Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis

Isaiah Catalino M. Pabuayon, Jiafu Jiang, Hongjia Qian, Jung-Sung Chung, Huazhong Shi

Stress Biology ›› 2021, Vol. 1 ›› Issue (1) : 14. DOI: 10.1007/s44154-021-00014-1
Original Paper

Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis

Author information +
History +

Abstract

Soil salinity severely hampers agricultural productivity. Under salt stress, excess Na+ accumulation causes cellular damage and plant growth retardation, and membrane Na+ transporters play central roles in Na+ uptake and exclusion to mitigate these adverse effects. In this study, we performed sos1 suppressor mutant (named sup) screening to uncover potential genetic interactors of SOS1 and additional salt tolerance mechanisms. Map-based cloning and sequencing identified a group of mutants harboring dominant gain-of-function mutations in the vacuolar Na+/H+ antiporter gene AtNHX1. The gain-of-function variants of AtNHX1 showed enhanced transporter activities in yeast cells and increased salt tolerance in Arabidopsis wild type plants. Ion content measurements indicated that at the cellular level, these gain-of-function mutations resulted in increased cellular Na+ accumulation likely due to enhanced vacuolar Na+ sequestration. However, the gain-of-function suppressor mutants showed reduced shoot Na+ but increased root Na+ accumulation under salt stress, indicating a role of AtNHX1 in limiting Na+ translocation from root to shoot. We also identified another group of sos1 suppressors with loss-of-function mutations in the Na+ transporter gene AtHKT1. Loss-of-function mutations in AtHKT1 and gain-of-function mutations in AtNHX1 additively suppressed sos1 salt sensitivity, which indicates that the three transporters, SOS1, AtNHX1 and AtHKT1 function independently but coordinately in controlling Na+ homeostasis and salt tolerance in Arabidopsis. Our findings provide valuable information about the target amino acids in NHX1 for gene editing to improve salt tolerance in crops.

Keywords

sos1 suppressor / AtHKT1 / AtNHX1 / Gain-of-function / Salt tolerance

Cite this article

Download citation ▾
Isaiah Catalino M. Pabuayon, Jiafu Jiang, Hongjia Qian, Jung-Sung Chung, Huazhong Shi. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis. Stress Biology, 2021, 1(1): 14 https://doi.org/10.1007/s44154-021-00014-1

References

[1]
AliA, MaggioA, BressanRA, YunD-J. Role and functional differences of HKT1-type transporters in plants under salt stress. Int J Mol Sci, 2019, 20(5):1059
CrossRef Google scholar
[2]
AlonsoJM, StepanovaAN, LeisseTJ, KimCJ, ChenH, ShinnP, StevensonDK, ZimmermanJ, BarajasP, CheukR, GadrinabC, HellerC, JeskeA, KoesemaE, MeyersCC, ParkerH, PrednisL, AnsariY, ChoyN, DeenH, GeraltM, HazariN, HomE, KarnesM, MulhollandC, NdubakuR, SchmidtI, GuzmanP, Aguilar-HenoninL, SchmidM, WeigelD, CarterDE, MarchandT, RisseeuwE, BrogdenD, ZekoA, CrosbyWL, BerryCC, EckerJR. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301(5633):653-657
CrossRef Google scholar
[3]
ApseMP, AharonGS, SneddenWA, BlumwaldE. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285(5431):1256-1258
CrossRef Google scholar
[4]
ApseMP, SottosantoJB, BlumwaldE. Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J, 2003, 36(2):229-239
CrossRef Google scholar
[5]
Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8(1932). https://doi.org/10.3389/fpls.2017.01932
[6]
Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8(509). https://doi.org/10.3389/fphys.2017.00509
[7]
Baek D, Jiang J, Chung J-S, Wang B, Chen J, Xin Z, Shi H (2010) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant and Cell Physiology 52 (1):149-161. https://doi.org/10.1093/pcp/pcq182
[8]
BassilE, TajimaH, LiangY-C, M-aO, UshijimaK, NakanoR, EsumiT, CokuA, BelmonteM, BlumwaldE. The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell, 2011, 23(9):3482-3497
CrossRef Google scholar
[9]
BasuS, KumarA, BenazirI, KumarG. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiol Plant, 2021, 171(4):502-519 https://doi.org/10.1111/ppl.13112
CrossRef Google scholar
[10]
BaxterI, BrazeltonJN, YuD, HuangYS, LahnerB, YakubovaE, LiY, BergelsonJ, BorevitzJO, NordborgM, VitekO, SaltDE. A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1;1. PLoS Genet, 2010, 6(11):e1001193
CrossRef Google scholar
[11]
BerthomieuP, ConejeroG, NublatA, BrackenburyWJ, LambertC, SavioC, UozumiN, OikiS, YamadaK, CellierF, GostiF, SimonneauT, EssahPA, TesterM, VeryAA, SentenacH, CasseF. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J, 2003, 22(9):2004-2014
CrossRef Google scholar
[12]
BlumwaldE. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000, 12(4):431-434
CrossRef Google scholar
[13]
BlumwaldE, AharonGS, ApseMP. Sodium transport in plant cells. Biochim Biophys Acta, 2000, 1465(1–2):140-151
CrossRef Google scholar
[14]
BriniF, HaninM, MezghaniI, BerkowitzGA, MasmoudiK. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot, 2007, 58(2):301-308
CrossRef Google scholar
[15]
BusomsS, PaajanenP, MarburgerS, BrayS, HuangX-Y, PoschenriederC, YantL, SaltDE. Fluctuating selection on migrant adaptive sodium transporter alleles in coastal Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2018, 115(52):E12443-E12452
CrossRef Google scholar
[16]
Campbell MT, Bandillo N, Al Shiblawi FRA, Sharma S, Liu K, Du Q, Schmitz AJ, Zhang C, Véry A-A, Lorenz AJ, Walia H (2017) Allelic variants of OsHKT1;1 underlie the divergence between indica and japonica subspecies of rice (Oryza sativa) for root sodium content. PLoS Genet 13(6):e1006823. https://doi.org/10.1371/journal.pgen.1006823
[17]
ChenH, AnR, TangJ-H, CuiX-H, HaoF-S, ChenJ, WangX-C. Over-expression of a vacuolar Na+/H+ antiporter gene improves salt tolerance in an upland rice. Mol Breed, 2007, 19(3):215-225
CrossRef Google scholar
[18]
CloughSJ, BentAF. Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16(6):735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
CrossRef Google scholar
[19]
CounillonL, PouyssegurJ. The expanding family of eucaryotic Na+/H+ exchangers. J Biol Chem, 2000, 275(1):1-4
CrossRef Google scholar
[20]
Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30(4):497–507. https://doi.org/10.1111/j.1365-3040.2007.01637.x
[21]
de MendiburuF, de MendiburuMF. Package ‘agricolae’. R package version:1.2–8, 2019
[22]
EarleyKW, HaagJR, PontesO, OpperK, JuehneT, SongK, PikaardCS. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J, 2006, 45(4):616-629 https://doi.org/10.1111/j.1365-313X.2005.02617.x
CrossRef Google scholar
[23]
El MahiH, Pérez-HormaecheJ, De LucaA, VillaltaI, EsparteroJ, Gámez-ArjonaF, FernándezJL, BundóM, MendozaI, MieuletD, LalanneE, LeeS-Y, YunD-J, GuiderdoniE, AguilarM, LeidiEO, PardoJM, QuinteroFJ. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiol, 2019, 180(2):1046-1065
CrossRef Google scholar
[24]
FekiK, QuinteroFJ, KhoudiH, LeidiEO, MasmoudiK, PardoJM, BriniF. A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep, 2014, 33(2):277-288
CrossRef Google scholar
[25]
Fukada-TanakaS, InagakiY, YamaguchiT, SaitoN, IidaS. Colour-enhancing protein in blue petals. Nature, 2000, 407(6804):581
CrossRef Google scholar
[26]
GaxiolaRA, LiJ, UndurragaS, DangLM, AllenGJ, AlperSL, FinkGR. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A, 2001, 98(20):11444-11449
CrossRef Google scholar
[27]
GaxiolaRA, RaoR, ShermanA, GrisafiP, AlperSL, FinkGR. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A, 1999, 96(4):1480-1485
CrossRef Google scholar
[28]
GietzRD, WoodsRA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol, 2002, 350: 87-96
CrossRef Google scholar
[29]
GongZ, XiongL, ShiH, YangS, Herrera-EstrellaLR, XuG, ChaoD-Y, LiJ, WangP-Y, QinF. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci, 2020, 63(5):635-674
CrossRef Google scholar
[30]
HamamotoS, HorieT, HauserF, DeinleinU, SchroederJI, UozumiN. HKT transporters mediate salt stress resistance in plants: from structure and function to the field. Curr Opin Biotechnol, 2015, 32: 113-120
CrossRef Google scholar
[31]
HasegawaPM, BressanRA, ZhuJK, BohnertHJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000, 51(1):463-499
CrossRef Google scholar
[32]
HernándezA, JiangX, CuberoB, NietoPM, BressanRA, HasegawaPM, PardoJM. Mutants of the Arabidopsis thaliana cation/H+ antiporter AtNHX1 conferring increased salt tolerance in yeast: the endosome/prevacuolar compartment is a target for salt toxicity. J Biol Chem, 2009, 284(21):14276-14285
CrossRef Google scholar
[33]
HorieT, KaraharaI, KatsuharaM. Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice, 2012, 5(1):11
CrossRef Google scholar
[34]
JiaZP, McCulloughN, MartelR, HemmingsenS, YoungPG. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J, 1992, 11(4):1631-1640
CrossRef Google scholar
[35]
JiangJ, WangB, ShenY, WangH, FengQ, ShiH. The Arabidopsis RNA binding protein with K homology motifs, SHINY1, interacts with the C-terminal domain phosphatase-like 1 (CPL1) to repress stress-inducible gene expression. PLoS Genet, 2013, 9(7):e1003625
CrossRef Google scholar
[36]
Katiyar-AgarwalS, ZhuJ, KimK, AgarwalM, FuX, HuangA, ZhuJ-K. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 2006, 103(49):18816-18821
CrossRef Google scholar
[37]
KimY, SchumakerKS, ZhuJK. EMS mutagenesis of Arabidopsis. Methods Mol Biol, 2006, 323: 101-103
CrossRef Google scholar
[38]
LiJ, YangH, PeerWA, RichterG, BlakesleeJ, BandyopadhyayA, TitapiwantakunB, UndurragaS, KhodakovskayaM, RichardsEL, KrizekB, MurphyAS, GilroyS, GaxiolaR. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science, 2005, 310(5745):121-125
CrossRef Google scholar
[39]
MaserP, EckelmanB, VaidyanathanR, HorieT, FairbairnDJ, KuboM, YamagamiM, YamaguchiK, NishimuraM, UozumiN, RobertsonW, SussmanMR, SchroederJI. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett, 2002, 531(2):157-161
CrossRef Google scholar
[40]
MøllerIS, GillihamM, JhaD, MayoGM, RoySJ, CoatesJC, HaseloffJ, TesterM. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Plant Cell, 2009, 21(7):2163-2178
CrossRef Google scholar
[41]
MunnsR, GillihamM. Salinity tolerance of crops – what is the cost?. New Phytol, 2015, 208(3):668-673 https://doi.org/10.1111/nph.13519
CrossRef Google scholar
[42]
MunnsR, TesterM. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008, 59(1):651-681
CrossRef Google scholar
[43]
NagashimaY, von SchaewenA, KoiwaH. Function of N-glycosylation in plants. Plant Sci, 2018, 274: 70-79 https://doi.org/10.1016/j.plantsci.2018.05.007
CrossRef Google scholar
[44]
Nguyen NT, Vu HT, Nguyen TT, Nguyen L-AT, Nguyen M-CD, Hoang KL, Nguyen KT, Quach TN (2019) Co-expression of Arabidopsis AtAVP1 and AtNHX1 to improve salt tolerance in soybean. Crop Sci 59(3):1133–1143. https://doi.org/10.2135/cropsci2018.10.0640
[45]
OlíasR, EljakaouiZ, PardoJM, BelverA. The Na+/H+ exchanger SOS1 controls extrusion and distribution of Na+ in tomato plants under salinity conditions. Plant Signal Behav, 2009, 4(10):973-976
CrossRef Google scholar
[46]
OmasitsU, AhrensCH, MüllerS, WollscheidB. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics, 2013, 30(6):884-886
CrossRef Google scholar
[47]
Pabuayon ICM, Kitazumi A, Cushman KR, Singh RK, Gregorio GB, Dhatt B, Zabet-Moghaddam M, Walia H, de los Reyes BG (2021) Novel and transgressive salinity tolerance in recombinant inbred lines of rice created by physiological coupling-uncoupling and network rewiring effects. Front Plant Sci 12 (267). doi:https://doi.org/10.3389/fpls.2021.615277
[48]
ParkS, LiJ, PittmanJK, BerkowitzGA, YangH, UndurragaS, MorrisJ, HirschiKD, GaxiolaRA. Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci U S A, 2005, 102(52):18830-18835
CrossRef Google scholar
[49]
PriorC, PotierS, SoucietJL, SychrovaH. Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett, 1996, 387(1):89-93
CrossRef Google scholar
[50]
QiuQ-S. Plant endosomal NHX antiporters: activity and function. Plant Signal Behav, 2016, 11(5):e1147643
CrossRef Google scholar
[51]
Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99(12):8436–8441. https://doi.org/10.1073/pnas.122224699
[52]
QuinteroFJ, BlattMR, PardoJM. Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett, 2000, 471(2-3):224-228
CrossRef Google scholar
[53]
QuinteroFJ, Martinez-AtienzaJ, VillaltaI, JiangX, KimW-Y, AliZ, FujiiH, MendozaI, YunD-J, ZhuJ-K, PardoJM. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A, 2011, 108(6):2611-2616
CrossRef Google scholar
[54]
R Core Team (2020) R: a language and environment for statistical computing, Vienna
[55]
RazzaqueS, EliasSM, BiswasS, HaqueT, SerajZI. Cloning of the plasma membrane sodium/hydrogen antiporter SOS1 for its over expression in rice. Plant Tissue Cult Biotechnol, 2013, 23(2):263-273
CrossRef Google scholar
[56]
RegueraM, BassilE, TajimaH, WimmerM, ChanocaA, OteguiMS, ParisN, BlumwaldE. pH regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis. Plant Cell, 2015, 27(4):1200-1217
CrossRef Google scholar
[57]
Rodriguez-RosalesMP, GalvezFJ, HuertasR, ArandaMN, BaghourM, CagnacO, VenemaK. Plant NHX cation/proton antiporters. Plant Signal Behav, 2009, 4(4):265-276
CrossRef Google scholar
[58]
RubioF, GassmannW, SchroederJI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science, 1995, 270(5242):1660-1663
CrossRef Google scholar
[59]
RusA, LeeBH, Munoz-MayorA, SharkhuuA, MiuraK, ZhuJK, BressanRA, HasegawaPM. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol, 2004, 136(1):2500-2511
CrossRef Google scholar
[60]
RusA, YokoiS, SharkhuuA, ReddyM, LeeBH, MatsumotoTK, KoiwaH, ZhuJK, BressanRA, HasegawaPM. AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. Proc Natl Acad Sci U S A, 2001, 98(24):14150-14155
CrossRef Google scholar
[61]
SahooDP, KumarS, MishraS, KobayashiY, PandaSK, SahooL. Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Mol Breed, 2016, 36(10):1-15
CrossRef Google scholar
[62]
ShenG, WeiJ, QiuX, HuR, KuppuS, AuldD, BlumwaldE, GaxiolaR, PaytonP, ZhangH. Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Report, 2015, 33(2):167-177
CrossRef Google scholar
[63]
ShiH, IshitaniM, KimC, ZhuJK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A, 2000, 97(12):6896-6901
CrossRef Google scholar
[64]
ShiH, LeeBH, WuSJ, ZhuJK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol, 2003, 21(1):81-85
CrossRef Google scholar
[65]
ShiH, QuinteroFJ, PardoJM, ZhuJK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell, 2002, 14(2):465-477
CrossRef Google scholar
[66]
ShiH, ZhuJ-K. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol, 2002, 50(3):543-550
CrossRef Google scholar
[67]
SieversF, HigginsDG. Clustal omega, accurate alignment of very large numbers of sequences. Methods Mol Biol (Clifton, NJ), 2014, 1079: 105-116
CrossRef Google scholar
[68]
SteinwandMA, RonaldPC. Crop biotechnology and the future of food. Nat Food, 2020, 1(5):273-283
CrossRef Google scholar
[69]
SunarpiHT, MotodaJ, KuboM, YangH, YodaK, HorieR, ChanWY, LeungHY, HattoriK, KonomiM, OsumiM, YamagamiM, SchroederJI, UozumiN. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J, 2005, 44(6):928-938
CrossRef Google scholar
[70]
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, 2020, 49(D1):D480-D489
CrossRef Google scholar
[71]
Trinidad JL, Pabuayon ICM, Kohli A (2020) Harnessing protein posttranslational modifications for plant improvement. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Woodhead Publishing, Cambridge. pp 385–401 https://doi.org/10.1016/B978-0-12-818581-0.00023-1
[72]
UozumiN, KimEJ, RubioF, YamaguchiT, MutoS, TsuboiA, BakkerEP, NakamuraT, SchroederJI. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae 1. Plant Physiol, 2000, 122(4):1249-1260
CrossRef Google scholar
[73]
WangZ, HongY, LiY, ShiH, YaoJ, LiuX, WangF, HuangS, ZhuG, ZhuJ-K. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnol J, 2021, 19(1):20-22
CrossRef Google scholar
[74]
Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG (2016) Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol 34(8):652–664 https://doi.org/10.1016/j.tibtech.2016.02.010
[75]
WuSJ, DingL, ZhuJK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell, 1996, 8(4):617-627
CrossRef Google scholar
[76]
YamaguchiT, AharonGS, SottosantoJB, BlumwaldE. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner. Proc Natl Acad Sci U S A, 2005, 102(44):16107-16112
CrossRef Google scholar
[77]
YamaguchiT, Fukada-TanakaS, InagakiY, SaitoN, Yonekura-SakakibaraK, TanakaY, KusumiT, IidaS. Genes encoding the vacuolar Na+/H+ exchanger and flower coloration. Plant Cell Physiol, 2001, 42(5):451-461
CrossRef Google scholar
[78]
ZafarSA, ZaidiSS-e-A, GabaY, Singla-PareekSL, DhankherOP, LiX, MansoorS, PareekA. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. J Exp Bot, 2019, 71(2):470-479
CrossRef Google scholar
[79]
ZaidiSS-e-A, MukhtarMS, MansoorS. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol, 2018, 36(9):898-906 https://doi.org/10.1016/j.tibtech.2018.04.005
CrossRef Google scholar
[80]
ZhangHX, BlumwaldE. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol, 2001, 19(8):765-768
CrossRef Google scholar
[81]
ZhangJ-L, ShiH. Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res, 2013, 115(1):1-22
CrossRef Google scholar
[82]
Zhang W-D, Wang P, Bao Z, Ma Q, Duan L-J, Bao A-K, Zhang J-L, Wang S-M (2017) SOS1, HKT1;5, and NHX1 synergistically modulate Na+ homeostasis in the halophytic grass Puccinellia tenuiflora. Front Plant Sci 8(576). https://doi.org/10.3389/fpls.2017.00576
[83]
ZhuJK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003, 6(5):441-445
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/