Microbial enhancement of plant nutrient acquisition

Sunil K. Singh, Xiaoxuan Wu, Chuyang Shao, Huiming Zhang

Stress Biology ›› 2022, Vol. 2 ›› Issue (1) : 3. DOI: 10.1007/s44154-021-00027-w
Review

Microbial enhancement of plant nutrient acquisition

Author information +
History +

Abstract

Nutrient availability is a determining factor for crop yield and quality. While fertilization is a major approach for improving plant nutrition, its efficacy can be limited and the production and application of fertilizers frequently bring problems to the environment. A large number of soil microbes are capable of enhancing plant nutrient acquisition and thereby offer environmentally benign solutions to meet the requirements of plant nutrition. Herein we provide summations of how beneficial microbes enhance plant acquisition of macronutrients and micronutrients. We also review recent studies on nutrition-dependent plant-microbe interactions, which highlight the plant’s initiative in establishing or deterring the plant-microbe association. By dissecting complex signaling interactions between microbes within the root microbiome, a greater understanding of microbe-enhanced plant nutrition under specific biotic and abiotic stresses will be possible.

Keywords

Beneficial microbes / Plant / Macronutrient / Micronutrient / Plant-microbe interactions / Volatile organic compounds / Microbiome

Cite this article

Download citation ▾
Sunil K. Singh, Xiaoxuan Wu, Chuyang Shao, Huiming Zhang. Microbial enhancement of plant nutrient acquisition. Stress Biology, 2022, 2(1): 3 https://doi.org/10.1007/s44154-021-00027-w

References

[1]
AlewellC, RingevalB, BallabioC, RobinsonDA, PanagosP, BorrelliP. Global phosphorus shortage will be aggravated by soil erosion. Nat Commun, 2020, 11(1):4546
CrossRef Google scholar
[2]
AloriET, GlickBR, BabalolaOO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol, 2017, 8(971):971
CrossRef Google scholar
[3]
ÁlvarezC, NavarroJA, Molina-HerediaFP, MariscalV. Endophytic colonization of rice (Oryza sativa L.) by the symbiotic strain Nostoc punctiforme PCC 73102. Mol Plant Microbe Interact, 2020, 33(8):1040-1045
CrossRef Google scholar
[4]
AndresenE, PeiterE, KupperH. Trace metal metabolism in plants. J Exp Bot, 2018, 69(5):909-954
CrossRef Google scholar
[5]
AndrewsM, AndrewsME. Specificity in legume-rhizobia symbioses. Int J Mol Sci, 2017, 18(4):705
CrossRef Google scholar
[6]
Aziz M, Nadipalli RK, Xie X, Sun Y, Surowiec K, Zhang JL, Paré PW (2016) Augmenting sulfur metabolism and herbivore defense in arabidopsis by bacterial volatile signaling. Front Plant Sci 7(−):458. https://doi.org/10.3389/fpls.2016.00458
[7]
BarberonM, DubeauxG, KolbC, IsonoE, ZelaznyE, VertG. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis. PNAS USA, 2014, 111(22):8293-8298
CrossRef Google scholar
[8]
BaslamM, GarmendiaI, GoicoecheaN. The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in greenhouse-lettuces cultivated at inappropriate growing seasons. Sci Hortic, 2013, 164: 145-154
CrossRef Google scholar
[9]
BradyNC, WeilRR, WeilRR. The nature and properties of soils, 2008 NJ Prentice Hall Upper Saddle River
[10]
BreuillinF, SchrammJ, HajirezaeiM, AhkamiA, FavreP, DruegeU, HauseB, BucherM, KretzschmarT, BossoliniE, KuhlemeierC, MartinoiaE, FrankenP, ScholzU, ReinhardtD. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J, 2010, 64(6):1002-1017
CrossRef Google scholar
[11]
Carrillo-CastañedaG, MuñosJJ, Peralta-VideaJ, GomezE, TiemannbK, Duarte-GardeaM, et al.. Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv Environ Res, 2002, 6(3):391-399
CrossRef Google scholar
[12]
Castulo-RubioDY, Alejandre-RamírezNA, Del CarmenO-MM, SantoyoG, Macías-RodríguezLI, Valencia-CanteroE. Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription in vitro. J Plant Growth Regul, 2015, 34(3):611-623
CrossRef Google scholar
[13]
ChauhanS, ThakurR, SharmaG. Nickel: its availability and reactions in soil. J Ind Pollut Control, 2008, 24(1):1-8
[14]
ChenJG, CrooksRM, SeefeldtLC, BrenKL, BullockRM, DarensbourgMY, HollandPL, HoffmanB, JanikMJ, JonesAK, KanatzidisMG, KingP, LancasterKM, LymarSV, PfrommP, SchneiderWF, SchrockRR. Beyond fossil fuel–driven nitrogen transformations. Science, 2018, 360(6391):eaar6611
CrossRef Google scholar
[15]
CoccinaA, CavagnaroTR, PellegrinoE, ErcoliL, MclaughlinMJ, Watts-WilliamsSJ. The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol, 2019, 19(1):1-14
CrossRef Google scholar
[16]
CoronadoC, ZuanazziJS, SallaudC, QuirionJ-C, EsnaultR, HussonH-P, KondorosiA, RatetP. Alfalfa root flavonoid production is nitrogen regulated. Plant Physiol, 1995, 108(2):533-542
CrossRef Google scholar
[17]
CurieC, BriatJ-F. Iron transport and signaling in plants. Annu Rev Plant Biol, 2003, 54(1):183-206
CrossRef Google scholar
[18]
Del CarmenO-MM, Macías-RodríguezLI, SantoyoG, Farías-RodríguezR, Valencia-CanteroE. Medicago truncatula increases its iron-uptake mechanisms in response to volatile organic compounds produced by Sinorhizobium meliloti. Folia Microbiol (Praha), 2013, 58(6):579-585
CrossRef Google scholar
[19]
Del CarmenO-MM, Velázquez-BecerraC, Macías-RodríguezLI, SantoyoG, Flores-CortezI, Alfaro-CuevasR, et al.. Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil, 2013, 362(1):51-66
CrossRef Google scholar
[20]
DixonRA, PostgateJR. Transfer of nitrogen-fixation genes by conjugation in Klebsiella pneumoniae. Nature, 1971, 234(5323):47-48
CrossRef Google scholar
[21]
EichhornE, Van Der PloegJR, LeisingerT. Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem, 1999, 274(38):26639-26646
CrossRef Google scholar
[22]
FabiańskaI, GerlachN, AlmarioJ, BucherM. Plant-mediated effects of soil phosphorus on the root-associated fungal microbiota in Arabidopsis thaliana. New Phytol, 2019, 221(4):2123-2137
CrossRef Google scholar
[23]
FaragMA, RyuC-M, SumnerLW, ParéPW. GC–MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 2006, 67(20):2262-2268
CrossRef Google scholar
[24]
FaragMA, ZhangH, RyuC-M. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol, 2013, 39(7):1007-1018
CrossRef Google scholar
[25]
FerrolN, TamayoE, VargasP. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot, 2016, 67(22):erw403
CrossRef Google scholar
[26]
FinkelOM, Salas-GonzálezI, CastrilloG, SpaepenS, LawTF, TeixeiraPJPL, JonesCD, DanglJL. The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol, 2019, 17(11):e3000534
CrossRef Google scholar
[27]
FreitasMA, MedeirosFH, CarvalhoSP, GuilhermeLR, TeixeiraWD, ZhangH, ParéPW. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Front. Plant Sci, 2015, 6
CrossRef Google scholar
[28]
GahanJ, SchmalenbergerA. Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl. Soil Ecol, 2015, 89: 113-121
CrossRef Google scholar
[29]
GhoshS, BalB, DasA. Enhancing manganese recovery from low-grade ores by using mixed culture of indigenously isolated bacterial strains. Geomicrobiol J, 2018, 35(3):242-246
CrossRef Google scholar
[30]
GiovannettiM, TolosanoM, VolpeV, KoprivaS, BonfanteP. Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol, 2014, 204(3):609-619
CrossRef Google scholar
[31]
GongZ, XiongL, ShiH, YangS, Herrera-EstrellaLR, XuG, ChaoDY, LiJ, WangPY, QinF, LiJ, DingY, ShiY, WangY, YangY, GuoY, ZhuJK. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci, 2020, 63(5):635-674
CrossRef Google scholar
[32]
GovindarajuluM, PfefferPE, JinH, AbubakerJ, DoudsDD, AllenJW, BückingH, LammersPJ, Shachar-HillY. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature, 2005, 435(7043):819-823
CrossRef Google scholar
[33]
GuerinotML, MeidlEJ, PlessnerO. Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol, 1990, 172(6):3298-3303
CrossRef Google scholar
[34]
Guerrero-GalánC, GarciaK, HoudinetG, ZimmermannS-D. Hc TOK1 participates in the maintenance of K+ homeostasis in the ectomycorrhizal fungus Hebeloma cylindrosporum, which is essential for the symbiotic K+ nutrition of Pinus pinaster. Plant Signal Behav, 2018, 13(6):e1480845
CrossRef Google scholar
[35]
HarperJE, NicholasJC. Nitrogen metabolism of soybeans: I. effect of tungstate on nitrate utilization, nodulation, and growth. Plant Physiol, 1978, 62(4):662-664
CrossRef Google scholar
[36]
HarrisonMJ, DewbreGR, LiuJ. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 2002, 14(10):2413-2429
CrossRef Google scholar
[37]
HermansC, VuylstekeM, CoppensF, CristescuSM, HarrenFJ, InzéD, et al.. Systems analysis of the responses to long-term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol, 2010, 187(1):132-144
CrossRef Google scholar
[38]
Hernández-CalderónE, Aviles-GarciaME, Castulo-RubioDY, Macías-RodríguezL, RamírezVM, SantoyoG, López-BucioJ, Valencia-CanteroE. Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol Biol, 2018, 96(3):291-304
CrossRef Google scholar
[39]
HirumaK, GerlachN, SacristánS, NakanoRT, HacquardS, KracherB, NeumannU, RamírezD, BucherM, O’ConnellRJ, Schulze-LefertP. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell, 2016, 165(2):464-474
CrossRef Google scholar
[40]
JarstferA, Farmer-KoppenolP, SylviaDM. Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza, 1998, 7(5):237-242
CrossRef Google scholar
[41]
JiangF, ZhangL, ZhouJ, GeorgeTS, FengG. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol, 2021, 230(1):304-315
CrossRef Google scholar
[42]
JingX, CuiQ, LiX, YinJ, RavichandranV, PanD, FuJ, TuQ, WangH, BianX, ZhangY. Engineering Pseudomonas protegens Pf-5 to improve its antifungal activity and nitrogen fixation. Microb Biotechnol, 2020, 13(1):118-133
CrossRef Google scholar
[43]
KabirAH, DebnathT, DasU, PritySA, HaqueA, RahmanMM, et al.. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiol. Biochem, 2020, 150: 254-262
CrossRef Google scholar
[44]
KaiserBN, GridleyKL, Ngaire BradyJ, PhillipsT, TyermanSD. The role of molybdenum in agricultural plant production. Ann Bot, 2005, 96(5):745-754
CrossRef Google scholar
[45]
KamranS, ShahidI, BaigDN, RizwanM, MalikKA, MehnazS. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front. Microbiol, 2017, 8: 2593
CrossRef Google scholar
[46]
KanchiswamyCN, MalnoyM, MaffeiME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci, 2015, 6: 151 Artn 151
CrossRef Google scholar
[47]
KerteszMA. Riding the sulfur cycle–metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol. Rev, 2000, 24(2):135-175
CrossRef Google scholar
[48]
KerteszMA, FellowsE, SchmalenbergerA. Rhizobacteria and plant sulfur supply. Adv Appl Microbiol, 2007, 62: 235-268
CrossRef Google scholar
[49]
KerteszMA, MirleauP. The role of soil microbes in plant Sulphur nutrition. J Exp Bot, 2004, 55(404):1939-1945
CrossRef Google scholar
[50]
KhaitovB. Effects of Rhizobium inoculation and magnesium application on growth and nodulation of soybean (Glycine max L.). J Plant Nutr, 2018, 41(16):2057-2068
CrossRef Google scholar
[51]
KingJ, QuinnJ. The utilization of organosulphonates by soil and freshwater bacteria. Lett Appl Microbiol, 1997, 24(6):474-478
CrossRef Google scholar
[52]
KissSA, Stefanovits-BányaiE, Takács-HájosM. Magnesium-content of rhizobium nodules in different plants: the importance of magnesium in nitrogen-fixation of nodules. J Am Coll Nutr, 2004, 23(6):751S-753S
CrossRef Google scholar
[53]
KloepperJW, LeongJ, TeintzeM, SchrothMN. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature, 1980, 286(5776):885-886
CrossRef Google scholar
[54]
KongW-L, WangY-H, WuX-Q. Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Front Plant Sci, 2021, 12: 704000
CrossRef Google scholar
[55]
KothariS, MarschnerH, RömheldV. Effect of a vesicular–arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytol, 1991, 117(4):649-655
CrossRef Google scholar
[56]
KrithikaS, BalachandarD. Expression of zinc transporter genes in rice as influenced by zinc-solubilizing Enterobacter cloacae strain ZSB14. Front. Plant Sci, 2016, 7: 446
CrossRef Google scholar
[57]
LeeY-J, GeorgeE. Contribution of mycorrhizal hyphae to the uptake of metal cations by cucumber plants at two levels of phosphorus supply. Plant Soil, 2005, 278(1):361-370
CrossRef Google scholar
[58]
LehnertN, DongHT, HarlandJB, HuntAP, WhiteCJ. Reversing nitrogen fixation. Nat Rev Chem, 2018, 2(10):278-289
CrossRef Google scholar
[59]
LiX, ChristieP. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere, 2001, 42(2):201-207
CrossRef Google scholar
[60]
Li X, Yin Y, Fan S, Xu X, Amombo E, Xie Y, Fu J (2021) Aspergillus aculeatus enhances potassium uptake and photosynthetic characteristics in perennial ryegrass by increasing potassium availability. J Appl Microbiol. https://doi.org/10.1111/jam.15186
[61]
LiX-L, MarschnerH, GeorgeE. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil, 1991, 136(1):49-57
CrossRef Google scholar
[62]
LimBL, YeungP, ChengC, HillJE. Distribution and diversity of phytate-mineralizing bacteria. ISME J, 2007, 1(4):321-330
CrossRef Google scholar
[63]
LiuX-M, ZhangH. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front. Plant Sci, 2015, 6
CrossRef Google scholar
[64]
LugtenbergB, KamilovaF. Plant-growth-promoting rhizobacteria. Annu Rev. Microbiol, 2009, 63: 541-556
CrossRef Google scholar
[65]
MarastoniL, PiiY, MaverM, ValentinuzziF, CescoS, MimmoT. Role of Azospirillum brasilense in triggering different Fe chelate reductase enzymes in cucumber plants subjected to both nutrient deficiency and toxicity. Plant Physiol. Biochem, 2019, 136: 118-126
CrossRef Google scholar
[66]
Martínez-MedinaA, Van WeesSC, PieterseCM. Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ, 2017, 40(11):2691-2705
CrossRef Google scholar
[67]
Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In Potassium solubilizing microorganisms for sustainable agriculture. Springer, pp 137–147. https://doi.org/10.1007/978-81-322-2776-2_10
[68]
MatthesMS, RobilJM, McsteenP. From element to development: the power of the essential micronutrient boron to shape morphological processes in plants. J Exp Bot, 2020, 71(5):1681-1693
CrossRef Google scholar
[69]
MeenaV, MauryaB, BahadurI. Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot, 2014, 43(2):235-237
CrossRef Google scholar
[70]
MeldauDG, MeldauS, HoangLH, UnderbergS, WünscheH, BaldwinIT. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell, 2013, 25(7):2731-2747
CrossRef Google scholar
[71]
MitchellDB, VogelK, WeimannBJ, PasamontesL, Van LoonAP. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi aspergillus terreus and Myceliophthora thermophila. Microbiology, 1997, 143(1):245-252
CrossRef Google scholar
[72]
MiwaK, KamiyaT, FujiwaraT. Homeostasis of the structurally important micronutrients. B and Si Curr Opin Plant Biol, 2009, 12(3):307-311
CrossRef Google scholar
[73]
MohantyS, GhoshS, NayakS, DasA. Isolation, identification and screening of manganese solubilizing fungi from low-grade manganese ore deposits. Geomicrobiol J, 2017, 34(4):309-316
CrossRef Google scholar
[74]
Montejano-RamírezV, García-PinedaE, Valencia-CanteroE. Bacterial compound N, N-dimethylhexadecylamine modulates expression of iron deficiency and defense response genes in Medicago truncatula independently of the jasmonic acid pathway. Plants, 2020, 9(5):624
CrossRef Google scholar
[75]
MorcilloRJ, SinghSK, HeD, AnG, VílchezJI, TangK, YuanF, SunY, ShaoC, ZhangS, YangY, LiuX, DangY, WangW, GaoJ, HuangW, LeiM, SongCP, ZhuJK, MachoAP, ParéPW, ZhangH. Rhizobacterium-derived diacetyl modulates plant immunity in a phosphate-dependent manner. EMBO J, 2020, 39(2
CrossRef Google scholar
[76]
MorcilloRJL, ManzaneraM. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites, 2021, 11 6):337
CrossRef Google scholar
[77]
MoreauC, GautratP, FrugierF. Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. Plant Physiol, 2021, 185(3):1216-1228
CrossRef Google scholar
[78]
MusF, CrookMB, GarciaK, Garcia CostasA, GeddesBA, KouriED, ParamasivanP, RyuMH, OldroydGED, PoolePS, UdvardiMK, VoigtCA, AnéJM, PetersJW. Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol, 2016, 82(13):3698-3710
CrossRef Google scholar
[79]
NagyR, DrissnerD, AmrheinN, JakobsenI, BucherM. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol, 2009, 181(4):950-959
CrossRef Google scholar
[80]
NagyR, KarandashovV, ChagueV, KalinkevichK, TamasloukhtMB, XuG, et al.. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J, 2005, 42(2):236-250
CrossRef Google scholar
[81]
NannipieriP, GiagnoniL, LandiL, RenellaG. BunemannEK, ObersonA, FrossardE. Role of phosphatase enzymes in soil. In ‘phosphorus in action’, 2011 Berlin, Heidelberg Springer 215-243
[82]
NguyenTD, CavagnaroTR, Watts-WilliamsSJ. The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep, 2019, 9(1):1-13
CrossRef Google scholar
[83]
NogueiraMA, CardosoEJBN. Mycorrhizal effectiveness and manganese toxicity in soybean as affected by soil type and endophyte. Sci Agric, 2003, 60: 329-335
CrossRef Google scholar
[84]
PaszkowskiU, KrokenS, RouxC, BriggsSP. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. PNAS USA, 2002, 99(20):13324-13329
CrossRef Google scholar
[85]
PengL, ShanX, YangY, WangY, DruzhininaIS, PanX, JinW, HeX, WangX, ZhangX, MartinFM, YuanZ. Facultative symbiosis with a saprotrophic soil fungus promotes potassium uptake in American sweetgum trees. Plant Cell Environ, 2021, 44(8):2793-2809
CrossRef Google scholar
[86]
PernerH, SchwarzD, BrunsC, MäderP, GeorgeE. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 2007, 17(5):469-474
CrossRef Google scholar
[87]
PrasadD, VermaN, BakshiM, NarayanOP, SinghAK, DuaM, JohriAK. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol, 2019, 9: 3231
CrossRef Google scholar
[88]
PritySA, SajibSA, DasU, RahmanMM, HaiderSA, KabirAH. Arbuscular mycorrhizal fungi mitigate Fe deficiency symptoms in sorghum through phytosiderophore-mediated Fe mobilization and restoration of redox status. Protoplasma, 2020, 257(5):1373-1385
CrossRef Google scholar
[89]
QuirogaG, EriceG, ArocaR, Ruiz-LozanoJM. Elucidating the possible involvement of maize aquaporins in the plant boron transport and homeostasis mediated by Rhizophagus irregularis under drought stress conditions. Int J Mol Sci, 2020, 21(5):1748
CrossRef Google scholar
[90]
RajkumarM, AeN, PrasadMNV, FreitasH. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol, 2010, 28(3):142-149
CrossRef Google scholar
[91]
RauschC, DaramP, BrunnerS, JansaJ, LaloiM, LeggewieG, AmrheinN, BucherM. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature, 2001, 414(6862):462-465
CrossRef Google scholar
[92]
RelićB, PerretX, Estrada-GarcíaMT, KopcinskaJ, GolinowskiW, KrishnanH, et al.. Nod factors of Rhizobium are a key to the legume door. Mol Microbiol, 1994, 13(1):171-179
CrossRef Google scholar
[93]
RiazN, GuerinotML. All together now: regulation of the iron deficiency response. J Exp Bot, 2021, 72(6):2045-2055
CrossRef Google scholar
[94]
RichardsonAE, SimpsonRJ. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol, 2011, 156(3):989-996
CrossRef Google scholar
[95]
Rodrı́GuezH, FragaR. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv, 1999, 17(4–5):319-339
CrossRef Google scholar
[96]
RoyS, LiuW, NandetyRS, CrookA, MysoreKS, PislariuCI, FrugoliJ, DicksteinR, UdvardiMK. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell, 2020, 32(1):15-41
CrossRef Google scholar
[97]
SaboorA, AliMA, DanishS, AhmedN, FahadS, DattaR, AnsariMJ, NasifO, RahmanMH, GlickBR. Effect of arbuscular mycorrhizal fungi on the physiological functioning of maize under zinc-deficient soils. Sci Rep, 2021, 11(1):1-11
CrossRef Google scholar
[98]
SaiaS, RappaV, RuisiP, AbenavoliMR, SunseriF, GiambalvoD, FrendaAS, MartinelliF. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front. Plant Sci, 2015, 6: 815
CrossRef Google scholar
[99]
SanketA, GhoshS, SahooR, NayakS, DasA. Molecular identification of acidophilic manganese (Mn)-solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiol J, 2017, 34(1):71-80
CrossRef Google scholar
[100]
SantosK, MoureV, HauerV, SantosAS, DonattiL, GalvãoC, et al.. Wheat colonization by an Azospirillum brasilense ammonium-excreting strain reveals upregulation of nitrogenase and superior plant growth promotion. Plant Soil, 2017, 415(1):245-255
CrossRef Google scholar
[101]
SharmaSB, SayyedRZ, TrivediMH, GobiTA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2013, 2(1):1-14
CrossRef Google scholar
[102]
ShiZ, ZhangJ, LuS, LiY, WangF. Arbuscular mycorrhizal fungi improve the performance of sweet sorghum grown in a Mo-contaminated soil. J Fungi, 2020, 6(2):44
CrossRef Google scholar
[103]
ShiZ, ZhangJ, WangF, LiK, YuanW, LiuJ. Arbuscular mycorrhizal inoculation increases molybdenum accumulation but decreases molybdenum toxicity in maize plants grown in polluted soil. RSC Adv, 2018, 8(65):37069-37076
CrossRef Google scholar
[104]
ShorrocksVM. The occurrence and correction of boron deficiency. Plant Soil, 1997, 193(1):121-148
CrossRef Google scholar
[105]
SmilV. Phosphorus in the environment: natural flows and human interferences. Annu Rev Energ Environ, 2000, 25(1):53-88
CrossRef Google scholar
[106]
SmithMJ, ShooleryJ, SchwynB, HoldenI, NeilandsJ. Rhizobactin, a structurally novel siderophore from Rhizobium meliloti. J Am Chem Soc, 1985, 107(6):1739-1743
CrossRef Google scholar
[107]
StringlisIA, YuK, FeussnerK, De JongeR, Van BentumS, Van VerkMC, et al.. MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. PNAS USA, 2018, 115(22):E5213-E5E22
CrossRef Google scholar
[108]
SvistoonoffS, HocherV, GherbiH. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation. Curr Opin Plant Biol, 2014, 20: 11-18
CrossRef Google scholar
[109]
TakahashiH, KoprivaS, GiordanoM, SaitoK, HellR. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol, 2011, 62: 157-184
CrossRef Google scholar
[110]
VaidSK, KumarB, SharmaA, ShuklaA, SrivastavaP. Effect of Zn solubilizing bacteria on growth promotion and Zn nutrition of rice. J Soil Sci Plant Nutr, 2014, 14(4):889-910
CrossRef Google scholar
[111]
Van VelzenR, HolmerR, BuF, RuttenL, Van ZeijlA, LiuW, et al.. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses. PNAS USA, 2018, 115(20):E4700-E47E9
CrossRef Google scholar
[112]
VermeijP, WietekC, KahnertA, WuèestT, KerteszMA. Genetic organization of Sulphur-controlled aryl desulphonation in Pseudomonas putida S-313. Mol Microbiol, 1999, 32(5):913-926
CrossRef Google scholar
[113]
VílchezJI, YangY, HeD, ZiH, PengL, LvS, KaushalR, WangW, HuangW, LiuR, LangZ, MikiD, TangK, ParéPW, SongCP, ZhuJK, ZhangH. DNA demethylases are required for myo-inositol-mediated mutualism between plants and beneficial rhizobacteria. Nat Plants, 2020, 6(8):983-995
CrossRef Google scholar
[114]
WangS, ChenA, XieK, YangX, LuoZ, ChenJ, ZengD, RenY, YangC, WangL, FengH, López-ArredondoDL, Herrera-EstrellaLR, XuG. Functional analysis of the OsNPF4. 5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. PNAS USA, 2020, 117(28):16649-16659
CrossRef Google scholar
[115]
Watts-WilliamsSJ, CavagnaroTR. Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci, 2018, 274: 163-170
CrossRef Google scholar
[116]
Watts-WilliamsSJ, PattiAF, CavagnaroTR. Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil, 2013, 371(1):299-312
CrossRef Google scholar
[117]
WeisskopfL, SchulzS, GarbevaP. Microbial volatile organic compounds in intra-kingdom and inter-kingdom interactions. Nat Rev Microbiol, 2021, 19(6):391-404
CrossRef Google scholar
[118]
WhitelawM, HardenT, HelyarK. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem, 1999, 31(5):655-665
CrossRef Google scholar
[119]
XuG-H, ChagueV, Melamed-BessudoC, KapulnikY, JainA, RaghothamaKG, LevyAA, SilberA. Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot, 2007, 58(10):2491-2501
CrossRef Google scholar
[120]
YuP, HeX, BaerM, BeirinckxS, TianT, MoyaYA, et al.. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat Plants, 2021, 7(4):481-499
CrossRef Google scholar
[121]
ZamioudisC, KortelandJ, Van PeltJA, Van HamersveldM, DombrowskiN, BaiY, et al.. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB 72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J, 2015, 84(2):309-322
CrossRef Google scholar
[122]
ZhangF, DuP, SongC-X, WuQ-S. Alleviation of mycorrhiza to magnesium deficiency in trifoliate orange: changes in physiological activity. Emir J Food Agric, 2015, 27: 763-769
CrossRef Google scholar
[123]
ZhangH, SunY, XieX, KimMS, DowdSE, ParéPW. A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J, 2009, 58(4):568-577
CrossRef Google scholar
[124]
ZhangH, XieX, KimMS, KornyeyevDA, HoladayS, ParéPW. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J, 2008, 56(2):264-273
CrossRef Google scholar
[125]
ZhaoF, LehmannJ, SolomonD, FoxM, McgrathS. Sulphur speciation and turnover in soils: evidence from Sulphur K-edge XANES spectroscopy and isotope dilution studies. Soil Biol Biochem, 2006, 38(5):1000-1007
CrossRef Google scholar
[126]
ZhouC, GuoJ, ZhuL, XiaoX, XieY, ZhuJ, et al.. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem, 2016, 105: 162-173
CrossRef Google scholar
Funding
Chinese Academy of Sciences

Accesses

Citations

Detail

Sections
Recommended

/