Roles of plant hormones in thermomorphogenesis

Hai-Ping Lu, Jing-Jing Wang, Mei-Jing Wang, Jian-Xiang Liu

Stress Biology ›› 2021, Vol. 1 ›› Issue (1) : 20. DOI: 10.1007/s44154-021-00022-1
Review

Roles of plant hormones in thermomorphogenesis

Author information +
History +

Abstract

Global warming has great impacts on plant growth and development, as well as ecological distribution. Plants constantly perceive environmental temperatures and adjust their growth and development programs accordingly to cope with the environment under non-lethal warm temperature conditions. Plant hormones are endogenous bioactive chemicals that play central roles in plant growth, developmental, and responses to biotic and abiotic stresses. In this review, we summarize the important roles of plant hormones, including auxin, brassinosteroids (BRs), Gibberellins (GAs), ethylene (ET), and jasmonates (JAs), in regulating plant growth under warm temperature conditions. This provides a picture on how plants sense and transduce the warm temperature signals to regulate downstream gene expression for controlling plant growth under warm temperature conditions via hormone biosynthesis and signaling pathways.

Keywords

Arabidopsis / Auxin / BR / Ethylene / GA / JA / Temperature / Thermomorphogenesis

Cite this article

Download citation ▾
Hai-Ping Lu, Jing-Jing Wang, Mei-Jing Wang, Jian-Xiang Liu. Roles of plant hormones in thermomorphogenesis. Stress Biology, 2021, 1(1): 20 https://doi.org/10.1007/s44154-021-00022-1

References

[1]
BellstaedtJ, TrennerJ, LippmannR, PoeschlY, ZhangXX, FrimlJ, QuintM, DelkerC. A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol, 2019, 180(2):757-766
CrossRef Google scholar
[2]
Bernardo-GarciaS, de LucasM, MartinezC, Espinosa-RuizA, DaviereJM, PratS. BR-dependent phosphorylation modulates PIF4 transcriptional activity and shapes diurnal hypocotyl growth. Genes Dev, 2014, 28(15):1681-1694
CrossRef Google scholar
[3]
BinderBM. Ethylene signaling in plants. J Biol Chem, 2020, 295(22):7710-7725
CrossRef Google scholar
[4]
BurgerM, ChoryJ. The many models of strigolactone signaling. Trends Plant Sci, 2020, 25(4):395-405
CrossRef Google scholar
[5]
BurgieES, VierstraRD. Phytochromes: An atomic perspective on photoactivation and signaling. Plant Cell, 2014, 26(12):4568-4583
CrossRef Google scholar
[6]
CaarlsL, ElberseJ, AwwanahM, LudwigNR, de VriesM, ZeilmakerT, Van WeesSCM, SchuurinkRC, Van den AckervekenG. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. Proc Natl Acad Sci U S A, 2017, 114(24):6388-6393
CrossRef Google scholar
[7]
CasalJJ, BalasubramanianS. Thermomorphogenesis. Annu Rev Plant Biol, 2019, 70(1):321-346
CrossRef Google scholar
[8]
Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SC, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. eLife 2. https://doi.org/10.7554/eLife.00675
[9]
ChenK, LiGJ, BressanRA, SongCP, ZhuJK, ZhaoY. Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol, 2020, 62(1):25-54
CrossRef Google scholar
[10]
ChungBYW, BalcerowiczM, Di AntonioM, JaegerKE, GengF, FranaszekK, MarriottP, BrierleyI, FirthAE, WiggePA. An RNA thermoswitch regulates daytime growth in Arabidopsis. Nat Plant, 2020, 6(5):522-532
CrossRef Google scholar
[11]
CortlevenA, LeuendorfJE, FrankM, PezzettaD, BoltS, SchmullingT. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ, 2019, 42(3):998-1018
CrossRef Google scholar
[12]
DaviereJM, AchardP. A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant, 2016, 9(1):10-20
CrossRef Google scholar
[13]
DelkerC, SonntagL, JamesGV, JanitzaP, IbanezC, ZiermannH, PetersonT, DenkK, MullS, ZieglerJ, DavisSJ, SchneebergerK, QuintM. The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis. Cell Rep, 2014, 9(6):1983-1989
CrossRef Google scholar
[14]
DepuydtS, HardtkeCS. Hormone signalling crosstalk in plant growth regulation. Curr Biol, 2011, 21(9):R365-R373
CrossRef Google scholar
[15]
DillA, ThomasSG, HuJH, SteberCM, SunTP. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell, 2004, 16(6):1392-1405
CrossRef Google scholar
[16]
DingL, WangS, SongZT, JiangY, HanJJ, LuSJ, LiL, LiuJX. Two B-box domain proteins, BBX18 and BBX23, interact with ELF3 and regulate thermomorphogenesis in Arabidopsis. Cell Rep, 2018, 25(7):1718-1728
CrossRef Google scholar
[17]
DuboisM, Van den BroeckL, InzeD. The pivotal role of ethylene in plant growth. Trends Plant Sci, 2018, 23(4):311-323
CrossRef Google scholar
[18]
FengSH, MartinezC, GusmaroliG, WangY, ZhouJL, WangF, ChenLY, YuL, Iglesias-PedrazJM, KircherS, SchaferE, FuXD, FanLM, DengXW. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 2008, 451(7177):475-479
CrossRef Google scholar
[19]
Fernandez-MilmandaGL, CroccoCD, ReicheltM, MazzaCA, KoellnerTG, ZhangT, CargnelMD, LichyMZ, FiorucciAS, FankhauserC, KooAJ, AustinAT, GershenzonJ, BallareCL. A light-dependent molecular link between competition cues and defence responses in plants. Nat Plant, 2020, 6(3):223-230
CrossRef Google scholar
[20]
FerreroLV, ViolaIL, ArielFD, GonzalezDH. Class I TCP transcription factors target the gibberellin biosynthesis gene GA20ox1 and the growth-promoting genes HBI1 and PRE6 during thermomorphogenic growth in Arabidopsis. Plant Cell Physiol, 2019, 60(8):1633-1645
CrossRef Google scholar
[21]
FiorucciAS, GalvaoVC, InceYC, BoccacciniA, GoyalA, Allenbach PetrolatiL, TrevisanM, FankhauserC. PHYTOCHROME INTERACTING FACTOR 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytol, 2020, 226(1):50-58
CrossRef Google scholar
[22]
FranklinKA, LeeSH, PatelD, KumarSV, SpartzAK, GuC, YeS, YuP, BreenG, CohenJD, WiggePA, GrayWM. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A, 2011, 108(50):20231-20235
CrossRef Google scholar
[23]
FuXD, RichardsDE, Ait-AliT, HynesLW, OughamH, PengJR, HarberdNP. Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell, 2002, 14(12):3191-3200
CrossRef Google scholar
[24]
GangappaSN, KumarSV. DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep, 2017, 18(2):344-351
CrossRef Google scholar
[25]
GrayWM, OstinA, SandbergG, RomanoCP, EstelleM. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci U S A, 1998, 95(12):7197-7202
CrossRef Google scholar
[26]
GriffithsJ, MuraseK, RieuI, ZentellaR, ZhangZL, PowersSJ, GongF, PhillipsAL, HeddenP, SunTP, ThomasSG. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell, 2006, 18(12):3399-3414
CrossRef Google scholar
[27]
HahmJ, KimK, QiuY, ChenM. Increasing ambient temperature progressively disassembles Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat Commun, 2020, 11(1):1660
CrossRef Google scholar
[28]
HanX, YuH, YuanR, YangY, AnF, QinG. Arabidopsis transcription factor TCP5 controls plant thermomorphogenesis by positively regulating PIF4 activity. iScience, 2019, 15: 611-622
CrossRef Google scholar
[29]
HanzawaT, ShibasakiK, NumataT, KawamuraY, GaudeT, RahmanA. Cellular auxin homeostasis under high temperature is regulated through a SORTING NEXIN1-dependent endosomal trafficking pathway. Plant Cell, 2013, 25(9):3424-3433
CrossRef Google scholar
[30]
HaoDD, JinL, WenX, YuFF, XieQ, GuoHW. The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proc Natl Acad Sci U S A, 2021, 118(6):e2024592118
CrossRef Google scholar
[31]
HeJX, GendronJM, YangYL, LiJM, WangZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci U S A, 2002, 99(15):10185-10190
CrossRef Google scholar
[32]
HeitzT, SmirnovaE, MarquisV, PoirierL. Metabolic control within the jasmonate biochemical pathway. Plant Cell Physiol, 2019, 60(12):2621-2628
CrossRef Google scholar
[33]
HoweGA, MajorIT, KooAJ. Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol, 2018, 69(1):387-415
CrossRef Google scholar
[34]
HuangH, LiuB, LiuLY, SongSS. Jasmonate action in plant growth and development. J Exp Bot, 2017, 68(6):1349-1359
CrossRef Google scholar
[35]
IbanezC, DelkerC, MartinezC, BuerstenbinderK, JanitzaP, LippmannR, LudwigW, SunH, JamesGV, KleckerM, GrossjohannA, SchneebergerK, PratS, QuintM. Brassinosteroids dominate hormonal regulation of plant thermomorphogenesis via BZR1. Curr Biol, 2018, 28(2):303-310
CrossRef Google scholar
[36]
JinH, PangL, FangS, ChuJ, LiR, ZhuZ. High ambient temperature antagonizes ethylene-induced exaggerated apical hook formation in etiolated Arabidopsis seedlings. Plant Cell Environ, 2018, 41(12):2858-2868
CrossRef Google scholar
[37]
JungJH, BarbosaAD, HutinS, KumitaJR, GaoM, DerwortD, SilvaCS, LaiX, PierreE, GengF, KimSB, BaekS, ZubietaC, JaegerKE, WiggePA. A prion-like domain in ELF3 functions as a thermosensor inArabidopsis. Nature, 2020, 585(7824):256-260
CrossRef Google scholar
[38]
JungJH, DomijanM, KloseC, BiswasS, EzerD, GaoM, KhattakAK, BoxMS, CharoensawanV, CortijoS, KumarM, GrantA, LockeJCW, SchaeferE, JaegerKE, WiggePA. Phytochromes function as thermosensors in Arabidopsis. Science, 2016, 354(6314):886-889
CrossRef Google scholar
[39]
KimJY, ParkYJ, LeeJH, KimZH, ParkCM. EIN3-mediated ethylene signaling attenuates auxin response during hypocotyl thermomorphogenesis. Plant Cell Physiol, 2021, 62(4):708-720
CrossRef Google scholar
[40]
KimS, HwangG, KimS, Thom NguyenT, KimH, JeongJ, KimJ, KimJ, ChoiG, OhE. The epidermis coordinates thermoresponsive growth through the phyB-PIF4-auxin pathway. Nat Commun, 2020, 11(1):1053
CrossRef Google scholar
[41]
KimTW, GuanS, SunY, DengZ, TangW, ShangJX, SunY, BurlingameAL, WangZY. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol, 2009, 11(10):1254-U1233
CrossRef Google scholar
[42]
KloseC, NagyF, SchaeferE. Thermal reversion of plant phytochromes. Mol Plant, 2020, 13(3):386-397
CrossRef Google scholar
[43]
KumarSV, LucyshynD, JaegerKE, AlosE, AlveyE, HarberdNP, WiggePA. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484(7393):242-245
CrossRef Google scholar
[44]
KunihiroA, YamashinoT, NakamichiN, NiwaY, NakanishiH, MizunoT. PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana. Plant Cell Physiol, 2011, 52(8):1315-1329
CrossRef Google scholar
[45]
Lam DaiV, ZhuT, VerstraetenI, van de CotteB, GevaertK, De SmetI, Int Wheat GenomeS. Temperature-induced changes in the wheat phosphoproteome reveal temperature-regulated interconversion of phosphoforms. J Exp Bot, 2018, 69(19):4609-4624
CrossRef Google scholar
[46]
LegrisM, KloseC, BurgieES, RojasCC, NemeM, HiltbrunnerA, WiggePA, SchaferE, VierstraRD, CasalJJ. Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 2016, 354(6314):897-900
CrossRef Google scholar
[47]
LegrisM, NietoC, SellaroR, PratS, CasalJJ. Perception and signalling of light and temperature cues in plants. Plant J, 2017, 90(4):683-697
CrossRef Google scholar
[48]
LeskC, RowhaniP, RamankuttyN. Influence of extreme weather disasters on global crop production. Nature, 2016, 529(7584):84-87
CrossRef Google scholar
[49]
LiJM, NamKH. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science, 2002, 295(5558):1299-1301
CrossRef Google scholar
[50]
LiKL, YuRB, FanLM, WeiN, ChenHD, DengXW. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun, 2016, 7(1):11868
CrossRef Google scholar
[51]
LiQ, XuF, ChenZ, TengZ, SunK, LiX, YuJ, ZhangG, LiangY, HuangX, DuL, QianY, WangY, ChuC, TangJ. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat Plant, 2021, 7(8):1108-1118
CrossRef Google scholar
[52]
LimS, ParkJ, LeeN, JeongJ, TohS, WatanabeA, KimJ, KangH, KimDH, KawakamiN, ChoiG. ABA-INSENSITIVE3, ABA-INSENSITIVE5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell, 2013, 25(12):4863-4878
CrossRef Google scholar
[53]
MaQ, WangX, SunJ, MaoT. Coordinated regulation of hypocotyl cell elongation by light and ethylene through a microtubule destabilizing protein. Plant Physiol, 2018, 176(1):678-690
CrossRef Google scholar
[54]
MartinezC, Espinosa-RuizA, de LucasM, Bernardo-GarciaS, Franco-ZorrillaJM, PratS. PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J, 2018, 37(23):e99552
CrossRef Google scholar
[55]
McGinnisKM, ThomasSG, SouleJD, StraderLC, ZaleJM, SunTP, SteberCM. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell, 2003, 15(5):1120-1130
CrossRef Google scholar
[56]
NakajimaM, ShimadaA, TakashiY, KimYC, ParkSH, Ueguchi-TanakaM, SuzukiH, KatohE, IuchiS, KobayashiM, MaedaT, MatsuokaM, YamaguchiI. Identification and characterization of Arabidopsis gibberellin receptors. Plant J, 2006, 46(5):880-889
CrossRef Google scholar
[57]
NicotraAB, AtkinOK, BonserSP, DavidsonAM, FinneganEJ, MathesiusU, PootP, PuruggananMD, RichardsCL, ValladaresF, van KleunenM. Plant phenotypic plasticity in a changing climate. Trends Plant Sci, 2010, 15(12):684-692
CrossRef Google scholar
[58]
NietoC, Lopez-SalmeronV, DaviereJM, PratS. ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Curr Biol, 2015, 25(2):187-193
CrossRef Google scholar
[59]
NozueK, CovingtonMF, DuekPD, LorrainS, FankhauserC, HarmerSL, MaloofJN. Rhythmic growth explained by coincidence between internal and external cues. Nature, 2007, 448(7151):358-361
CrossRef Google scholar
[60]
NusinowDA, HelferA, HamiltonEE, KingJJ, ImaizumiT, SchultzTF, FarreEM, KaySA. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature, 2011, 475(7356):398-402
CrossRef Google scholar
[61]
Oh E, Zhu JY, Bai MY, Arenhart RA, Sun Y, Wang ZY (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. eLife:3. https://doi.org/10.7554/eLife.03031
[62]
OhE, ZhuJY, WangZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol, 2012, 14(8):802-809
CrossRef Google scholar
[63]
ParkYJ, KimJY, LeeJH, LeeBD, PaekNC, ParkCM. GIGANTEA shapes the photoperiodic rhythms of thermomorphogenic growth in Arabidopsis. Mol Plant, 2020, 13(3):459-470
CrossRef Google scholar
[64]
ParkYJ, LeeHJ, HaJH, KimJY, ParkCM. COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol, 2017, 215(1):269-280
CrossRef Google scholar
[65]
PengSB, HuangJL, SheehyJE, LazaRC, VisperasRM, ZhongXH, CentenoGS, KhushGS, CassmanKG. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A, 2004, 101(27):9971-9975
CrossRef Google scholar
[66]
PeresA, SoaresJS, TavaresRG, RighettoG, ZulloMAT, MandavaNB, MenossiM. Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int J Mol Sci, 2019, 20(2):33
CrossRef Google scholar
[67]
QuintM, DelkerC, FranklinKA, WiggePA, HallidayKJ, van ZantenM. Molecular and genetic control of plant thermomorphogenesis. Nat Plant, 2016, 2(1):15190
CrossRef Google scholar
[68]
RaschkeA, IbanezC, UllrichKK, AnwerMU, BeckerS, GloecknerA, TrennerJ, DenkK, SaalB, SunX, NiM, DavisSJ, DelkerC, QuintM. Natural variants of ELF3 affect thermomorphogenesis by transcriptionally modulating PIF4-dependent auxin response genes. BMC Plant Biol, 2015, 15(1):197
CrossRef Google scholar
[69]
RathoreS, BindoffNL, PhillipsHE, FengM. Recent hemispheric asymmetry in global ocean warming induced by climate change and internal variability. Nat Commun, 2020, 11(1):2008
CrossRef Google scholar
[70]
SalehinM, BagchiR, EstelleM. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell, 2015, 27(1):9-19
CrossRef Google scholar
[71]
SchlenkerW, RobertsMJ. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci U S A, 2009, 106(37):15594-15598
CrossRef Google scholar
[72]
ShuK, ZhouW, ChenF, LuoX, YangW. Abscisic acid and gibberellins antagonistically mediate plant development and abiotic stress responses. Front Plant Sci, 2018, 9: 416
CrossRef Google scholar
[73]
SpartzAK, RenH, ParkMY, GrandtKN, LeeSH, MurphyAS, SussmanMR, OvervoordePJ, GrayWM. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in Arabidopsis. Plant Cell, 2014, 26(5):2129-2142
CrossRef Google scholar
[74]
StavangJA, Gallego-BartolomeJ, GomezMD, YoshidaS, AsamiT, OlsenJE, Garcia-MartinezJL, AlabadiD, BlazquezMA. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J, 2009, 60(4):589-601
CrossRef Google scholar
[75]
SunJ, MaQ, MaoT. Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAMPENED2-LIKE5 in etiolated hypocotyl elongation. Plant Physiol, 2015, 169(1):325-337
CrossRef Google scholar
[76]
SunJ, QiL, LiY, ChuJ, LiC. PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet, 2012, 8(3):e1002594
CrossRef Google scholar
[77]
SunJ, TianY, LianQ, LiuJX. Mutation of DELAYED GREENING1 impairs chloroplast RNA editing at elevated ambient temperature in Arabidopsis. J Genet Genom, 2020, 47(4):201-212
CrossRef Google scholar
[78]
SunTP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol, 2011, 21(9):R338-R345
CrossRef Google scholar
[79]
SunY, FanXY, CaoDM, TangW, HeK, ZhuJY, HeJX, BaiMY, ZhuS, OhE, PatilS, KimTW, JiH, WongWH, RheeSY, WangY. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell, 2010, 19(5):765-777
CrossRef Google scholar
[80]
TangW, YuanM, WangR, YangY, WangC, Oses-PrietoJA, KimTW, ZhouHW, DengZ, GampalaSS, GendronJM, JonassenEM, LilloC, DeLongA, BurlingameAL, SunY, WangZY. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nat Cell Biol, 2011, 13(2):124-131
CrossRef Google scholar
[81]
ThalerJS, HumphreyPT, WhitemanNK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci, 2012, 17(5):260-270
CrossRef Google scholar
[82]
ThinesB, HarmonFG. Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc Natl Acad Sci U S A, 2010, 107(7):3257-3262
CrossRef Google scholar
[83]
Ueguchi-TanakaM, AshikariM, NakajimaM, ItohH, KatohE, KobayashiM, ChowTY, HsingYIC, KitanoH, YamaguchiI, MatsuokaM. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437(7059):693-698
CrossRef Google scholar
[84]
VermaV, RavindranP, KumarPP. Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016, 16(1):86
CrossRef Google scholar
[85]
VuLD, GevaertK, De SmetI. Feeling the heat: searching for plant thermosensors. Trends Plant Sci, 2019, 24(3):210-219
CrossRef Google scholar
[86]
VuLD, XuX, GevaertK, SmetI. Developmental plasticity at high temperature. Plant Physiol, 2019, 181(2):399-411
CrossRef Google scholar
[87]
WasternackC, FeussnerI. The Oxylipin pathways: biochemistry and function. Annu Rev Plant Biol, 2018, 69(1):363-386
CrossRef Google scholar
[88]
WilligeBC, GhoshS, NillC, ZourelidouM, DohmannEMN, MaierA, SchwechheimerC. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19(4):1209-1220
CrossRef Google scholar
[89]
WonC, ShenX, MashiguchiK, ZhengZ, DaiX, ChengY, KasaharaH, KamiyaY, ChoryJ, ZhaoY. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A, 2011, 108(45):18518-18523
CrossRef Google scholar
[90]
XuC, KohlerTA, LentonTM, SvenningJC, SchefferM. Future of the human climate niche. Proc Natl Acad Sci U S A, 2020, 117(21):11350-11355
CrossRef Google scholar
[91]
YinYH, WangZY, Mora-GarciaS, LiJM, YoshidaS, AsamiT, ChoryJ. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 2002, 109(2):181-191
CrossRef Google scholar
[92]
ZhangB, HolmlundM, LorrainS, NorbergM, BakoL, FankhauserC, NilssonO. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife, 2017, 6: e26759
CrossRef Google scholar
[93]
ZhangLL, LiW, TianYY, DavisSJ, LiuJX. The E3 ligase XBAT35 mediates thermoresponsive hypocotyl growth by targeting ELF3 for degradation in Arabidopsis. J Integr Plant Biol, 2021, 63(6):1097-1103
CrossRef Google scholar
[94]
ZhangLL, LuoA, DavisSJ, LiuJX. Timing to grow: roles of clock in thermomorphogenesis. Trends Plant Sci, 2021, S1360-1385(21):00207-00207
CrossRef Google scholar
[95]
ZhangLL, ShaoYJ, DingL, WangMJ, DavisSJ, LiuJX. XBAT31 regulates thermoresponsive hypocotyl growth through mediating degradation of the thermosensor ELF3 in Arabidopsis. Sci Adv, 2021, 7(19):eabf4427
CrossRef Google scholar
[96]
ZhaoC, LiuB, PiaoSL, WangXH, LobellDB, HuangY, HuangMT, YaoYT, BassuS, CiaisP, DurandJL, ElliottJ, EwertF, JanssensIA, LiT, LinE, LiuQ, MartreP, MullerC, PengSS, PenuelasJ, RuaneAC, WallachD, WangT, WuDH, LiuZ, ZhuY, ZhuZC, AssengS. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A, 2017, 114(35):9326-9331
CrossRef Google scholar
[97]
ZhaoYD. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol, 2018, 69(1):417-435
CrossRef Google scholar
[98]
ZhouY, XunQ, ZhangD, LvM, OuY, LiJ. TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience, 2019, 15: 600-610
CrossRef Google scholar
[99]
ZhuT, HerrfurthC, XinM, SavchenkoT, FeussnerI, GoossensA, SmetID. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth. Nat Commun, 2021, 12(1):4804
CrossRef Google scholar
Funding
National Natural Science Foundation of China(32000374); Fundamental Research Funds for the Central Universities(2021XZZX023)

Accesses

Citations

Detail

Sections
Recommended

/