomeisT, SchumacherK. Advances and current challenges in calcium signaling. New Phytol, 2018, 218(2):414-431
CrossRef Google scholar
[104]
KumarMN, JaneW-N, VersluesPE. Role of the putative Osmosensor Arabidopsis histidine Kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol, 2013, 161(2):942-953
CrossRef Google scholar
[105]
KuromoriT, FujitaM, TakahashiF, Yamaguchi-ShinozakiK, ShinozakiK. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. Plant J, 2022, 109(2):342-358
CrossRef Google scholar
[106]
KuromoriT, SeoM, ShinozakiK. ABA transport and plant water stress responses. Trends Plant Sci, 2018, 23(6):513-522
CrossRef Google scholar
[107]
LaiJY, PoonYS, KaiserJT, ReesDC. Open and shut: crystal structures of the dodecylmaltoside solubilized mechanosensitive channel of small conductance from Escherichia coli and helicobacter pylori at 4.4 Å and 4.1 Å resolutions: low resolution crystal structures of MscS. Protein Sci, 2013, 22(4):502-509
CrossRef Google scholar
[108]
LanfrancoL, FiorilliV, VeniceF, BonfanteP. Strigolactones cross the kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. J Exp Bot, 2018, 69(9):2175-2188
CrossRef Google scholar
[109]
Lee JS, Wilson ME, Richardson RA, Haswell ES (2019) Genetic and physical interactions between the organellar mechanosensitive ion channel homologs MSL 1, MSL 2, and MSL 3 reveal a role for inter-organellar communication in plant development. Plant Direct 3(3). https://doi.org/10.1002/pld3.124
[110]
LeshemY, LevineA. Intracellular ROS: what does it do there?. Plant Signal Behav, 2007, 2(3):155-156
CrossRef Google scholar
[111]
LevinaN. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J, 1999, 18(7):1730-1737
CrossRef Google scholar
[112]
LiC, WuH-M, CheungAY. FERONIA and her pals: functions and mechanisms. Plant Physiol, 2016, 171(4):2379-2392
CrossRef Google scholar
[113]
LiC, ZhangK, ZengX, JacksonS, ZhouY, HongY. A cis element within flowering locus T mRNA determines its mobility and facilitates trafficking of heterologous viral RNA. J Virol, 2009, 83(8):3540-3548
CrossRef Google scholar
[114]
LiuF, SongR, ZhangX, ShahnazariA, AndersenMN, PlauborgF, JacobsenS-E, JensenCR. Measurement and modelling of ABA signalling in potato (Solanum tuberosum L.) during partial root-zone drying. Environ Exp Bot, 2008, 63(1):385-391
CrossRef Google scholar
[115]
LiuJ, HeH, VitaliM, VisentinI, CharnikhovaT, HaiderI, SchubertA, Ruyter-SpiraC, BouwmeesterHJ, LovisoloC, CardinaleF. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress. Planta, 2015, 241(6):1435-1451
CrossRef Google scholar
[116]
LiuL, ChenX. Intercellular and systemic trafficking of RNAs in plants. Nat Plants, 2018, 4(11):869-878
CrossRef Google scholar
[117]
LiuW, XiangC, LiX, WangT, LuX, LiuZ, GaoL, ZhangW. Identification of long-distance transmissible mRNA between Scion and rootstock in cucurbit seedling heterografts. IJMS, 2020, 21(15):5253
CrossRef Google scholar
[118]
LiuX, WangJ, SunL. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1.2. Nat Commun, 2018, 9(1):5060
CrossRef Google scholar
[119]
LuoJ, ChenL, HuangF, GaoP, ZhaoH, WangY, HanS. Intraorganellar calcium imaging in Arabidopsis seedling roots using the GCaMP variants GCaMP6m and R-CEPIA1er. J Plant Physiol, 2020, 246–247
CrossRef Google scholar
[120]
LvS, ZhangY, LiC, LiuZ, YangN, PanL, WuJ, WangJ, YangJ, LvY, ZhangY, JiangW, SheX, WangG. Strigolactone-triggered stomatal closure requires hydrogen peroxide synthesis and nitric oxide production in an abscisic acid-independent manner. New Phytol, 2018, 217(1):290-304
CrossRef Google scholar
[121]
MaedaT, TakekawaM, SaitoH. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing Osmosensor. Science, 1995, 269(5223):554-558
CrossRef Google scholar
[122]
MaityK, HeumannJM, McGrathAP, KopchoNJ, HsuP-K, LeeC-W, MapesJH, GarzaD, KrishnanS, MorganGP, HendargoKJ, KloseT, ReesSD, Medrano-SotoA, SaierMH, PiñerosM, KomivesEA, SchroederJI, ChangG, StowellMHB. Cryo-EM structure of OSCA1.2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc Natl Acad Sci U S A, 2019, 116(28):14309-14318
CrossRef Google scholar
[123]
MaksaevG, HaswellES. MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc Natl Acad Sci U S A, 2012, 109(46):19015-19020
CrossRef Google scholar
[124]
ManziM, LadoJ, RodrigoMJ, ZacariasL, ArbonaV, Gomez-CadenasA. Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant Cell Physiol, 2015, 56(12):2457-2466
CrossRef Google scholar
[125]
MartinacB, BuechnerM, DelcourAH, AdlerJ, KungC. Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci U S A, 1987, 84(8):2297-2301
CrossRef Google scholar
[126]
MartinièreA, FicheJB, SmokvarskaM, MariS, AlconC, DumontX, HematyK, JaillaisY, NollmannM, MaurelC. Osmotic stress activates two reactive oxygen species pathways with distinct effects on protein Nanodomains and diffusion. Plant Physiol, 2019, 179(4):1581-1593
CrossRef Google scholar
[127]
Martin-VertedorAI, DoddIC. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration: root distribution and non-hydraulic signalling. Plant Cell Environ, 2011, 34(7):1164-1175
CrossRef Google scholar
[128]
McLeanEH, LudwigM, GriersonPF. Root hydraulic conductance and aquaporin abundance respond rapidly to partial root-zone drying events in a riparian Melaleuca species. New Phytol, 2011, 192(3):664-675
CrossRef Google scholar
[129]
MiaoY, LvD, WangP, WangX-C, ChenJ, MiaoC, SongC-P. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell, 2006, 18(10):2749-2766
CrossRef Google scholar
[130]
MielkeS, ZimmerM, MeenaMK, DreosR, StellmachH, HauseB, VoiniciucC, GasperiniD. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. Sci Adv, 2021, 7(7):eabf0356
CrossRef Google scholar
[131]
Miller K, Strychalski W, Nickaeen M, Carlsson A, Haswell ES (2022) In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Curr Biol 32(13):2921–2934
[132]
MilneRJ, GrofCP, PatrickJW. Mechanisms of phloem unloading: shaped by cellular pathways, their conductances and sink function. Curr Opin Plant Biol, 2018, 43: 8-15
CrossRef Google scholar
[133]
MittlerR, VanderauweraS, GolleryM, Van BreusegemF. Reactive oxygen gene network of plants. Trends Plant Sci, 2004, 9(10):490-498
CrossRef Google scholar
[134]
MohantyBP. Soil hydraulic property estimation using remote sensing: a review. Vadose Zone J, 2013, 12(4):1-9
CrossRef Google scholar
[135]
Monshausen GB (2012) Visualizing Ca2+ signatures in plants. Curr Opin Plant Biol 15(6):677–682. https://doi.org/10.1016/j.pbi.2012.09.014
[136]
Mori K, Renhu N, Naito M, Nakamura A, Shiba H, Yamamoto T, Suzaki T, Iida H, Miura K (2018) Ca2+−permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis. Sci Rep 8(1):550. https://doi.org/10.1038/s41598-017-17483-y
[137]
MostofaMG, LiW, NguyenKH, FujitaM, TranL-SP. Strigolactones in plant adaptation to abiotic stresses: an emerging avenue of plant research. Plant Cell Environ, 2018, 41(10):2227-2243
CrossRef Google scholar
[138]
MousaviSAR, DubinAE, ZengW-Z, CoombsAM, DoK, GhadiriDA, KeenanWT, GeC, ZhaoY, PatapoutianA. PIEZO ion channel is required for root mechanotransduction in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2021, 118(20
CrossRef Google scholar
[139]
MurthySE, DubinAE, WhitwamT, Jojoa-CruzS, CahalanSM, MousaviSAR, WardAB, PatapoutianA. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife, 2018, 7
CrossRef Google scholar
[140]
Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci U S A 104(9):3639–3644. https://doi.org/10.1073/pnas.0607703104
[141]
NakayamaM, KanekoY, MiyazawaY, FujiiN, HigashitaniN, WadaS, IshidaH, YoshimotoK, ShirasuK, YamadaK, NishimuraM, TakahashiH. A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. Planta, 2012, 236: 999-1012
CrossRef Google scholar
[142]
NotaguchiM, HigashiyamaT, SuzukiT. Identification of mRNAs that move over long distances using an RNA-Seq analysis of Arabidopsis/Nicotiana benthamiana heterografts. Plant Cell Physiol, 2015, 56 2):311-321
CrossRef Google scholar
[143]
OhkuboY, TanakaM, TabataR, Ogawa-OhnishiM, MatsubayashiY. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nat Plants, 2017, 3: 17029
CrossRef Google scholar
[144]
OkamotoS, TabataR, MatsubayashiY. Long-distance peptide signaling essential for nutrient homeostasis in plants. Curr Opin Plant Biol, 2016, 34: 35-40
CrossRef Google scholar
[145]
Orman-LigezaB, MorrisEC, ParizotB, LavigneT, BabéA, LigezaA, KleinS, SturrockC, XuanW, NovákO, LjungK, FernandezMA, RodriguezPL, DoddIC, De SmetI, ChaumontF, BatokoH, PérilleuxC, LynchJP, BennettMJ, BeeckmanT, DrayeX. The Xerobranching response represses lateral root formation when roots are not in contact with water. Curr Biol, 2018, 28(19):3165-3173.e5
CrossRef Google scholar
[146]
Orosa-PuenteB, LeftleyN, von WangenheimD, BandaJ, SrivastavaAK, HillK, TruskinaJ, BhosaleR, MorrisE, SrivastavaM, KümpersB, GohT, FukakiH, VermeerJEM, VernouxT, DinnenyJR, FrenchAP, BishoppA, SadanandomA, BennettMJ. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362(6421):1407-1410
CrossRef Google scholar
[147]
OtaIM, VarshavskyA. A yeast protein similar to bacterial two-component regulators. Science, 1993, 262(5133):566-569
CrossRef Google scholar
[148]
PagliaraniC, VitaliM, FerreroM, VituloN, IncarboneM, LovisoloC, ValleG, SchubertA. The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiol, 2017, 173(4):2180-2195
CrossRef Google scholar
[149]
PlatreMP, BayleV, ArmengotL, BareilleJ, Marquès-BuenoM d M, CreffA, Maneta-PeyretL, FicheJ-B, NollmannM, MiègeC, MoreauP, MartinièreA, JaillaisY. Developmental control of plant rho GTPase nano-organization by the lipid phosphatidylserine. Science, 2019, 364(6435):57-62
CrossRef Google scholar
[150]
PliotasC, DahlACE, RasmussenT, MahendranKR, SmithTK, MariusP, GaultJ, BandaT, RasmussenA, MillerS, RobinsonCV, BayleyH, SansomMSP, BoothIR, NaismithJH. The role of lipids in mechanosensation. Nat Struct Mol Biol, 2015, 22(12):991-998
CrossRef Google scholar
[151]
PowersSK, HolehouseAS, KorasickDA, SchreiberKH, ClarkNM, JingH, EmeneckerR, HanS, TycksenE, HwangI, SozzaniR, JezJM, PappuRV, StraderLC. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol Cell, 2019, 76(1):177-190.e5
CrossRef Google scholar
[152]
PuértolasJ, AlcobendasR, AlarcónJJ, DoddIC. Long-distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ, 2013, 36(8):1465-1475
CrossRef Google scholar
[153]
PuértolasJ, ConesaMR, BallesterC, DoddIC. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying. J Exp Bot, 2015, 66(8):2325-2334
CrossRef Google scholar
[154]
PutterillJ, Varkonyi-GasicE. FT and florigen long-distance flowering control in plants. Curr Opin Plant Biol, 2016, 33: 77-82
CrossRef Google scholar
[155]
QianP, SongW, YokooT, MinobeA, WangG, IshidaT, SawaS, ChaiJ, KakimotoT. The CLE9/10 secretory peptide regulates stomatal and vascular development through distinct receptors. Nat Plants, 2018, 4(12):1071-1081
CrossRef Google scholar
[156]
RadinI, RichardsonRA, CoomeyJH, WeinerER, BascomCS, LiT, BezanillaM, HaswellES. Plant PIEZO homologs modulate vacuole morphology during tip growth. Science, 2021, 373(6554):586-590
CrossRef Google scholar
[157]
RaissigMT, MatosJL, Anleu GilMX, KornfeldA, BettadapurA, AbrashE, AllisonHR, BadgleyG, VogelJP, BerryJA, BergmannDC. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science, 2017, 355(6330):1215-1218
CrossRef Google scholar
[158]
RazaMAS, AhmadS, SaleemMF, KhanIH, IqbalR, ZaheerMS, HaiderI, AliM. Physiological and biochemical assisted screening of wheat varieties under partial rhizosphere drying. Plant Physiol Biochem, 2017, 116: 150-166
CrossRef Google scholar
[159]
RenY, SongY, ZhangL, GuoD, HeJ, WangL, SongS, XuW, ZhangC, LersA, MaC, WangS. Coding of non-coding RNA: insights into the regulatory functions of Pri- MicroRNA-encoded peptides in plants. Front Plant Sci, 2021, 12
CrossRef Google scholar
[160]
RhodesJ, YangH, MoussuS, BoutrotF, SantiagoJ, ZipfelC. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat Commun, 2021, 12(1):705
CrossRef Google scholar
[161]
RodriguesO, ReshetnyakG, GrondinA, SaijoY, LeonhardtN, MaurelC, VerdoucqL. Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proc Natl Acad Sci U S A, 2017, 114(34):9200-9205
CrossRef Google scholar
[162]
Rodriguez-Medina C, Atkins CA, Mann AJ, Jordan ME, Smith PM (2011) Macromolecular composition of phloem exudate from white lupin (Lupinus albus L.). BMC Plant Biol:11:36. https://doi.org/10.1186/1471-2229-11-36
[163]
Ruiz-Lopez N, Pérez-Sancho J, Del Valle AE, Haslam RP, Vanneste S, Catalá R, Perea-Resa C, Damme DV, García-Hernández S, Albert A, Vallarino J, Lin J, Friml J, Macho AP, Salinas J, Rosado A, Napier JA, Amorim-Silva V, Botella MA (2021) Synaptotagmins at the endoplasmic reticulum-plasma membrane contact sites maintain diacylglycerol homeostasis during abiotic stress. The Plant Cell 33(7):2431–2453. https://doi.org/10.1093/plcell/koab122
[164]
SadakMS, El-BassiounyHMS, DawoodMG. Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bull Natl Res Centre, 2019, 43(1):5
CrossRef Google scholar
[165]
SadakMS, AbdallaAM, Abd ElhamidEM, EzzoMI. Role of melatonin in improving growth, yield quantity and quality of Moringa oleifera L. plant under drought stress. Bull Natl Res Cent, 2020, 44(1):18
CrossRef Google scholar
[166]
SchachtmanDP, GoodgerJQD. Chemical root to shoot signaling under drought. Trends Plant Sci, 2008, 13(6):281-287
CrossRef Google scholar
[167]
Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. The Plant Cell 20(12):3374–88. https://doi.org/10.1105/tpc.108.063859
[168]
SepaskhahAR, KhajehabdollahiMH. Alternate furrow irrigation with different irrigation intervals for maize ( Zea mays L.). Plant Prod Sci, 2005, 8(5):592-600
CrossRef Google scholar
[169]
SepaskhahAR, ParandA-R. Effects of alternate furrow irrigation with supplemental every-furrow irrigation at different growth stages on the yield of maize (Zea mays L.). Plant Prod Sci, 2006, 9(4):415-421
CrossRef Google scholar
[170]
ShaoG-C, ZhangZ-Y, LiuN, YuS-E, XingW-G. Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci Hortic, 2008, 119(1):11-16
CrossRef Google scholar
[171]
ShihH-W, MillerND, DaiC, SpaldingEP, MonshausenGB. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol, 2014, 24(16):1887-1892
CrossRef Google scholar
[172]
Shkolnik D, Nuriel R, Bonza MC, Costa A, Fromm H (2018) MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis. Proc Natl Acad Sci U S A 115(31):8031–8036. https://doi.org/10.1073/pnas.1804130115
[173]
SirkoA, WawrzynskaA, BrzywczyJ, SienkoM. Control of ABA signaling and crosstalk with other hormones by the selective degradation of pathway components. Int J Mol Sci, 2021, 22(9):4638
CrossRef Google scholar
[174]
SmithS, ZhuS, JoosL, RobertsI, NikonorovaN, VuLD, StesE, ChoH, LarrieuA, XuanW, GoodallB, CotteB v d, WaiteJM, RigalA, HarboroughSR, PersiauG, VannesteS, KirschnerGK, VandermarliereE, MartensL, StahlY, AudenaertD, FrimlJ, FelixG, SimonR, BennettMJ, BishoppA, JaegerGD, LjungK, KepinskiS, RobertS, NemhauserJ, HwangI, GevaertK, BeeckmanT, SmetID. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis. Mol Cell Proteomics, 2020, 19(8):1248-1262
CrossRef Google scholar
[175]
SmokvarskaM, FrancisC, PlatreMP, FicheJ-B, AlconC, DumontX, NacryP, BayleV, NollmannM, MaurelC, JaillaisY, MartiniereA. A plasma membrane Nanodomain ensures signal specificity during osmotic signaling in plants. Curr Biol, 2020, 30(23):4654-4664.e4
CrossRef Google scholar
[176]
Steinbacher S, Bass R, Strop P, Rees DC (2007) Structures of the prokaryotic mechanosensitive channels MscL and MscS. In: Current topics in membranes. Academic Press, pp 1–24. https://doi.org/10.1016/S1063-5823(06)58001-9
[177]
Stephan AB, Kunz H-H, Yang E, Schroeder JI (2016) Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 113(35). https://doi.org/10.1073/pnas.1519555113
[178]
StollM, LoveysB, DryP. Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot, 2000, 51(350):1627-1634
CrossRef Google scholar
[179]
StortiM, CostaA, GolinS, ZottiniM, MorosinottoT, AlboresiA. Systemic calcium wave propagation in Physcomitrella patens. Plant Cell Physiol, 2018, 59(7):1377-1384
CrossRef Google scholar
[180]
SukharevSI, MartinacB, BlountP, KungC. Functional reconstitution as an assay for biochemical isolation of channel proteins: application to the molecular identification of a bacterial mechanosensitive channel. Methods, 1994, 6(1):51-59
CrossRef Google scholar
[181]
TaizL, ZeigerE. Plant physiology and development, 2006 6
[182]
Takahashi F, Kuromori T, Urano K, Yamaguchi-Shinozaki K, Shinozaki K (2020) Drought stress responses and resistance in plants: from cellular responses to long-distance intercellular communication. Front Plant Sci 11:556972. https://doi.org/10.3389/fpls.2020.556972
[183]
TakahashiF, SuzukiT, OsakabeY, BetsuyakuS, KondoY, DohmaeN, FukudaH, Yamaguchi-ShinozakiK, ShinozakiK. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature, 2018, 556(7700):235-238
CrossRef Google scholar
[184]
TangL-S, LiY, ZhangJ. Physiological and yield responses of cotton under partial rootzone irrigation. Field Crop Res, 2005, 94(2):214-223
CrossRef Google scholar
[185]
ThiemeCJ, Rojas-TrianaM, StecykE, SchudomaC, ZhangW, YangL, MinambresM, WaltherD, SchulzeWX, Paz-AresJ, ScheibleW-R, KraglerF. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants, 2015, 1(4):15025
CrossRef Google scholar
[186]
ThompsonAJ, AndrewsJ, MulhollandBJ, McKeeJMT, HiltonHW, HorridgeJS, FarquharGD, SmeetonRC, SmillieIRA, BlackCR, TaylorIB. Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol, 2007, 143(4):1905-1917
CrossRef Google scholar
[187]
ThorK, JiangS, MichardE, GeorgeJ, ScherzerS, HuangS, DindasJ, DerbyshireP, LeitãoN, DeFalcoTA, KösterP, HunterK, KimuraS, GronnierJ, StransfeldL, KadotaY, BücherlCA, CharpentierM, WrzaczekM, MacLeanD, OldroydGED, MenkeFLH, RoelfsemaMRG, HedrichR, FeijóJ, ZipfelC. The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature, 2020, 585(7826):569-573
CrossRef Google scholar
[188]
TianS, WangX, LiP, WangH, JiH, XieJ, QiuQ, ShenD, DongH. Plant aquaporin AtPIP1;4 links Apoplastic H 2 O 2 induction to disease immunity pathways. Plant Physiol, 2016, 171(3):1635-1650
CrossRef Google scholar
[189]
TolstykoE, LezzhovA, SolovyevA. Identification of miRNA precursors in the phloem of Cucurbita maxima. PeerJ, 2019, 7
CrossRef Google scholar
[190]
TracyFE, GillihamM, DoddAN, WebbAAR, TesterM. NaCl-induced changes in cytosolic free ca 2 in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ, 2008, 31(8):1063-1073
CrossRef Google scholar
[191]
TranL-SP, UraoT, QinF, MaruyamaK, KakimotoT, ShinozakiK, Yamaguchi-ShinozakiK. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A, 2007, 104(51):20623-20628
CrossRef Google scholar
[192]
UranoK, KuriharaY, SekiM, ShinozakiK. “Omics” analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol, 2010, 13(2):132-138
CrossRef Google scholar
[193]
UraoT, YakubovB, SatohR, Yamaguchi-ShinozakiK, SekiM, HirayamaT, ShinozakiK. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an Osmosensor. Plant Cell, 1999, 11(9):1743-1754
CrossRef Google scholar
[194]
Van der DoesD, BoutrotF, EngelsdorfT, RhodesJ, McKennaJF, VernhettesS, KoevoetsI, TintorN, VeerabaguM, MiedesE, SegonzacC, RouxM, BredaAS, HardtkeCS, MolinaA, RepM, TesterinkC, MouilleG, HöfteH, HamannT, ZipfelC. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet, 2017, 13(6
CrossRef Google scholar
[195]
VeleyKM, MaksaevG, FrickEM, JanuaryE, KloepperSC, HaswellES. Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive Ion Channel activity. Plant Cell, 2014, 26 7):3115-3131
CrossRef Google scholar
[196]
VersluesPE, SharmaS. Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, 2010, 8
CrossRef Google scholar
[197]
VisentinI, PagliaraniC, DevaE, CaracciA, TureckovaV, NovakO, LovisoloC, SchubertA, CardinaleF. A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ, 2020, 43(7):1613-1624
CrossRef Google scholar
[198]
VisentinI, VitaliM, FerreroM, ZhangY, Ruyter-SpiraC, NovákO, StrnadM, LovisoloC, SchubertA, CardinaleF. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol, 2016, 212(4):954-963
CrossRef Google scholar
[199]
Wang C, Teng Y, Zhu S, Zhang L, Liu X (2019) NaCl and cold-induced stress activate difference Ca2+−permeable channels in Arabidopsis thaliana. Plant Growth Regul 87:217–225
[200]
WangP, ZhaoY, LiZ, HsuC-C, LiuX, FuL, HouY-J, DuY, XieS, ZhangC, GaoJ, CaoM, HuangX, ZhuY, TangK, WangX, TaoWA, XiongY, ZhuJ-K. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell, 2018, 69(1):100-112.e6
CrossRef Google scholar
[201]
WangT, LiX, ZhangX, WangQ, LiuW, LuX, GaoS, LiuZ, LiuM, GaoL, ZhangW. RNA motifs and modification involve in RNA long-distance transport in plants. Front Cell Dev Biol, 2021, 9
CrossRef Google scholar
[202]
WangW, ChenQ, XuS, LiuW-C, ZhuX, SongC-P. Trehalose-6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in Arabidopsis. J Integr Plant Biol, 2020, 62(10):1518-1534
CrossRef Google scholar
[203]
WatanabeK, MorishitaK, ZhouX, ShiizakiS, UchiyamaY, KoikeM, NaguroI, IchijoH. Cells recognize osmotic stress through liquid–liquid phase separation lubricated with poly(ADP-ribose). Nat Commun, 2021, 12(1):1353
CrossRef Google scholar
[204]
WatersMT, GutjahrC, BennettT, NelsonDC. Strigolactone signaling and evolution. Annu Rev Plant Biol, 2017, 68: 291-322
CrossRef Google scholar
[205]
WeisteC, PedrottiL, SelvanayagamJ, MuralidharaP, FröschelC, NovákO, LjungK, HansonJ, Dröge-LaserW. The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth. PLoS Genet, 2017, 13(2
CrossRef Google scholar
[206]
WestwoodJH. RNA transport: delivering the message. Nat Plants, 2015, 1 4):15038
CrossRef Google scholar
[207]
WilkinsKA, MatthusE, SwarbreckSM, DaviesJM. Calcium-mediated abiotic stress signaling in roots. Front Plant Sci, 2016, 7: 1296
CrossRef Google scholar
[208]
Wilson ME, Mixdorf M, Berg RH, Haswell ES (2016) Plastid osmotic stress influences cell differentiation at the plant shoot apex. Development:dev136234. https://doi.org/10.1242/dev.136234
[209]
WinterN, KraglerF. Conceptual and methodological considerations on mRNA and proteins as intercellular and long-distance signals. Plant Cell Physiol, 2018, 59(9):1700-1713
CrossRef Google scholar
[210]
WohlbachDJ, QuirinoBF, SussmanMR. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell, 2008, 20(4):1101-1117
CrossRef Google scholar
[211]
WolfS, HématyK, HöfteH. Growth control and cell wall signaling in plants. Annu Rev Plant Biol, 2012, 63(1):381-407
CrossRef Google scholar
[212]
WuF, ChiY, JiangZ, XuY, XieL, HuangF, WanD, NiJ, YuanF, WuX, ZhangY, WangL, YeR, ByeonB, WangW, ZhangS, SimaM, ChenS, ZhuM, PeiJ, JohnsonDM, ZhuS, CaoX, PeiC, ZaiZ, LiuY, LiuT, SwiftGB, ZhangW, YuM, HuZ, SiedowJN, ChenX, PeiZM. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 2020, 578(7796):577-581
CrossRef Google scholar
[213]
XiaC, ZhengY, HuangJ, ZhouX, LiR, ZhaM, WangS, HuangZ, LanH, TurgeonR, FeiZ, ZhangC. Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/tomato heterograft system. Plant Physiol, 2018, 177(2):745-758
CrossRef Google scholar
[214]
YangL, PerreraV, SaplaouraE, ApeltF, BahinM, KramdiA, OlasJ, Mueller-RoeberB, SokolowskaE, ZhangW, LiR, PitzalisN, HeinleinM, ZhangS, GenovesioA, ColotV, KraglerF. m5C methylation guides systemic transport of messenger RNA over graft junctions in plants. Curr Biol, 2019, 29(15):2465-2476.e5
CrossRef Google scholar
[215]
Yoshimura K, Iida K, Iida H (2021) MCAs in Arabidopsis are Ca2+−permeable mechanosensitive channels inherently sensitive to membrane tension. Nat Commun 12(1):6074. https://doi.org/10.1038/s41467-021-26363-z
[216]
Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C, Zhang J, Theprungsirikul L, Shrift T, Krichilsky B, Johnson DM, Swift GB, He Y, Siedow JN, Pei Z-M (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514(7522):367–371. https://doi.org/10.1038/nature13593
[217]
ZavalievR, MohanR, ChenT, DongX. Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell, 2020, 182(5):1093-1108.e18
CrossRef Google scholar
[218]
ZegbeJA, BehboudianMH, ClothierBE. Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrig Sci, 2006, 24(3):203-210
CrossRef Google scholar
[219]
ZhangG, KongG, LiY. Long-distance communication through systemic macromolecular signaling mediates stress defense responses in plants. Physiol Plant, 2021, 173(4):1926-1934
CrossRef Google scholar
[220]
ZhangJ, DaviesWJ. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ, 1989, 12(1):73-81
CrossRef Google scholar
[221]
Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G (2019a) CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ 42(3):1033–1044. https://doi.org/10.1111/pce.13475
[222]
ZhangS, SunL, KraglerF. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation. Plant Physiol, 2009, 150(1):378-387
CrossRef Google scholar
[223]
ZhangY, DadayC, GuR-X, CoxCD, MartinacB, de GrootBL, WalzT. Visualization of the mechanosensitive ion channel MscS under membrane tension. Nature, 2021, 590(7846):509-514
CrossRef Google scholar
[224]
ZhangY, LvS, WangG. Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav, 2018, 13(3
CrossRef Google scholar
[225]
ZhangZ, TongX, LiuS-Y, ChaiL-X, ZhuF-F, ZhangX-P, ZouJ-Z, WangX-B. Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana. Sci Rep, 2019, 9 1):3187
CrossRef Google scholar
[226]
ZhangZ, ZhengY, HamB-K, ChenJ, YoshidaA, KochianLV, FeiZ, LucasWJ. Vascular-mediated signalling involved in early phosphate stress response in plants. Nat Plants, 2016, 2: 16033
CrossRef Google scholar
[227]
ZhongW, HartungW, KomorE, SchobertC. Phloem transport of abscisic acid in Ricinus communis L. seedlings. Plant Cell Environ, 1996, 19(4):471-477
CrossRef Google scholar
Funding
Agence Nationale de la Recherche(ANR-19-CE20-0008-01); HORIZON EUROPE European Research Council(ERC-2017-ADG-788553)

Accesses

Citations

Detail

Sections
Recommended

/