Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions
Yaqi Zhou, Hongkai Wang, Sunde Xu, Kai Liu, Hao Qi, Mengcen Wang, Xiaoyulong Chen, Gabriele Berg, Zhonghua Ma, Tomislav Cernava, Yun Chen
Bacterial-fungal interactions under agricultural settings: from physical to chemical interactions
Bacteria and fungi are dominant members of environmental microbiomes. Various bacterial-fungal interactions (BFIs) and their mutual regulation are important factors for ecosystem functioning and health. Such interactions can be highly dynamic, and often require spatiotemporally resolved assessments to understand the interplay which ranges from antagonism to mutualism. Many of these interactions are still poorly understood, especially in terms of the underlying chemical and molecular interplay, which is crucial for inter-kingdom communication and interference. BFIs are highly relevant under agricultural settings; they can be determinative for crop health. Advancing our knowledge related to mechanisms underpinning the interactions between bacteria and fungi will provide an extended basis for biological control of pests and pathogens in agriculture. Moreover, it will facilitate a better understanding of complex microbial community networks that commonly occur in nature. This will allow us to determine factors that are crucial for community assembly under different environmental conditions and pave the way for constructing synthetic communities for various biotechnological applications. Here, we summarize the current advances in the field of BFIs with an emphasis on agriculture.
Bacterial-fungal interactions / Biological control / Synthetic communities / Secondary metabolites
[1] |
Abeysinghe G, Kuchira M, Kudo G, Masuo S, Ninomiya A, Takahasi K, Utada AS, Hagiwara D, Nomura N, Takaya N, Obana N, Takeshita N (2020) Fungal mycelia and bacterial thiamine establish a mutualistic growth mechanism. Life Sci Alliance 3(12). https://doi.org/10.26508/lsa.202000878
|
[2] |
|
[3] |
Alavi P, Starcher MR, Zachow C, Muller H, Berg G (2013) Root-microbe systems: the effect and mode of interaction of stress protecting agent (SPA) Stenotrophomonas rhizophila DSM14405(T.). Front Plant Sci 4(141). https://doi.org/10.3389/fpls.2013.00141
|
[4] |
Albarracin OA, Petras D, Tobares RA, Aksenov AA, Wang M, Juncosa F, Sayago P, Moyano AJ, Dorrestein PC, Smania AM (2020) Fungal-bacterial interaction selects for quorum sensing mutants with increased production of natural antifungal compounds. Commun Biol 3(1):670. https://doi.org/10.1038/s42003-020-01342-0
|
[5] |
|
[6] |
|
[7] |
|
[8] |
Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319. https://doi.org/10.1104/pp.103.028712
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
Buttner H, Niehs SP, Vandelannoote K Cseresnyes Z, Dose B, Richter I, Gerst R Figge MT, Stinear TP, Pidot SJ, Hertweck C (2021) Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proc Natl Acad Sci U S A 118(37). https://doi.org/10.1073/pnas.2110669118
|
[19] |
|
[20] |
|
[21] |
|
[22] |
Cernava T, Berg G (2022) The emergence of disease-preventing bacteria within the plant microbiota. Environ Microbiol. https://doi.org/10.1111/1462-2920.15896
|
[23] |
Chandel S, Allan EJ, Woodward S (2010) Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158(7–8):470–478. https://doi.org/10.1111/j.1439-0434.2009.01635.x
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
Cugini C, Kolter R, Hogan DA (2008) Interdomain cross talk. Chemical Communication among Bacteria:417–429. https://doi.org/10.1128/9781555815578
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87(12):1250–1257. https://doi.org/10.1094/PHYTO.1997.87.12.1250
|
[41] |
Escalante AE, Rebolleda-Gà Mez MA, Benà Tez M, Travisano M (2015) Ecological perspectives on synthetic biology: insights from microbial population biology. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00143
|
[42] |
|
[43] |
Favaro LC, Sebastianes FL, Araujo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7(6):e36826. https://doi.org/10.1371/journal.pone.0036826
|
[44] |
|
[45] |
Fischer J, Muller SY, Netzker T et al (2018) Chromatin mapping identifies BasR, a key regulator of bacteria-triggered production of fungal secondary metabolites. Elife 7. https://doi.org/10.7554/eLife.40969
|
[46] |
|
[47] |
|
[48] |
|
[49] |
Gong AD, Wu NN, Kong XW, Zhang YM, Hu MJ, Gong SJ, Dong FY, Wang JH, Zhao ZY, Liao YC (2019) Inhibitory effect of volatiles emitted from Alcaligenes faecalis N1-4 on Aspergillus flavus and aflatoxins in storage. Front Microbiol 10:1419. https://doi.org/10.3389/fmicb.2019.01419
|
[50] |
|
[51] |
Guo H, Glaeser SP, Alabid I, Imani J, Haghighi H, Kampfer P, Kogel KH (2017) The abundance of Endofungal bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) increases in its fungal host Piriformospora indica during the tripartite Sebacinalean Symbiosis with higher plants. Front Microbiol 8:629. https://doi.org/10.3389/fmicb.2017.00629
|
[52] |
Guo Y, Takashima Y, Sato Y, Narisawa K, Ohta H, Nishizawa T (2020) Mycoavidus sp. strain B2-EB: comparative genomics reveals minimal genomic features required by a cultivable Burkholderiaceae-related Endofungal bacterium. Appl Environ Microbiol 86:–18. https://doi.org/10.1128/AEM.01018-20
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
Huang R, Feng Z, Chi X, Sun X, Lu Y, Zhang B, Lu R, Luo W, Wang Y, Miao J, Ge Y (2018) Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum. Microbiol Res 215:55–64. https://doi.org/10.1016/j.micres.2018.06.008
|
[59] |
|
[60] |
|
[61] |
Iwasaki S, Kobayashi H, Furukawa J, Namikoshi M, Okuda S, Sato Z, Matsuda I, Noda T (1984) Studies on macrocyclic lactone antibiotics. VII. Structure of a phytotoxin "rhizoxin" produced by Rhizopus chinensis. J Antibiot (Tokyo) 37(4):354–362. https://doi.org/10.7164/antibiotics.37.354
|
[62] |
Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA (2020) Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci Rep-Uk 10(1). https://doi.org/10.1038/s41598-020-63689-y
|
[63] |
Jia J, Ford E, Hobbs S, Baird S, Lu S (2021) Occidiofungin is the key metabolite for antifungal activity of the endophytic bacterium Burkholderia sp. MS455 against Aspergillus flavus. Phytopathology:PHYTO06210225R. https://doi.org/10.1094/PHYTO-06-21-0225-R
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
Lin L, Xu K, Shen D, Chou SH, Gomelsky M, Qian G (2021) Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol 23(10):5704–5715. https://doi.org/10.1111/1462-2920.15674
|
[69] |
|
[70] |
|
[71] |
|
[72] |
Liu X, Bimerew M, Ma Y, Müller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270(2):299–305. https://doi.org/10.1111/j.1574-6968.2007.00681.x
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
Lutz MP, Wenger S, Maurhofer M, DÃ Fago GV, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48(3):447–455. https://doi.org/10.1016/j.femsec.2004.03.002
|
[78] |
Manzotti A, Bergna A, Burow M, Jørgensen HJL, Cernava T, Berg G, Collinge DB, Jensen B (2020) Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. Fems Microbiol Ecol 96(5). https://doi.org/10.1093/femsec/fiaa052
|
[79] |
Mathioni SM, Patel N, Riddick B, Sweigard JA, Czymmek KJ, Caplan JL, Kunjeti SG, Kunjeti S, Raman V, Hillman BI, Kobayashi DY, Donofrio NM (2013) Transcriptomics of the rice blast fungus Magnaporthe oryzae in response to the bacterial antagonist Lysobacter enzymogenes reveals candidate fungal defense response genes. PLoS One 8(10):e76487. https://doi.org/10.1371/journal.pone.0076487
|
[80] |
Minerdi D, Moretti M, Gilardi G, Barberio C, Gullino ML, Garibaldi A (2008) Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ Microbiol 10(7):1725–1741. https://doi.org/10.1111/j.1462-2920.2008.01594.x
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
Nutzmann HW, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhaage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108(34):14282–14287. https://doi.org/10.1073/pnas.1103523108
|
[91] |
|
[92] |
Ola AR, Thomy D, Lai D, Brotz-Oesterhelt H, Proksch P (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76(11):2094–2099. https://doi.org/10.1021/np400589h
|
[93] |
|
[94] |
|
[95] |
Palumbo JD, Yuen GY, Jochum CC, Tatum K, Kobayashi DY (2005) Mutagenesis of beta-1,3-Glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95(6):701–707. https://doi.org/10.1094/PHYTO-95-0701
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
Qian G, Wang Y, Liu Y, Xu F, He YW, du L, Venturi V, Fan J, Hu B, Liu F (2013) Lysobacter enzymogenes uses two distinct cell-cell signaling Systems for Differential Regulation of secondary-metabolite biosynthesis and Colony morphology. Appl Environ Microb 79(21):6604–6616. https://doi.org/10.1128/AEM.01841-13
|
[105] |
|
[106] |
|
[107] |
|
[108] |
|
[109] |
Ruiz-Herrera J, Leon-Ramirez C, Vera-Nunez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ (2015) A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. New Phytol 207(3):769–777. https://doi.org/10.1111/nph.13359
|
[110] |
|
[111] |
|
[112] |
|
[113] |
|
[114] |
|
[115] |
|
[116] |
|
[117] |
Schmidt R, Jager V, Zuhlke D et al (2017) Fungal volatile compounds induce production of the secondary metabolite Sodorifen in Serratia plymuthica PRI-2C. Sci Rep 7(1):862. https://doi.org/10.1038/s41598-017-00893-3
|
[118] |
|
[119] |
|
[120] |
Spraker JE, Jewell K, Roze LV, Scherf J, Ndagano D, Beaudry R, Linz JE, Allen C, Keller NP (2014) A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J Chem Ecol 40(5):502–513. https://doi.org/10.1007/s10886-014-0432-2
|
[121] |
Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J, Schroeder FC, Sanchez LM, Keller NP (2018) Conserved responses in a war of small molecules between a plant-pathogenic bacterium and Fungi. Mbio 9(3). https://doi.org/10.1128/mBio.00820-18
|
[122] |
Steffan BN, Venkatesh N, Keller NP (2020) Let's get physical: bacterial-fungal interactions and their consequences in agriculture and health. J Fungi (Basel) 6(4). https://doi.org/10.3390/jof6040243
|
[123] |
Stroe MC, Netzker T, Scherlach K, Kruger T, Hertweck C, Valiante V, Brakhage AA (2020) Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. Elife 9. https://doi.org/10.7554/eLife.52541
|
[124] |
Sujarit K, Pathom-aree W, Mori M, Dobashi K, Shiomi K, Lumyong S (2020) Streptomyces palmae CMU-AB204T, an antifungal producing-actinomycete, as a potential biocontrol agent to protect palm oil producing trees from basal stem rot disease fungus, Ganoderma boninense. Biol Control 148:104307. https://doi.org/10.1016/j.biocontrol.2020.104307
|
[125] |
|
[126] |
|
[127] |
Trung NT, Cuong NT, Thao NT, Anh DTM, Tuyen DT (2020) Elucidation and identification of an antifungal compound from Pseudomonas aeruginosa DA3.1 isolated from soil in Vietnam. Jundishapur J Microb 13(10). https://doi.org/10.5812/jjm.103792
|
[128] |
|
[129] |
Venturelli OS, Carr AC, Fisher G, Ophelia S, Hsu RH, Lau R, Bowen BP, Hromada S, Northen T, Arkin AP (2018) Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14(6):e8157. https://doi.org/10.15252/msb.20178157
|
[130] |
|
[131] |
Wassermann B, Cernava T, Mueller H, Berg C, Berg G (2019) Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7(1). https://doi.org/10.1186/s40168-019-0723-5
|
[132] |
|
[133] |
Wolinska KW, Vannier N, Thiergart T, Pickel B, Gremmen S, Piasecka A, Piślewska-Bednarek M, Nakano RT, Belkhadir Y, Bednarek P, Hacquard S (2021) Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc Natl Acad Sci U S A 118(49). https://doi.org/10.1073/pnas.2111521118
|
[134] |
|
[135] |
|
[136] |
Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78(16):5942–5944. https://doi.org/10.1128/AEM.01357-12
|
[137] |
|
[138] |
|
[139] |
|
[140] |
|
[141] |
Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol 54(5):448–456. https://doi.org/10.1002/jobm.201200414
|
[142] |
|
[143] |
Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y (2015) Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 25(1):29–37. https://doi.org/10.1016/j.cub.2014.11.018
|
[144] |
|
[145] |
|
/
〈 | 〉 |