Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions

Yaqi Zhou, Hongkai Wang, Sunde Xu, Kai Liu, Hao Qi, Mengcen Wang, Xiaoyulong Chen, Gabriele Berg, Zhonghua Ma, Tomislav Cernava, Yun Chen

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 22. DOI: 10.1007/s44154-022-00046-1
Review

Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions

Author information +
History +

Abstract

Bacteria and fungi are dominant members of environmental microbiomes. Various bacterial-fungal interactions (BFIs) and their mutual regulation are important factors for ecosystem functioning and health. Such interactions can be highly dynamic, and often require spatiotemporally resolved assessments to understand the interplay which ranges from antagonism to mutualism. Many of these interactions are still poorly understood, especially in terms of the underlying chemical and molecular interplay, which is crucial for inter-kingdom communication and interference. BFIs are highly relevant under agricultural settings; they can be determinative for crop health. Advancing our knowledge related to mechanisms underpinning the interactions between bacteria and fungi will provide an extended basis for biological control of pests and pathogens in agriculture. Moreover, it will facilitate a better understanding of complex microbial community networks that commonly occur in nature. This will allow us to determine factors that are crucial for community assembly under different environmental conditions and pave the way for constructing synthetic communities for various biotechnological applications. Here, we summarize the current advances in the field of BFIs with an emphasis on agriculture.

Keywords

Bacterial-fungal interactions / Biological control / Synthetic communities / Secondary metabolites

Cite this article

Download citation ▾
Yaqi Zhou, Hongkai Wang, Sunde Xu, Kai Liu, Hao Qi, Mengcen Wang, Xiaoyulong Chen, Gabriele Berg, Zhonghua Ma, Tomislav Cernava, Yun Chen. Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions. Stress Biology, 2022, 2(1): 22 https://doi.org/10.1007/s44154-022-00046-1

References

[1]
Abeysinghe G, Kuchira M, Kudo G, Masuo S, Ninomiya A, Takahasi K, Utada AS, Hagiwara D, Nomura N, Takaya N, Obana N, Takeshita N (2020) Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Sci Alliance 3(12). https://doi.org/10.26508/lsa.202000878
[2]
AkoneSH, MándiA, KurtánT, HartmannR, LinW, DaletosG, ProkschP. Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron, 2016, 72(41):6340-6347
CrossRef Google scholar
[3]
Alavi P, Starcher MR, Zachow C, Muller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front Plant Sci 4(141). https://doi.org/10.3389/fpls.2013.00141
[4]
Albarracin OA, Petras D, Tobares RA, Aksenov AA, Wang M, Juncosa F, Sayago P, Moyano AJ, Dorrestein PC, Smania AM (2020) Fungal-bacterial interaction selects for quorum sensing mutants with increased production of natural antifungal compounds. Commun Biol 3(1):670. https://doi.org/10.1038/s42003-020-01342-0
[5]
AmanM, RaiVR. Antifungal activity of novel indole derivative from endophytic bacteria Pantoea ananatis 4G-9 against Mycosphaerella musicola. Biocontrol Sci Techn, 2016, 26(4):476-491
CrossRef Google scholar
[6]
AwlaHK, KadirJ, OthmanR, RashidTS, WongM. Bioactive compounds produced by Streptomyces sp. isolate UPMRS4 and antifungal activity against Pyricularia oryzae. Am J Plant Sci, 2016, 07(07):1077-1085
CrossRef Google scholar
[7]
AyedA, Kalai-GramiL, Ben SlimeneI, ChaouachiM, MankaiH, karkouchI, DjebaliN, ElkahouiS, TabbeneO, LimamF. Antifungal activity of volatile organic compounds from Streptomyces sp. strain S97 against Botrytis cinerea. Biocontrol Sci Techn, 2021, 31(12):1330-1348
CrossRef Google scholar
[8]
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319. https://doi.org/10.1104/pp.103.028712
[9]
BardinM, AjouzS, CombyM, Lopez-FerberM, GraillotB, SiegwartM, NicotPC. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides?. Front Plant Sci, 2015, 6: 556
CrossRef Google scholar
[10]
BarkaEA, GogniesS, NowakJ, AudranJC, BelarbiA. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control, 2002, 24(2):135-142
CrossRef Google scholar
[11]
BerdyJ. Bioactive microbial metabolites. J Antibiot (Tokyo), 2005, 58(1):1-26
CrossRef Google scholar
[12]
BergG, KusstatscherP, AbdelfattahA, CernavaT, SmallaK. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front Microbiol, 2021, 12: 650610
CrossRef Google scholar
[13]
BergG, RoskotN, SteidleA, EberlL, ZockA, SmallaK. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol, 2002, 68(7):3328-3338
CrossRef Google scholar
[14]
BergG, RybakovaD, FischerD, CernavaT, VergèsMCC, CharlesT, ChenX, CocolinL, EversoleK, CorralGH, KazouM, KinkelL, LangeL, LimaN, LoyA, MacklinJA, MaguinE, MauchlineT, McClureR, MitterB, RyanM, SarandI, SmidtH, SchelkleB, RoumeH, KiranGS, SelvinJ, SouzaRSC, van OverbeekL, SinghBK, WagnerM, WalshA, SessitschA, SchloterM. Microbiome definition re-visited: old concepts and new challenges. Microbiome, 2020, 8(1):103
CrossRef Google scholar
[15]
BianciottoV, BandiC, MinerdiD, SironiM, TichyHV, BonfanteP. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol, 1996, 62(8):3005-3010
CrossRef Google scholar
[16]
BianciottoV, MinerdiD, PerottoS, BonfanteP. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma, 1996, 193(1–4):123-131
CrossRef Google scholar
[17]
BragaRM, DouradoMN, AraujoWL. Microbial interactions: ecology in a molecular perspective. Braz J Microbiol, 2016, 471: 86-98
CrossRef Google scholar
[18]
Buttner H, Niehs SP, Vandelannoote K Cseresnyes Z, Dose B, Richter I, Gerst R Figge MT, Stinear TP, Pidot SJ, Hertweck C (2021) Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proc Natl Acad Sci U S A 118(37). https://doi.org/10.1073/pnas.2110669118
[19]
CarrascoJ, PrestonGM. Growing edible mushrooms: a conversation between bacteria and fungi. Environ Microbiol, 2020, 22(3):858-872
CrossRef Google scholar
[20]
CarrionVJ, Perez-JaramilloJ, CordovezV, et al.. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science, 2019, 366(6465):606-612
CrossRef Google scholar
[21]
CazorlaFM, RomeroD, Perez-GarciaA, LugtenbergBJ, VicenteA, BloembergG. Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol, 2007, 103(5):1950-1959
CrossRef Google scholar
[22]
Cernava T, Berg G (2022) The emergence of disease-preventing bacteria within the plant microbiota. Environ Microbiol. https://doi.org/10.1111/1462-2920.15896
[23]
Chandel S, Allan EJ, Woodward S (2010) Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158(7–8):470–478. https://doi.org/10.1111/j.1439-0434.2009.01635.x
[24]
ChenXH, KoumoutsiA, ScholzR, EisenreichA, SchneiderK, HeinemeyerI, MorgensternB, VossB, HessWR, RevaO, JungeH, VoigtB, JungblutPR, VaterJ, SüssmuthR, LiesegangH, StrittmatterA, GottschalkG, BorrissR. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol, 2007, 25(9):1007-1014
CrossRef Google scholar
[25]
ChenY, WangJ, YangN, WenZ, SunX, ChaiY, MaZ. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun, 2018, 9(1):3429
CrossRef Google scholar
[26]
CoenyeT. Uncoupling virulence and biocontrol. Nat Microbiol, 2019, 4(6):908-909
CrossRef Google scholar
[27]
CorsettiA, RossiJ, GobbettiM. Interactions between yeasts and bacteria in the smear surface-ripened cheeses. Int J Food Microbiol, 2001, 69(1–2):1-10
CrossRef Google scholar
[28]
CosettaCM, KfouryN, RobbatA, WolfeBE. Fungal volatiles mediate cheese rind microbiome assembly. Environ Microbiol, 2020, 22(11):4745-4760
CrossRef Google scholar
[29]
CuetoM, JensenPR, KauffmanC, FenicalW, LobkovskyE, ClardyJ. Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod, 2001, 64(11):1444-1446
CrossRef Google scholar
[30]
CuginiC, CalfeeMW, FarrowJR, MoralesDK, PesciEC, HoganDA. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol, 2007, 65(4):896-906
CrossRef Google scholar
[31]
Cugini C, Kolter R, Hogan DA (2008) Interdomain cross talk. Chemical Communication among Bacteria:417–429. https://doi.org/10.1128/9781555815578
[32]
de WaardMA. Significance of ABC transporters in fungicide sensitivity and resistance. Pestic Sci, 1997, 51(3):271-275
CrossRef Google scholar
[33]
de WeertS, KuiperI, LagendijkEL, LamersGE, LugtenbergBJ. Role of chemotaxis toward fusaric acid in colonization of hyphae of fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact, 2004, 17(11):1185-1191
CrossRef Google scholar
[34]
DengP, WangX, BairdSM, LuSE. Complete genome of Pseudomonas chlororaphis strain UFB2, a soil bacterium with antibacterial activity against bacterial canker pathogen of tomato. Stand Genomic Sci, 2015, 10(1):117
CrossRef Google scholar
[35]
DesiroA, HaoZ, LiberJA, BenucciG, LowryD, RobersonR, BonitoG. Mycoplasma-related endobacteria within Mortierellomycotina fungi: diversity, distribution and functional insights into their lifestyle. Isme J, 2018, 12(7):1743-1757
CrossRef Google scholar
[36]
DesiroA, SalvioliA, NgonkeuEL, et al.. Detection of a novel intracellular microbiome hosted in arbuscular mycorrhizal fungi. Isme J, 2014, 8(2):257-270
CrossRef Google scholar
[37]
DeveauA, BonitoG, UehlingJ, PaolettiM, BeckerM, BindschedlerS, HacquardS, HervéV, LabbéJ, LastovetskyOA, MieszkinS, MilletLJ, VajnaB, JunierP, BonfanteP, KromBP, OlssonS, van ElsasJD, WickLY. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev, 2018, 42(3):335-352
CrossRef Google scholar
[38]
DudlerR, EberlL. Interactions between bacteria and eukaryotes via small molecules. Curr Opin Biotechnol, 2006, 17(3):268-273
CrossRef Google scholar
[39]
DuffyB, SchoutenA, RaaijmakersJM. Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol, 2003, 41(1):501-538
CrossRef Google scholar
[40]
Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257. https://doi.org/10.1094/PHYTO.1997.87.12.1250
[41]
Escalante AE, Rebolleda-Gà Mez MA, Benà Tez M, Travisano M (2015) Ecological perspectives on synthetic biology: insights from microbial population biology. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00143
[42]
FalleirosDPR, NormanNM, SvidzinskiAE, NakamuraCV, SvidzinskiTI. Adherence of Pseudomonas aeruginosa and Candida albicans to urinary catheters. Rev Iberoam Micol, 2008, 25(3):173-175
CrossRef Google scholar
[43]
Favaro LC, Sebastianes FL, Araujo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7(6):e36826. https://doi.org/10.1371/journal.pone.0036826
[44]
FiererN, JacksonRB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A, 2006, 103(3):626-631
CrossRef Google scholar
[45]
Fischer J, Muller SY, Netzker T et al (2018) Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. Elife 7. https://doi.org/10.7554/eLife.40969
[46]
Frey-KlettP, BurlinsonP, DeveauA, BarretM, TarkkaM, SarniguetA. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol R, 2011, 75(4):583-609
CrossRef Google scholar
[47]
FurunoS, PazoltK, RabeC, NeuTR, HarmsH, WickLY. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ Microbiol, 2010, 12(6):1391-1398
CrossRef Google scholar
[48]
GondSK, BergenMS, TorresMS, WhiteJJ. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res, 2015, 172: 79-87
CrossRef Google scholar
[49]
Gong AD, Wu NN, Kong XW, Zhang YM, Hu MJ, Gong SJ, Dong FY, Wang JH, Zhao ZY, Liao YC (2019) Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front Microbiol 10:1419. https://doi.org/10.3389/fmicb.2019.01419
[50]
GrewalSI, RaineyPB. Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J Gen Microbiol, 1991, 137(12):2761-2768
CrossRef Google scholar
[51]
Guo H, Glaeser SP, Alabid I, Imani J, Haghighi H, Kampfer P, Kogel KH (2017) The abundance of Endofungal bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) increases in its fungal host Piriformospora indica during the tripartite Sebacinalean Symbiosis with higher plants. Front Microbiol 8:629. https://doi.org/10.3389/fmicb.2017.00629
[52]
Guo Y, Takashima Y, Sato Y, Narisawa K, Ohta H, Nishizawa T (2020) Mycoavidus sp. strain B2-EB: comparative genomics reveals minimal genomic features required by a cultivable Burkholderiaceae-related Endofungal bacterium. Appl Environ Microbiol 86:–18. https://doi.org/10.1128/AEM.01018-20
[53]
HazarikaDJ, GautomT, ParveenA, GoswamiG, BarooahM, ModiMK, BoroRC. Mechanism of interaction of an endofungal bacterium Serratia marcescens D1 with its host and non-host fungi. PLoS One, 2020, 15(4):e224051
CrossRef Google scholar
[54]
HerringtonPR, CraigJT, SheridanJE. Methyl vinyl ketone: a volatile fungistatic inhibitor from Streptomyces griseoruber. Soil Biol Biochem, 1987, 19(5):509-512
CrossRef Google scholar
[55]
HoYN, HooSY, WangBW, HsiehCT, LinCC, SunCH, PengCC, LinC, YangYL. Specific inactivation of an antifungal bacterial siderophore by a fungal plant pathogen. Isme J, 2021, 15(6):1858-1861
CrossRef Google scholar
[56]
HoganDA, VikA, KolterR. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol, 2004, 54(5):1212-1223
CrossRef Google scholar
[57]
HoverT, MayaT, RonS, SandovskyH, ShadkchanY, KijnerN, MitiaginY, FichtmanB, HarelA, ShanksRMQ, BrunaRE, García-VéscoviE, OsherovN. Mechanisms of bacterial (Serratia marcescens) attachment to, migration along, and killing of fungal hyphae. Appl Environ Microb, 2016, 82(9):2585-2594
CrossRef Google scholar
[58]
Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y (2018) Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 215:55–64. https://doi.org/10.1016/j.micres.2018.06.008
[59]
HutchingsMI, TrumanAW, WilkinsonB. Antibiotics: past, present and future. Curr Opin Microbiol, 2019, 51: 72-80
CrossRef Google scholar
[60]
IslamMR, JeongYT, LeeYS, SongCH. Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic Fungi. Mycobiology, 2012, 40(1):59-66
CrossRef Google scholar
[61]
Iwasaki S, Kobayashi H, Furukawa J, Namikoshi M, Okuda S, Sato Z, Matsuda I, Noda T (1984) Studies on macrocyclic lactone antibiotics. VII. Structure of a phytotoxin "rhizoxin" produced by Rhizopus chinensis. J Antibiot (Tokyo) 37(4):354–362. https://doi.org/10.7164/antibiotics.37.354
[62]
Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA (2020) Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep-Uk 10(1). https://doi.org/10.1038/s41598-020-63689-y
[63]
Jia J, Ford E, Hobbs S, Baird S, Lu S (2021) Occidiofungin is the key metabolite for antifungal activity of the endophytic bacterium Burkholderia sp. MS455 against Aspergillus flavus. Phytopathology:PHYTO06210225R. https://doi.org/10.1094/PHYTO-06-21-0225-R
[64]
JungBK, HongS, ParkG, KimM, ShinJ. Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem, 2018, 61(2):173-180
CrossRef Google scholar
[65]
KaiM, HausteinM, MolinaF, PetriA, ScholzB, PiechullaB. Bacterial volatiles and their action potential. Appl Microbiol Biotechnol, 2009, 81(6):1001-1012
CrossRef Google scholar
[66]
KjeldgaardB, ListianSA, RamaswamhiV, RichterA, KiesewalterHT, KovácsÁT. Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm, 2019, 1: 100007
CrossRef Google scholar
[67]
LacknerG, MoebiusN, Partida-MartinezLP, BolandS, HertweckC. Evolution of an endofungal lifestyle: deductions from the Burkholderia rhizoxinica genome. BMC Genomics, 2011, 12(1):210
CrossRef Google scholar
[68]
Lin L, Xu K, Shen D, Chou SH, Gomelsky M, Qian G (2021) Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol 23(10):5704–5715. https://doi.org/10.1111/1462-2920.15674
[69]
LinaresJF, GustafssonI, BaqueroF, MartinezJL. Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A, 2006, 103(51):19484-19489
CrossRef Google scholar
[70]
LiuJ, LiuM, WangJ, YaoJM, PanRR, YuZL. Enhancement of the Gibberella zeae growth inhibitory lipopeptides from a Bacillus subtilis mutant by ion beam implantation. Appl Microbiol Biot, 2005, 69(2):223-228
CrossRef Google scholar
[71]
LiuK, HuH, WangW, ZhangX. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Microb Cell Factories, 2016, 15(1):131
CrossRef Google scholar
[72]
Liu X, Bimerew M, Ma Y, Müller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270(2):299–305. https://doi.org/10.1111/j.1574-6968.2007.00681.x
[73]
LiuYX, QinY, BaiY. Reductionist synthetic community approaches in root microbiome research. Curr Opin Microbiol, 2019, 49: 97-102
CrossRef Google scholar
[74]
LiuZ, FanL, ZhangD, LiY. Antifungal depsipeptide compounds from Paenibacillus polymyxa HY96-2. Chem Nat Compd, 2011, 47(3):496-497
CrossRef Google scholar
[75]
LoCP, GiorgioA, IacobellisNS. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii. Front Microbiol, 2015, 6: 1082
CrossRef Google scholar
[76]
LoperJE, HenkelsMD, ShafferBT, ValerioteFA, GrossH. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol, 2008, 74(10):3085-3093
CrossRef Google scholar
[77]
Lutz MP, Wenger S, Maurhofer M, DÃ Fago GV, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48(3):447–455. https://doi.org/10.1016/j.femsec.2004.03.002
[78]
Manzotti A, Bergna A, Burow M, Jørgensen HJL, Cernava T, Berg G, Collinge DB, Jensen B (2020) Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. Fems Microbiol Ecol 96(5). https://doi.org/10.1093/femsec/fiaa052
[79]
Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM (2013) Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 8(10):e76487. https://doi.org/10.1371/journal.pone.0076487
[80]
Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10(7):1725–1741. https://doi.org/10.1111/j.1462-2920.2008.01594.x
[81]
MoebiusN, ÜzümZ, DijksterhuisJ, LacknerG, HertweckC. Active invasion of bacteria into living fungal cells. Elife, 2014, 3: e03007
CrossRef Google scholar
[82]
MorrisseyJP, OsbournAE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev, 1999, 63(3):708-724
CrossRef Google scholar
[83]
MosseB. Honey-Coloured, Sessile Endogone Spores II Changes in Fine Structure during Spore Development. Archiv für Mikrobiologie, 1970, 74(2):129-145
CrossRef Google scholar
[84]
MuJ, LiX, JiaoJ, JiG, WuJ, HuF, LiH. Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biol Control, 2017, 112: 49-54
CrossRef Google scholar
[85]
NetzkerT, ShepherdsonE, ZambriMP, ElliotMA. Bacterial volatile compounds: functions in communication, cooperation, and competition. Annu Rev Microbiol, 2020, 74(1):409-430
CrossRef Google scholar
[86]
NguyenXH, NaingKW, LeeYS, KimYH, MoonJH, KimKY. Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici. J Basic Microbiol, 2015, 55(1):45-53
CrossRef Google scholar
[87]
NiuB, PaulsonJN, ZhengX, KolterR. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci, 2017, 114(12):E2450-E2459
CrossRef Google scholar
[88]
NiuB, WangW, YuanZ, SederoffRR, SederoffH, ChiangVL, BorrissR. Microbial interactions within multiple-strain biological control agents impact soil-borne plant disease. Front Microbiol, 2020, 11: 585404
CrossRef Google scholar
[89]
NowakMA, SasakiA, TaylorC, FudenbergD. Emergence of cooperation and evolutionary stability in finite populations. Nature, 2004, 428(6983):646-650
CrossRef Google scholar
[90]
Nutzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhaage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108(34):14282–14287. https://doi.org/10.1073/pnas.1103523108
[91]
OddsFC. Candida and Candidosis: a review and bibliography, 1988 2
[92]
Ola AR, Thomy D, Lai D, Brotz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76(11):2094–2099. https://doi.org/10.1021/np400589h
[93]
OvchinnikovaES, KromBP, van der MeiHC, BusscherHJ. Force microscopic and thermodynamic analysis of the adhesion between Pseudomonas aeruginosa and Candida albicans. Soft Matter, 2012, 8(24):6454
CrossRef Google scholar
[94]
PalmieriD, VitaleS, LimaG, Di PietroA, TurraD. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat Commun, 2020, 11(1):5264
CrossRef Google scholar
[95]
Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-Glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95(6):701–707. https://doi.org/10.1094/PHYTO-95-0701
[96]
Partida-MartinezLP, HertweckC. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature, 2005, 437(7060):884-888
CrossRef Google scholar
[97]
Partida-MartinezLP, MonajembashiS, GreulichKO, HertweckC. Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol, 2007, 17(9):773-777
CrossRef Google scholar
[98]
PauliucI, BotauD. Antibacterial activity of Pleurotus ostreatus gemmotherapic extract. J Hortic Forest Biotech, 2013, 17(1):242-245
[99]
PawlowskaTE, GasparML, LastovetskyOA, MondoSJ, Real-RamirezI, ShakyaE, BonfanteP. Biology of Fungi and their bacterial endosymbionts. Annu Rev Phytopathol, 2018, 56(1):289-309
CrossRef Google scholar
[100]
PenalvaMA, ArstHJ. Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev, 2002, 66(3):426-446
CrossRef Google scholar
[101]
PhuakjaiphaeoC, ChangCI, RuangwongO, KunasakdakulK. Isolation and identification of an antifungal compound from endophytic Streptomyces sp. CEN26 active against Alternaria brassicicola. Lett Appl Microbiol, 2016, 63(1):38-44
CrossRef Google scholar
[102]
PiechullaB, DegenhardtJ. The emerging importance of microbial volatile organic compounds. Plant Cell Environ, 2014, 37(4):811-812
CrossRef Google scholar
[103]
QianG, HuB, JiangY, LiuF. Identification and characterization of Lysobacter enzymogenes as a biological control agent against some fungal pathogens. Agric Sci China, 2009, 8(1):68-75
CrossRef Google scholar
[104]
Qian G, Wang Y, Liu Y, Xu F, He YW, du L, Venturi V, Fan J, Hu B, Liu F (2013) Lysobacter enzymogenes uses two distinct cell-cell signaling Systems for Differential Regulation of secondary-metabolite biosynthesis and Colony morphology. Appl Environ Microb 79(21):6604–6616. https://doi.org/10.1128/AEM.01841-13
[105]
RaaijmakersJM, MazzolaM. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol, 2012, 50(1):403-424
CrossRef Google scholar
[106]
RasmussenTB, SkindersoeME, BjarnsholtT, PhippsRK, ChristensenKB, JensenPO, AndersenJB, KochB, LarsenTO, HentzerM, EberlL, HoibyN, GivskovM. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology (Reading), 2005, 151(Pt 5):1325-1340
CrossRef Google scholar
[107]
RomeroD, TraxlerMF, LopezD, KolterR. Antibiotics as signal molecules. Chem Rev, 2011, 111(9):5492-5505
CrossRef Google scholar
[108]
RudnickMB, van VeenJA, de BoerW. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?. Environ Microbiol Rep, 2015, 7(5):709-714
CrossRef Google scholar
[109]
Ruiz-Herrera J, Leon-Ramirez C, Vera-Nunez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ (2015) A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol 207(3):769–777. https://doi.org/10.1111/nph.13359
[110]
RybakovaD, Rack-WetzlingerU, CernavaT, SchaeferA, SchmuckM, BergG. Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Front Plant Sci, 2017, 8: 1294
CrossRef Google scholar
[111]
SahashiN, AkibaM, IshiharaM, OtaY, KanzakiN. Brown root rot of trees caused by Phellinus noxius in the Ryukyu Islands, subtropical areas of Japan. For Pathol, 2012, 42(5):353-361
CrossRef Google scholar
[112]
SalvioliA, GhignoneS, NoveroM, NavazioL, VeniceF, BagnaresiP, BonfanteP. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. Isme J, 2016, 10(1):130-144
CrossRef Google scholar
[113]
ScherlachK, BuschB, LacknerG, PaszkowskiU, HertweckC. Symbiotic cooperation in the biosynthesis of a phytotoxin. Angew Chem Int Ed Engl, 2012, 51(38):9615-9618
CrossRef Google scholar
[114]
ScherlachK, GraupnerK, HertweckC. Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol, 2013, 67(1):375-397
CrossRef Google scholar
[115]
SchislerDA, HowardKM, BothastRJ. Enhancement of disease caused by Colletotrichum truncatum in Sesbania exaltata by coinoculating with epiphytic bacteria. Biol Control, 1991, 1(4):261-268
CrossRef Google scholar
[116]
SchmidtR, CordovezV, de BoerW, RaaijmakersJ, GarbevaP. Volatile affairs in microbial interactions. Isme J, 2015, 9(11):2329-2335
CrossRef Google scholar
[117]
Schmidt R, Jager V, Zuhlke D et al (2017) Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci Rep 7(1):862. https://doi.org/10.1038/s41598-017-00893-3
[118]
SchoonbeekHJ, RaaijmakersJM, De WaardMA. Fungal ABC transporters and microbial interactions in natural environments. Mol Plant-Microbe Interact, 2002, 15(11):1165-1172
CrossRef Google scholar
[119]
SharmaM, ManhasRK. Purification and characterization of salvianolic acid B from Streptomyces sp. M4 possessing antifungal activity against fungal phytopathogens. Microbiol Res, 2020, 237: 126478
CrossRef Google scholar
[120]
Spraker JE, Jewell K, Roze LV, Scherf J, Ndagano D, Beaudry R, Linz JE, Allen C, Keller NP (2014) A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J Chem Ecol 40(5):502–513. https://doi.org/10.1007/s10886-014-0432-2
[121]
Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J, Schroeder FC, Sanchez LM, Keller NP (2018) Conserved responses in a war of small molecules between a plant-pathogenic bacterium and Fungi. Mbio 9(3). https://doi.org/10.1128/mBio.00820-18
[122]
Steffan BN, Venkatesh N, Keller NP (2020) Let's get physical: bacterial-fungal interactions and their consequences in agriculture and health. J Fungi (Basel) 6(4). https://doi.org/10.3390/jof6040243
[123]
Stroe MC, Netzker T, Scherlach K, Kruger T, Hertweck C, Valiante V, Brakhage AA (2020) Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. Elife 9. https://doi.org/10.7554/eLife.52541
[124]
Sujarit K, Pathom-aree W, Mori M, Dobashi K, Shiomi K, Lumyong S (2020) Streptomyces palmae CMU-AB204T, an antifungal producing-actinomycete, as a potential biocontrol agent to protect palm oil producing trees from basal stem rot disease fungus, Ganoderma boninense. Biol Control 148:104307. https://doi.org/10.1016/j.biocontrol.2020.104307
[125]
Syed-Ab-RahmanSF, CarvalhaisLC, ChuaET, ChungFY, MoylePM, EltanahyEG, SchenkPM. Soil bacterial diffusible and volatile organic compounds inhibit Phytophthora capsici and promote plant growth. Sci Total Environ, 2019, 692: 267-280
CrossRef Google scholar
[126]
ToljanderJF, ArturssonV, PaulLR, JanssonJK, FinlayRD. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett, 2006, 254(1):34-40
CrossRef Google scholar
[127]
Trung NT, Cuong NT, Thao NT, Anh DTM, Tuyen DT (2020) Elucidation and identification of an antifungal compound from Pseudomonas aeruginosa DA3.1 isolated from soil in Vietnam. Jundishapur J Microb 13(10). https://doi.org/10.5812/jjm.103792
[128]
TurnerTR, JamesEK, PoolePS. The plant microbiome. Genome Biol, 2013, 14(6):209
CrossRef Google scholar
[129]
Venturelli OS, Carr AC, Fisher G, Ophelia S, Hsu RH, Lau R, Bowen BP, Hromada S, Northen T, Arkin AP (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14(6):e8157. https://doi.org/10.15252/msb.20178157
[130]
WangJ, XuC, SunQ, XuJ, ChaiY, BergG, CernavaT, MaZ, ChenY. Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens. Microbiome, 2021, 9(1):131
CrossRef Google scholar
[131]
Wassermann B, Cernava T, Mueller H, Berg C, Berg G (2019) Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7(1). https://doi.org/10.1186/s40168-019-0723-5
[132]
WhippsJM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot, 2001, 52(suppl_1):487-511
CrossRef Google scholar
[133]
Wolinska KW, Vannier N, Thiergart T, Pickel B, Gremmen S, Piasecka A, Piślewska-Bednarek M, Nakano RT, Belkhadir Y, Bednarek P, Hacquard S (2021) Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc Natl Acad Sci U S A 118(49). https://doi.org/10.1073/pnas.2111521118
[134]
WongsukT, PumeesatP, LuplertlopN. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol, 2016, 56(5):440-447
CrossRef Google scholar
[135]
XuK, ShenD, HanS, ChouSH, QianG. A non-flagellated, predatory soil bacterium reprograms a chemosensory system to control antifungal antibiotic production via cyclic di-GMP signalling. Environ Microbiol, 2021, 23(2):878-892
CrossRef Google scholar
[136]
Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78(16):5942–5944. https://doi.org/10.1128/AEM.01357-12
[137]
YuanJ, ZhaoJ, WenT, ZhaoM, LiR, GoossensP, HuangQ, BaiY, VivancoJM, KowalchukGA, BerendsenRL, ShenQ. Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome, 2018, 6(1):156
CrossRef Google scholar
[138]
ZhangL, XuD, WangF, ZhangQ. Antifungal activity of Burkholderia sp. HD05 against Saprolegnia sp. by 2-pyrrolidone-5-carboxylic acid. Aquaculture, 2019, 511: 634198
CrossRef Google scholar
[139]
ZhangX, HindraEMA. Unlocking the trove of metabolic treasures: activating silent biosynthetic gene clusters in bacteria and fungi. Curr Opin Microbiol, 2019, 51: 9-15
CrossRef Google scholar
[140]
ZhangY, KastmanEK, GuastoJS, WolfeBE. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat Commun, 2018, 9(1):336
CrossRef Google scholar
[141]
Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol 54(5):448–456. https://doi.org/10.1002/jobm.201200414
[142]
ZhaoX, LiuX, XuX, FuYV. Microbe social skill: the cell-to-cell communication between microorganisms. Sci Bull, 2017, 62(7):516-524
CrossRef Google scholar
[143]
Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y (2015) Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 25(1):29–37. https://doi.org/10.1016/j.cub.2014.11.018
[144]
ZhengL, ZhangC, WuX, LiuL, ZhangH. Efficacy assessment of Pantoea jilinensis D25 fermentation broth against Botrytis cinerea. Process Biochem, 2021, 111: 241-248
CrossRef Google scholar
[145]
ZhuangL, LiY, WangZ, YuY, ZhangN, YangC, ZengQ, WangQ. Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Microb Biotechnol, 2021, 14(2):488-502
CrossRef Google scholar
Funding
National Natural Science Foundation of China(32172356)

Accesses

Citations

Detail

Sections
Recommended

/