The circadian clock ticks in plant stress responses

Xiaodong Xu , Li Yuan , Qiguang Xie

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 15

PDF
Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 15 DOI: 10.1007/s44154-022-00040-7
Review

The circadian clock ticks in plant stress responses

Author information +
History +
PDF

Abstract

The circadian clock, a time-keeping mechanism, drives nearly 24-h self-sustaining rhythms at the physiological, cellular, and molecular levels, keeping them synchronized with the cyclic changes of environmental signals. The plant clock is sensitive to external and internal stress signals that act as timing cues to influence the circadian rhythms through input pathways of the circadian clock system. In order to cope with environmental stresses, many core oscillators are involved in defense while maintaining daily growth in various ways. Recent studies have shown that a hierarchical multi-oscillator network orchestrates the defense through rhythmic accumulation of gene transcripts, alternative splicing of mRNA precursors, modification and turnover of proteins, subcellular localization, stimuli-induced phase separation, and long-distance transport of proteins. This review summarizes the essential role of circadian core oscillators in response to stresses in Arabidopsis thaliana and crops, including daily and seasonal abiotic stresses (low or high temperature, drought, high salinity, and nutrition deficiency) and biotic stresses (pathogens and herbivorous insects). By integrating time-keeping mechanisms, circadian rhythms and stress resistance, we provide a temporal perspective for scientists to better understand plant environmental adaptation and breed high-quality crop germplasm for agricultural production.

Cite this article

Download citation ▾
Xiaodong Xu, Li Yuan, Qiguang Xie. The circadian clock ticks in plant stress responses. Stress Biology, 2022, 2(1): 15 DOI:10.1007/s44154-022-00040-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

Funding

National Natural Science Foundation of China,(32170275, U1904202, 31570285)

National key research and development program,(2021YFA1300402)

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/