Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions

Yunqing Jian, Won-Bo Shim, Zhonghua Ma

Stress Biology ›› 2021, Vol. 1 ›› Issue (1) : 18. DOI: 10.1007/s44154-021-00019-w
Review

Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions

Author information +
History +

Abstract

The SWI/SNF chromatin remodeling complex utilizes the energy of ATP hydrolysis to facilitate chromatin access and plays essential roles in DNA-based events. Studies in animals, plants and fungi have uncovered sophisticated regulatory mechanisms of this complex that govern development and various stress responses. In this review, we summarize the composition of SWI/SNF complex in eukaryotes and discuss multiple functions of the SWI/SNF complex in regulating gene transcription, mRNA splicing, and DNA damage response. Our review further highlights the importance of SWI/SNF complex in regulating plant immunity responses and fungal pathogenesis. Finally, the potentials in exploiting chromatin remodeling for management of crop disease are presented.

Keywords

Chromatin remodeling / SWI/SNF complex / Transcription / Splicing / DNA damage repair / Plant-pathogen interaction

Cite this article

Download citation ▾
Yunqing Jian, Won-Bo Shim, Zhonghua Ma. Multiple functions of SWI/SNF chromatin remodeling complex in plant-pathogen interactions. Stress Biology, 2021, 1(1): 18 https://doi.org/10.1007/s44154-021-00019-w

References

[1]
AdkinsMW, WilliamsSK, LingerJ, TylerJK. Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators. Mol Cell Biol, 2007, 27(18):6372-6382
CrossRef Google scholar
[2]
AguirreCB. Characterisation of Eucalyptus grandis SWEET and SWI/SNF proteins during symbiosis with Pisolithus microcarpus, 2017 Australia Western Sydney University
[3]
AllemandE, BatschéE, MuchardtC. Splicing, transcription, and chromatin: a ménage à trois. Curr Opin Genet Dev, 2008, 18(2):145-151
CrossRef Google scholar
[4]
AllemandE, MyersMP, Garcia-BernardoJ, Harel-BellanA, KrainerAR, MuchardtC. A broad set of chromatin factors influences splicing. PLoS Genet, 2016, 12(9
CrossRef Google scholar
[5]
Arasimowicz-JelonekM, Floryszak-WieczorekJ. Nitric oxide in the offensive strategy of fungal and oomycete plant pathogens. Front Plant Sci, 2016, 7: 252
CrossRef Google scholar
[6]
Archacki R, Buszewicz D, Sarnowski TJ, Sarnowska E, Rolicka AT, Tohge T, Fernie AR, Jikumaru Y, Kotlinski M, Iwanicka-Nowicka R, Kalisiak K, Patryn J, Halibart-Puzio J, Kamiya Y, Davis SJ, Koblowska MK, Jerzmanowski A (2013) BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in Arabidopsis. PLoS One 8(3):e58588. https://doi.org/10.1371/journal.pone.0058588
[7]
AtaianY, KrebsJE. Five repair pathways in one context: chromatin modification during DNA repair. Biochem Cell Biol, 2006, 84 4):490-504
CrossRef Google scholar
[8]
BaoY, ShenX. Chromatin remodeling in DNA double-strand break repair. Curr Opin Genet Dev, 2007, 17(2):126-131
CrossRef Google scholar
[9]
BatschéE, YanivM, MuchardtC. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol, 2006, 13(1):22-29
CrossRef Google scholar
[10]
Bayona-Feliu A, Barroso S, Muñoz S (2021) The SWI/SNF chromatin remodeling complex helps resolve R-loop-mediated transcription-replication conflicts 53(7): 1050–1063 doi: https://doi.org/10.1038/s41588-021-00867-2
[11]
BeckerPB, HörzW. ATP-dependent nucleosome remodeling. Annu Rev Biochem, 2002, 71(1):247-273
CrossRef Google scholar
[12]
Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su Y, Wagner D (2007) Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19(2):403–416. https://doi.org/10.1105/tpc.106.048272
[13]
BhadouriyaSL, MehrotraS, BasantaniMK, LoakeGJ, MehrotraR. Role of chromatin architecture in plant stress responses: an update. Front Plant Sci, 2020, 11: 603380
CrossRef Google scholar
[14]
BiddickRK, LawGL, YoungET. Adr1 and Cat8 mediate coactivator recruitment and chromatin remodeling at glucose-regulated genes. PLoS One, 2008, 3(1
CrossRef Google scholar
[15]
BlackDL. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell, 2000, 103 3):367-370
CrossRef Google scholar
[16]
BlencoweBJ. Alternative splicing: new insights from global analyses. Cell, 2006, 126(1):37-47
CrossRef Google scholar
[17]
BohmKA, HodgesAJ, CzajaW, SelvamK, SmerdonMJ, MaoP, WyrickJJ. Distinct roles for RSC and SWI/SNF chromatin remodelers in genomic excision repair. Genome Res, 2021, 31(6):1047-1059
CrossRef Google scholar
[18]
CaoY, ZhengF, ZhangW, MengX, LiuW. Trichoderma reesei XYR1 recruits SWI/SNF to facilitate cellulase gene expression. Mol Microbiol, 2019, 112(4):1145-1162
CrossRef Google scholar
[19]
CapovillaG, PajoroA, ImminkRG, SchmidM. Role of alternative pre-mRNA splicing in temperature signaling. Curr Opin Plant Biol, 2015, 27: 97-103
CrossRef Google scholar
[20]
CavellánE, AspP, PercipalleP, FarrantsAK. The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem, 2006, 281(24):16264-16271
CrossRef Google scholar
[21]
CentoreRC, SandovalGJ, SoaresLMM, KadochC, ChanHM. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet, 2020, 36(12):936-950
CrossRef Google scholar
[22]
ChangYN, ZhuC, JiangJ, ZhangH, ZhuJK, DuanCG. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol, 2020, 62(5):563-580
CrossRef Google scholar
[23]
ChenW, ZhuQ, LiuY, ZhangQ. Chromatin remodeling and plant immunity. Adv Protein Chem Struct Biol, 2017, 106: 243-260
CrossRef Google scholar
[24]
ClapierCR, CairnsBR. The biology of chromatin remodeling complexes. Annu Rev Biochem, 2009, 78(1):273-304
CrossRef Google scholar
[25]
ClapierCR, IwasaJ, CairnsBR, PetersonCL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol, 2017, 18(7):407-422
CrossRef Google scholar
[26]
CosmaMP, TanakaT, NasmythK. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell, 2016, 166(3):781
CrossRef Google scholar
[27]
DangW, BartholomewB. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol, 2007, 27(23):8306-8317
CrossRef Google scholar
[28]
DingB, WangGL. Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci, 2015, 6: 675
CrossRef Google scholar
[29]
DuttaA, SardiuM, GogolM, GilmoreJ, ZhangD, FlorensL, AbmayrSM, WashburnMP, WorkmanJL. Composition and function of mutant SWI/SNF complexes. Cell Rep, 2017, 18(9):2124-2134
CrossRef Google scholar
[30]
ErkinaTY, TschetterPA, ErkineAM. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes. Mol Cell Biol, 2008, 28(4):1207-1217
CrossRef Google scholar
[31]
EuskirchenG, AuerbachRK, SnyderM. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem, 2012, 287(37):30897-30905
CrossRef Google scholar
[32]
FairBJ, PleissJA. The power of fission: yeast as a tool for understanding complex splicing. Curr Genet, 2017, 63(3):375-380
CrossRef Google scholar
[33]
FengJ, XuX, FanX, YiQ, TangL. BAF57/SMARCE1 interacting with splicing factor srsf1 regulates mechanical stress-induced alternative splicing of cyclin D1. Genes (Basel), 2021, 12(2):306
CrossRef Google scholar
[34]
GhoshS, PughBF. Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol, 2011, 31(1):190-202
CrossRef Google scholar
[35]
GongF, FahyD, SmerdonMJ. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat Struct Mol Biol, 2006, 13(1):902-907
CrossRef Google scholar
[36]
Gresh L, Bourachot B, Reimann A, Guigas B, Fiette L, Garbay Set al (2005) The SWI/SNF chromatin-remodeling complex subunit SNF5 is essential for hepatocyte differentiation. EMBO J 24(18): 3313–3324. doi: https://doi.org/10.1038/sj.emboj.7600802
[37]
HainerSJ, PruneskiJA, MitchellRD, MonteverdeRM, MartensJA. Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev, 2011, 25(1):29-40
CrossRef Google scholar
[38]
Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24(12):4892–4906. https://doi.org/10.1105/tpc.112.105114
[39]
HarrodA, LaneKA, DownsJA. The role of the SWI/SNF chromatin remodelling complex in the response to DNA double strand breaks. DNA Repair (Amst), 2020, 93: 102919
CrossRef Google scholar
[40]
HassanAH, NeelyKE, WorkmanJL. Histone acetyltransferase complexes stabilize SWI/SNF binding to promoter nucleosomes. Cell, 2001, 104(6):817-827
CrossRef Google scholar
[41]
HauerMH, GasserSM. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev, 2017, 31(22):2204-2221
CrossRef Google scholar
[42]
HauerMH, SeeberA, SinghV, ThierryR, SackR, AmitaiA, KryzhanovskaM, EglingerJ, HolcmanD, Owen-HughesT, GasserSM. Histone degradation in response to DNA damage enhances chromatin dynamics and recombination rates. Nat Struct Mol Biol, 2017, 24(2):99-107
CrossRef Google scholar
[43]
HaysE, NettletonE, CarterC, MoralesM, VoL, PassoM, Vélez-CruzR. The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease. Cell Cycle, 2020, 19(22):3096-3114
CrossRef Google scholar
[44]
HohmannAF, VakocCR. A rationale to target the SWI/SNF complex for cancer therapy. Trends Genet, 2014, 30(8):356-363
CrossRef Google scholar
[45]
HuangCY, RangelDS, QinX, BuiC, LiR, JiaZ, CuiX, JinH. The chromatin-remodeling protein BAF60/SWP73A regulates the plant immune receptor NLRs. Cell Host Microbe, 2021, 29(3):425-434 e424
CrossRef Google scholar
[46]
IbaH, MizutaniT, ItoT. SWI/SNF chromatin remodelling complex and retroviral gene silencing. Rev Med Virol, 2003, 13(2):99-110
CrossRef Google scholar
[47]
ItoT, WatanabeH, YamamichiN, KondoS, TandoT, HaraguchiT, MizutaniT, SakuraiK, FujitaS, IzumiT, IsobeT, IbaH. Brm transactivates the telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns of its transcripts in concert with p54(nrb). Biochem J, 2008, 411(1):201-209
CrossRef Google scholar
[48]
JansenA, VerstrepenKJ. Nucleosome positioning in Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 2011, 75(2):301-320
CrossRef Google scholar
[49]
Jarończyk K, Sosnowska K, Zaborowski A, Pupel P, Bucholc M, Małecka E, Siwirykow N, Stachula P, Iwanicka-Nowicka R, Koblowska M, Jerzmanowski A, Archacki R (2021) Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for proper functioning of SWI/SNF complexes in Arabidopsis. Plant Commun 2(4):100174. https://doi.org/10.1016/j.xplc.2021.100174.
[50]
JéguT, LatrasseD, DelarueM, HirtH, DomenichiniS, ArielF, CrespiM, BergouniouxC, RaynaudC, BenhamedM. The BAF60 subunit of the SWI/SNF chromatin-remodeling complex directly controls the formation of a gene loop at FLOWERING LOCUS C in Arabidopsis. Plant Cell, 2014, 26(2):538-551
CrossRef Google scholar
[51]
JianY, LiuZ, WangH, ChenY, YinY, ZhaoY. Interplay of two transcription factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative stress response. Nat Commun, 2021, 12(1):2576
CrossRef Google scholar
[52]
JiangJ, MaoN, HuH, TangJ, HanD, LiuS, WuQ, LiuY, PengC, LaiJ, YangC. A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells. Proc Natl Acad Sci, 2019, 116(30):15288-15296
CrossRef Google scholar
[53]
JohnsonKC, XiaS, FengX, LiX. The chromatin remodeler SPLAYED negatively regulates SNC1-mediated immunity. Plant Cell Physiol, 2015, 56(8):1616-1623
CrossRef Google scholar
[54]
KadotaY, ShirasuK, ZipfelC. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol, 2015, 56(8):1472-1480
CrossRef Google scholar
[55]
KastenMM, ClapierCR, CairnsBR. SnapShot: chromatin remodeling: SWI/SNF. Cell, 2011, 144(2):310 e311
CrossRef Google scholar
[56]
KornblihttAR. Chromatin, transcript elongation and alternative splicing. Nat Struct Mol Biol, 2006, 13(1):5-7
CrossRef Google scholar
[57]
KwonCS, WagnerD. Unwinding chromatin for development and growth: a few genes at a time. Trends Genet, 2007, 23(8):403-412
CrossRef Google scholar
[58]
KwonSJ, ParkJH, ParkEJ, LeeSA, LeeHS, KangSW, KwonJ. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair. Oncogene, 2015, 34(3):303-313
CrossRef Google scholar
[59]
ŁaźniewskaJ, MacioszekVK, KononowiczAK. Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol Mol Plant P, 2012, 78: 24-30
CrossRef Google scholar
[60]
LeeHS, ParkJH, KimSJ, KwonSJ, KwonJ. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J, 2010, 29(8):1434-1445
CrossRef Google scholar
[61]
LiC, GuL, GaoL, ChenC, WeiCQ, QiuQ, ChienCW, WangS, JiangL, AiLF, ChenCY, YangS, NguyenV, QiY, SnyderMP, BurlingameAL, KohalmiSE, HuangS, CaoX, WangZY, WuK, ChenX, CuiY. Concerted genomic targeting of H3K27 demethylase REF6 and chromatin-remodeling ATPase BRM in Arabidopsis. Nat Genet, 2016, 48(6):687-693
CrossRef Google scholar
[62]
LiX, JiangY, JiZ, LiuY, ZhangQ. BRHIS1 suppresses rice innate immunity through binding to monoubiquitinated H2A and H2B variants. EMBO Rep, 2015, 16(9):1192-1202
CrossRef Google scholar
[63]
LinJ, ZhaoY, FerraroAR, YangE, LewisZA, LinX. Transcription factor Znf2 coordinates with the chromatin remodeling SWI/SNF complex to regulate Cryptococcal cellular differentiation. Commun Biol, 2019, 2(1):412
CrossRef Google scholar
[64]
LindahlT. Suppression of spontaneous mutagenesis in human cells by DNA base excision-repair. Mutat Res, 2000, 462(2–3):129-135
CrossRef Google scholar
[65]
Liu C, Xin Y, Xu L, Cai Z, Xue Y, Liu Y, Xie D, Liu Y, Qi Y (2018a) Arabidopsis ARGONAUTE 1 binds chromatin to promote gene transcription in response to hormones and stresses. Dev Cell 44(3):348–361.e347. https://doi.org/10.1016/j.devcel.2017.12.002
[66]
LiuL, WangQ, SunY, ZhangY, ZhangX, LiuJ, YuG, PanH. Sssfh1, a gene encoding a putative component of the RSC chromatin remodeling complex, is involved in hyphal growth, reactive oxygen species accumulation, and pathogenicity in Sclerotinia sclerotiorum. Front Microbiol, 2018, 9: 1828
CrossRef Google scholar
[67]
LiuZ, JianY, ChenY, KistlerHC, HeP, MaZ. A phosphorylated transcription factor regulates sterol biosynthesis in fusarium graminearum. Nat Commun, 2019, 10(1):1228
CrossRef Google scholar
[68]
LiuZ, MyersLC. Candida albicans SWI/SNF and mediator complexes differentially regulate Mrr1-induced MDR1 expression and fluconazole resistance. Antimicrob Agents Chemother, 2017, 61(11):e01344-e01317
CrossRef Google scholar
[69]
LuY, SuC, MaoX, RanigaPP, LiuH, ChenJ. Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific SWI/SNF binding and activation in Candida albicans. Mol Biol Cell, 2008, 19(10):4260-4272
CrossRef Google scholar
[70]
LuY, TanF, ZhaoY, ZhouSL, ChenXS, HuYF, ZhouDX. A chromodomain-helicase-DNA-binding factor functions in chromatin modification and gene regulation. Plant Physiol, 2020, 183(3):1035-1046
CrossRef Google scholar
[71]
LucoRF, AlloM, SchorIE, KornblihttAR, MisteliT. Epigenetics in alternative pre-mRNA splicing. Cell, 2011, 144(1):16-26
CrossRef Google scholar
[72]
LugerK, DechassaML, TremethickDJ. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. Nat Rev Mol Cell Biol, 2012, 13(7):436-447
CrossRef Google scholar
[73]
LukasJ, LukasC, BartekJ. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol, 2011, 13(10):1161-1169
CrossRef Google scholar
[74]
MakarovEM, OwenN, BottrillA, MakarovaOV. Functional mammalian spliceosomal complex E contains SMN complex proteins in addition to U1 and U2 snRNPs. Nucleic Acids Res, 2012, 40(6):2639-2652
CrossRef Google scholar
[75]
MaoX, CaoF, NieX, LiuH, ChenJ. The SWI/SNF chromatin remodeling complex is essential for hyphal development in Candida albicans. FEBS Lett, 2006, 580(11):2615-2622
CrossRef Google scholar
[76]
Masliah-PlanchonJ, BiècheI, GuinebretièreJM, BourdeautF, DelattreO. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol, 2015, 10(1):145-171
CrossRef Google scholar
[77]
MauryS, SowMD, Le GacAL, GenitoniJ, Lafon-PlacetteC, MozgovaI. Phytohormone and chromatin crosstalk: the missing link for developmental plasticity?. Front Plant Sci, 2019, 10: 395
CrossRef Google scholar
[78]
MenezesRA, PimentelC, SilvaAR, AmaralC, MerhejJ, DevauxF, et al.. Mediator, SWI/SNF and SAGA complexes regulate Yap8-dependent transcriptional activation of ACR2 in response to arsenate. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(4):472-481
CrossRef Google scholar
[79]
Miné-HattabJ, RothsteinR. Increased chromosome mobility facilitates homology search during recombination. Nat Cell Biol, 2012, 14(5):510-517
CrossRef Google scholar
[80]
MittalP, RobertsCWM. The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol, 2020, 17(7):435-448
CrossRef Google scholar
[81]
NeigebornL, CarlsonM. Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics, 1984, 108(4):845-858
CrossRef Google scholar
[82]
OgiwaraH, UiA, OtsukaA, SatohH, YokomiI, NakajimaS, YasuiA, YokotaJ, KohnoT. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene, 2011, 30(18):2135-2146
CrossRef Google scholar
[83]
OhJ, SohnDH, KoM, ChungH, JeonSH, SeongRH. BAF60a interacts with p53 to recruit the SWI/SNF complex. J Biol Chem, 2008, 283(18):11924-11934
CrossRef Google scholar
[84]
OjoloSP, CaoS, PriyadarshaniS, LiW, YanM, AslamM, et al.. Regulation of plant growth and development: a review from a chromatin remodeling perspective. Front Plant Sci, 2018, 9: 1232
CrossRef Google scholar
[85]
ParkJH, ParkEJ, LeeHS, KimSJ, HurSK, ImbalzanoAN, KwonJ. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J, 2006, 25(17):3986-3997
CrossRef Google scholar
[86]
PatrickKL, RyanCJ, XuJ, LippJJ, NissenKE, RoguevA, ShalesM, KroganNJ, GuthrieC. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. PLoS Genet, 2015, 11(3
CrossRef Google scholar
[87]
Peirats-LlobetM, HanSK, Gonzalez-GuzmanM, JeongCW, RodriguezL, Belda-PalazonB, WagnerD, RodriguezPL. A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant, 2016, 9 1):136-147
CrossRef Google scholar
[88]
PengG, YimEK, DaiH, JacksonAP, BurgtI, PanMR, et al.. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol, 2009, 11(7):865-872
CrossRef Google scholar
[89]
PetersonCL, WorkmanJL. Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev, 2000, 10(2):187-192
CrossRef Google scholar
[90]
PflugerJ, WagnerD. Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol, 2007, 10(6):645-652
CrossRef Google scholar
[91]
PhelanML, SifS, NarlikarGJ, KingstonRE. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell, 1999, 3(2):247-253
CrossRef Google scholar
[92]
PieterseCM, Leon-ReyesA, Van der EntS, Van WeesSC. Networking by small-molecule hormones in plant immunity. Nat Chem Biol, 2009, 5(5):308-316
CrossRef Google scholar
[93]
PleissJA, WhitworthGB, BergkesselM, GuthrieC. Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell, 2007, 27(6):928-937
CrossRef Google scholar
[94]
Pray-GrantMG, DanielJA, SchieltzD, YatesJR 3rd, GrantPA. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature, 2005, 433(7024):434-438
CrossRef Google scholar
[95]
ProchassonP, NeelyKE, HassanAH, LiB, WorkmanJL. Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains. Mol Cell, 2003, 12(4):983-990
CrossRef Google scholar
[96]
ProftM, StruhlK. Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress. Mol Cell, 2002, 9(6):1307-1317
CrossRef Google scholar
[97]
Ramirez-PradoJS, BenhamedM. New partners for old friends: plant SWI/SNF complexes. Mol Plant, 2021, 14(6):870-872
CrossRef Google scholar
[98]
Ramirez-PradoJS, PiquerezSJM, BendahmaneA, HirtH, RaynaudC, BenhamedM. Modify the histone to win the battle: chromatin dynamics in plant-pathogen interactions. Front Plant Sci, 2018, 9: 355
CrossRef Google scholar
[99]
ReyesJC. The many faces of plant SWI/SNF complex. Mol Plant, 2014, 7(3):454-458
CrossRef Google scholar
[100]
Ribeiro-SilvaC, AydinÖZ, Mesquita-RibeiroR, SlyskovaJ, HelfrichtA, MarteijnJA, HoeijmakersJHJ, LansH, VermeulenW. DNA damage sensitivity of SWI/SNF-deficient cells depends on TFIIH subunit p62/GTF2H1. Nat Commun, 2018, 9(1):4067
CrossRef Google scholar
[101]
Ribeiro-SilvaC, VermeulenW, LansH. SWI/SNF: complex complexes in genome stability and cancer. DNA Repair (Amst), 2019, 77: 87-95
CrossRef Google scholar
[102]
RobertsCW, OrkinSH. The SWI/SNF complex-chromatin and cancer. Nat Rev Cancer, 2004, 4(2):133-142
CrossRef Google scholar
[103]
RoukosV, VossTC, SchmidtCK, LeeS, WangsaD, MisteliT. Spatial dynamics of chromosome translocations in living cells. Science, 2013, 341(6146):660-664
CrossRef Google scholar
[104]
Saez A, Rodrigues A, Santiago J, Rubio S, Rodriguez PL (2008) HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant Cell 20(11):2972–2988. https://doi.org/10.1105/tpc.107.056705
[105]
SakamotoT, Tsujimoto-InuiY, SottaN. Proteasomal degradation of BRAHMA promotes boron tolerance in Arabidopsis. Nat Commun, 2018, 9(1):5285
CrossRef Google scholar
[106]
SanzAB, GarcíaR, Rodríguez-PeñaJM, Díez-MuñizS, NombelaC, PetersonCL, ArroyoJ. Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Mol Biol Cell, 2012, 23(14):2805-2817
CrossRef Google scholar
[107]
SarnowskaE, GratkowskaDM, SacharowskiSP, CwiekP, TohgeT, FernieAR, SiedleckiJA, KonczC, SarnowskiTJ. The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends Plant Sci, 2016, 21(7):594-608
CrossRef Google scholar
[108]
SchwabishMA, StruhlK. The SWI/SNF complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol, 2007, 27(20):6987-6995
CrossRef Google scholar
[109]
SchwartzS, MeshorerE, AstG. Chromatin organization marks exon-intron structure. Nat Struct Mol Biol, 2009, 16(9):990-995
CrossRef Google scholar
[110]
ShanleEK, AndrewsFH, MerieshH, McDanielSL, DronamrajuR, DiFioreJV, et al.. Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response. Genes Dev, 2015, 29(17):1795-1800
CrossRef Google scholar
[111]
ShivaswamyS, IyerVR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol, 2008, 28(7):2221-2234
CrossRef Google scholar
[112]
Shu J, Chen C, Li C, Thapa RK, Song J, Xie X, Nguyen V, Bian S, Liu J, Kohalmi SE, Cui Y (2021) Genome-wide occupancy of Arabidopsis SWI/SNF chromatin remodeler SPLAYED provides insights into its interplay with its close homolog BRAHMA and polycomb proteins. Plant J 106(1):200–213. https://doi.org/10.1111/tpj.15159
[113]
SinhaM, WatanabeS, JohnsonA, MoazedD, PetersonCL. Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell, 2009, 138(6):1109-1121
CrossRef Google scholar
[114]
SmeenkG, van AttikumH. The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem, 2013, 82(1):55-80
CrossRef Google scholar
[115]
SmithCL, Horowitz-SchererR, FlanaganJF, WoodcockCL, PetersonCL. Structural analysis of the yeast SWI/SNF chromatin remodeling complex. Nat Struct Biol, 2003, 10(2):141-145
CrossRef Google scholar
[116]
SongZT, LiuJX, HanJJ. Chromatin remodeling factors regulate environmental stress responses in plants. J Integr Plant Biol, 2021, 63(3):438-450
CrossRef Google scholar
[117]
SpivakG. Nucleotide excision repair in humans. DNA Repair (Amst), 2015, 36: 13-18
CrossRef Google scholar
[118]
SudarsanamP, IyerVR, BrownPO, WinstonF. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci, 2000, 97(7):3364-3369
CrossRef Google scholar
[119]
Tebbji F, Chen Y, Sellam A, Whiteway M (2017) The genomic landscape of the fungus-specific SWI/SNF complex subunit, Snf6, in Candida albicans. mSphere 2(6):e00497-00517. 2(6). https://doi.org/10.1128/mSphere.00497-17
[120]
ThoulyC, Le MassonM, LaiX, CarlesCC. Unwinding BRAHMA functions in plants. Genes, 2020, 11(1):90
CrossRef Google scholar
[121]
TyagiA, RymeJ, BrodinD, Ostlund FarrantsAK, VisaN. SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet, 2009, 5(5
CrossRef Google scholar
[122]
UiA, OgiwaraH, NakajimaS, KannoS, WatanabeR, HarataM, OkayamaH, HarrisCC, YokotaJ, YasuiA, KohnoT. Possible involvement of LKB1-AMPK signaling in non-homologous end joining. Oncogene, 2014, 33 13):1640-1648
CrossRef Google scholar
[123]
VenkataramananS, DouglassS, GalivancheAR, JohnsonTL. The chromatin remodeling complex SWI/SNF regulates splicing of meiotic transcripts in Saccharomyces cerevisiae. Nucleic Acids Res, 2017, 45(13):7708-7721
CrossRef Google scholar
[124]
VicenteJ, MendiondoGM, MovahediM, Peirats-LlobetM, JuanYT, ShenYY, DambireC, SmartK, RodriguezPL, CharngYY, GrayJE, HoldsworthMJ. The Cys-Arg/N-end rule pathway is a general sensor of abiotic stress in flowering plants. Curr Biol, 2017, 27(20):3183-3190
CrossRef Google scholar
[125]
VongsA, KakutaniT, MartienssenRA, RichardsEJ. Arabidopsis thaliana DNA methylation mutants. Science, 1993, 260(5116):1926-1928
CrossRef Google scholar
[126]
Wagner D, Meyerowitz EM (2002) SPLAYED, a novel SWI/SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr Biol 12(2):85–94. https://doi.org/10.1016/s0960-9822(01)00651-0
[127]
WaldholmJ, WangZ, BrodinD, TyagiA, YuS, TheopoldU, FarrantsAKÖ, VisaN. SWI/SNF regulates the alternative processing of a specific subset of pre-mRNAs in Drosophila melanogaster. BMC Mol Biol, 2011, 12(1):46
CrossRef Google scholar
[128]
WalleyJW, RoweHC, XiaoY, ChehabEW, KliebensteinDJ, WagnerD, DeheshK. The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog, 2008, 4(12
CrossRef Google scholar
[129]
WangB, KettenbachAN, GerberSA, LorosJJ, DunlapJC. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet, 2014, 10 9
CrossRef Google scholar
[130]
WangS, WuXM, LiuCH, ShangJY, GaoF, GuoHS. Verticillium dahliae chromatin remodeling facilitates the DNA damage repair in response to plant ROS stress. PLoS Pathog, 2020, 16 4
CrossRef Google scholar
[131]
WangTY, WangYX, YouCJ. Structural and functional characteristics of plant PHD domain-containing proteins. Yi Chuan, 2021, 43 4):323-339
CrossRef Google scholar
[132]
WiestNE, HoughtalingS, SanchezJC, TomkinsonAE, OsleyMA. The SWI/SNF ATP-dependent nucleosome remodeler promotes resection initiation at a DNA double-strand break in yeast. Nucleic Acids Res, 2017, 45(10):5887-5900
CrossRef Google scholar
[133]
WuMF, YamaguchiN, XiaoJ, BargmannB, EstelleM, SangY, et al.. Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife, 2015, 4: e09269
CrossRef Google scholar
[134]
YuX, MengX, LiuY, WangX, WangTJ, ZhangA, LiN, QiX, LiuB, XuZY. The chromatin remodeler ZmCHB101 impacts alternative splicing contexts in response to osmotic stress. Plant Cell Rep, 2019, 38(2):131-145
CrossRef Google scholar
[135]
YudkovskyN, LogieC, HahnS, PetersonCL. Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev, 1999, 13(18):2369-2374
CrossRef Google scholar
[136]
Zapater AG, Mackowiak S, Guo Y, Jordan-Pla A, Friedländer M, Visa N et al (2019) The SWI/SNF subunits BRG1 affects alternative splicing by changing RNA binding factor interactions with RNA. bioRxiv. https://doi.org/10.1101/858852
[137]
ZhangJ, LaiJ, WangF, YangS, HeZ, JiangJ. A SUMO ligase AtMMS21 regulates the stability of the chromatin remodeler BRAHMA in root development. Plant Physiol, 2017, 173(3):1574-1582
CrossRef Google scholar
[138]
ZhangY, GoritschnigS, DongX, LiX. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell, 2003, 15(11):2636-2646
CrossRef Google scholar
[139]
ZhangZ, WangX, XinJ, DingZ, LiuS, FangQ, YangN, XuRM, CaiG. Architecture of SWI/SNF chromatin remodeling complex. Protein cell, 2018, 9(12):1045-1049
CrossRef Google scholar
[140]
ZhaoQ, WangQE, RayA, WaniG, HanC, MilumK, WaniAA. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J Biol Chem, 2009, 284(44):30424-30432
CrossRef Google scholar
[141]
ZhuY, RowleyMJ, BöhmdorferG, WierzbickiAT. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA-mediated transcriptional silencing. Mol Cell, 2013, 49(2):298-309
CrossRef Google scholar
[142]
ZralyCB, DingwallAK. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit. Nucleic Acids Res, 2012, 40(13):5975-5987
CrossRef Google scholar
[143]
ZralyCB, MiddletonFA, DingwallAK. Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. J Biol Chem, 2006, 281(46):35305-35315
CrossRef Google scholar
Funding
Science and Technology Project of Zhejiang Province(2018C02G2011110); China Postdoctoral Science Foundation(2021M692849); National Natural Science Foundation of China(31930088); China Agriculture Research System of MOF and MARAC(CARS-3-1-29)

Accesses

Citations

Detail

Sections
Recommended

/