Genome-wide association study (GWAS) of leaf wax components of apple

Fuguo Cao, Zhongxing Li, Lijuan Jiang, Chen Liu, Qian Qian, Feng Yang, Fengwang Ma, Qingmei Guan

Stress Biology ›› 2021, Vol. 1 ›› Issue (1) : 13. DOI: 10.1007/s44154-021-00012-3
Original Paper

Genome-wide association study (GWAS) of leaf wax components of apple

Author information +
History +

Abstract

The wax layer of apple leaves plays an important role in improving stress resistance, but relatively little is known about the mechanisms of wax synthesis and transport in apple leaves. In this study, 17 wax components, including alcohols, alkanes, fatty acids and terpenes, were analyzed by gas chromatography-tandem mass spectrometry (GC-MS) from the leaves of 123 apple germplasms. Whole-genome sequencing of these apple accessions yielded 5.9 million high-quality single nucleotide polymorphisms (SNPs). We performed a genome-wide association study (GWAS) on 17 wax components and identified several genes related to wax synthesis and transport, including MdSHN1 (SHINE1), MdLTP4 (LIPID TRANSFER PROTEIN4), MdWSD1 (WAX ESTER SYNTHASE/ACYL-COA DIAC-YLGLYCEROL ACYLTRANSFERASE1), MdRDR1 (RNA-DEPENDENT RNA POLYMERASE1), MdACBP6 (ACYL-COA-BINDING PROTEIN6), MdNLE (NOTCHLESS) and MdABCG21 (ATP-BINDING CASSETTE G21). Moreover, we identified some prominent SNPs that may affect gene expression and protein function. These results provide insights into mechanisms of wax synthesis and transport in apple leaves and broaden the genetic resources and basis for facilitating resistance breeding.

Keywords

Apple / Leaves / Genome-wide association study (GWAS) / Wax

Cite this article

Download citation ▾
Fuguo Cao, Zhongxing Li, Lijuan Jiang, Chen Liu, Qian Qian, Feng Yang, Fengwang Ma, Qingmei Guan. Genome-wide association study (GWAS) of leaf wax components of apple. Stress Biology, 2021, 1(1): 13 https://doi.org/10.1007/s44154-021-00012-3

References

[1]
AartsMG, KeijzerCJ, StiekemaWJ, PereiraA. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7(12):2115-2127 https://doi.org/10.1105/tpc.7.12.2115
[2]
AharoniA, DixitS, JetterR, ThoenesE, van ArkelG, PereiraA. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16(9):2463-2480 https://doi.org/10.1105/tpc.104.022897
CrossRef Google scholar
[3]
AlexanderDH, LangeK. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 2011, 12(1):246 https://doi.org/10.1186/1471-2105-12-246
CrossRef Google scholar
[4]
BachL, MichaelsonLV, HaslamR, BellecY, GissotL, MarionJ, da CostaM, BoutinJP, MiquelM, TellierF, DomergueF, MarkhamJE, BeaudoinF, NapierJA, FaureJD. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. P Natl Acad Sci USA, 2008, 105(38):14727-14731 https://doi.org/10.1073/pnas.0805089105
CrossRef Google scholar
[5]
BeaudoinF, et al.. Functional characterization of the Arabidopsis beta-ketoacyl-coenzyme a reductase candidates of the fatty acid elongase. Plant Physiol, 2009, 150(3):1174-1191 https://doi.org/10.1104/pp.109.137497
CrossRef Google scholar
[6]
BirdD, BeissonF, BrighamA, ShinJ, GreerS, JetterR, KunstL, WuX, YephremovA, SamuelsL. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. Plant J, 2007, 52(3):485-498 https://doi.org/10.1111/j.1365-313X.2007.03252.x
CrossRef Google scholar
[7]
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170
[8]
BourdenxB, BernardA, DomergueF, PascalS, LégerA, RobyD, PerventM, VileD, HaslamRP, NapierJA, LessireR, JoubèsJ. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156(1):29-45 https://doi.org/10.1104/pp.111.172320
CrossRef Google scholar
[9]
BoyerJ, LiuRH. Apple phytochemicals and their health benefits. Nutr J, 2004, 3(1):5 https://doi.org/10.1186/1475-2891-3-5
CrossRef Google scholar
[10]
BuschhausC, JetterR. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?. J Exp Bot, 2011, 62(3):841-853 https://doi.org/10.1093/jxb/erq366
CrossRef Google scholar
[11]
CameronKD, TeeceMA, SmartLB. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140(1):176-183 https://doi.org/10.1104/pp.105.069724
CrossRef Google scholar
[12]
ChangCC, ChowCC, TellierLCAM, VattikutiS, PurcellSM, LeeJJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience, 2015, 4: 7 https://doi.org/10.1186/s13742-015-0047-8
CrossRef Google scholar
[13]
ChangYN, ZhuC, JiangJ, ZhangHM, ZhuJK, DuanCG. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol, 2020, 62(5):563-580 https://doi:10.1111/jipb.12901
CrossRef Google scholar
[14]
Chen PX et al (2021) Insights into the effect of human civilization on Malus evolution and domestication. Plant Biotechnol J. https://doi.org/10.1111/pbi.13648. Advance online publication
[15]
ChenXS, DingAB, ZhongXH. Functions and mechanisms of plant histone deacetylases. Sci China Life Sci, 2020, 63(2):206-216 https://doi:10.1007/s11427-019-1587-x
CrossRef Google scholar
[16]
CornilleA, GiraudT, SmuldersMJM, Roldan-RuizI, GladieuxP. The domestication and evolutionary ecology of apples. Trends Genet, 2014, 30(2):57-65 https://doi.org/10.1016/j.tig.2013.10.002
CrossRef Google scholar
[17]
DormannP, VoelkerTA, OhlroggeJB. Cloning and expression in Escherichia coli of a novel thioesterase from Arabidopsis thaliana specific for long-chain acyl-acyl carrier proteins. Arch Biochem Biophys, 1995, 316(1):612-618 https://doi.org/10.1006/abbi.1995.1081
CrossRef Google scholar
[18]
DuanNB, BaiY, SunH, WangN, MaY, LiM, WangX, JiaoC, LegallN, MaoL, WanS, WangK, HeT, FengS, ZhangZ, MaoZ, ShenX, ChenX, JiangY, WuS, YinC, GeS, YangL, JiangS, XuH, LiuJ, WangD, QuC, WangY, ZuoW, XiangL, LiuC, ZhangD, GaoY, XuY, XuK, ChaoT, FazioG, ShuH, ZhongGY, ChengL, FeiZ, ChenX. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement. Nat Commun, 2017, 8(1):249 https://doi.org/10.1038/s41467-017-00336-7
CrossRef Google scholar
[19]
GoYS, KimH, KimHJ, SuhMC. Arabidopsis Cuticular wax biosynthesis is negatively regulated by the DEWAX gene encoding an AP2/ERF-type transcription factor. Plant Cell, 2014, 26(4):1666-1680 https://doi.org/10.1105/tpc.114.123307
CrossRef Google scholar
[20]
GuoJ, XuW, YuX, ShenH, LiH, ChengD, LiuA, LiuJ, LiuC, ZhaoS, SongJ. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Front Plant Sci, 2016, 7: 1809 https://doi.org/10.3389/fpls.2016.01809
[21]
HaslamTM, HaslamR, ThoravalD, PascalS, DeludeC, DomergueF, FernándezAM, BeaudoinF, NapierJA, KunstL, JoubèsJ. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol, 2015, 167(3):682-692 https://doi.org/10.1104/pp.114.253195
CrossRef Google scholar
[22]
HaslamTM, Manas-FernandezA, ZhaoL, KunstL. Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol, 2012, 160(3):1164-1174 https://doi.org/10.1104/pp.112.201640
CrossRef Google scholar
[23]
HeZX, ChenXW, ZhouZW, ZhouSF. Impact of physiological, pathological and environmental factors on the expression and activity of human cytochrome P450 2D6 and implications in precision medicine. Drug Metab Rev, 2015, 47(4):470-519 https://doi:10.3109/03602532.2015.1101131
CrossRef Google scholar
[24]
HegebarthD, BuschhausC, JoubesJ, ThoravalD, BirdD, JetterR. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36 /C38 acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ, 2017, 40(9):1761-1776 https://doi.org/10.1111/pce.12981
CrossRef Google scholar
[25]
JonesA, DaviesHM, VoelkerTA. Palmitoyl-acyl carrier protein (Acp) Thioesterase and the evolutionary origin of plant acyl-Acp Thioesterases. Plant Cell, 1995, 7(3):359-371 https://doi.org/10.1105/tpc.7.3.359
[26]
KangHM, SulJH, ServiceSK, ZaitlenNA, KongSY, FreimerNB, SabattiC, EskinE. Variance component model to account for sample structure in genome-wide association studies. Nat Genet, 2010, 42(4):348-354 https://doi.org/10.1038/ng.548
CrossRef Google scholar
[27]
KannangaraR, BraniganC, LiuY, PenfieldT, RaoV, MouilleǴ, HöfteH, PaulyM, RiechmannJL, BrounP. The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19(4):1278-1294 https://doi.org/10.1105/tpc.106.047076
CrossRef Google scholar
[28]
KerstiensG. Water transport in plant cuticles: an update. J Exp Bot, 2006, 57(11):2493-2499 https://doi.org/10.1093/jxb/erl017
CrossRef Google scholar
[29]
KhoslaA, PaperJM, BoehlerAP, BradleyAM, NeumannTR, SchrickK. HD-zip proteins GL2 and HDG11 have redundant functions in Arabidopsis Trichomes, and GL2 activates a positive feedback loop via MYB23. Plant Cell, 2014, 26(5):2184-2200 https://doi.org/10.1105/tpc.113.120360
CrossRef Google scholar
[30]
KimJ, JungJH, LeeSB, GoYS, KimHJ, CahoonR, MarkhamJE, CahoonEB, SuhMC. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol, 2013, 162(2):567-580 https://doi.org/10.1104/pp.112.210450
CrossRef Google scholar
[31]
KosmaDK, BourdenxB, BernardA, ParsonsEP, LuS, JoubesJ, JenksMA. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151(4):1918-1929 https://doi.org/10.1104/pp.109.141911
CrossRef Google scholar
[32]
KumarS, StecherG, LiM, KnyazC, TamuraK. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35(6):1547-1549 https://doi.org/10.1093/molbev/msy096
CrossRef Google scholar
[33]
KunstL, SamuelsAL. Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res, 2003, 42(1):51-80 https://doi.org/10.1016/S0163-7827(02)00045-0
CrossRef Google scholar
[34]
Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. https://doi.org/10.1016/j.pbi.2009.09.009. 12(6):721–727
[35]
Lam P, Zhao L, McFarlane HE, Aiga M, Lam V, Hooker TS, Kunst L (2012) RDR1 and SGS3, components of RNA-mediated gene silencing, are required for the regulation of cuticular wax biosynthesis in developing inflorescence stems of Arabidopsis. Plant Physiol 159(4):1385–1395. https://doi.org/10.1104/pp.112.199646
[36]
LeeHG, SeoPJ. The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96. Nat Commun, 2016, 7(1):12525 https://doi.org/10.1038/ncomms12525
CrossRef Google scholar
[37]
LiF, WuX, LamP, BirdD, ZhengH, SamuelsL, JetterR, KunstL. Identification of the wax ester synthase/acyl-coenzyme a: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiol, 2008, 148(1):97-107 https://doi.org/10.1104/pp.108.123471
CrossRef Google scholar
[38]
LiH, DurbinR. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 2009, 25(14):1754-1760 https://doi.org/10.1093/bioinformatics/btp324
[39]
LiaoP, ChenQF, ChyeML. Transgenic Arabidopsis flowers overexpressing acyl-CoA-binding protein ACBP6 are freezing tolerant. Plant Cell Physiol, 2014, 55(6):1055-1071 https://doi.org/10.1093/pcp/pcu037
CrossRef Google scholar
[40]
Li-BeissonY, ShorroshB, BeissonF, AnderssonMX, ArondelV, BatesPD, BaudS, BirdD, DeBonoA, DurrettTP, FrankeRB, GrahamIA, KatayamaK, KellyAA, LarsonT, MarkhamJE, MiquelM, MolinaI, NishidaI, RowlandO, SamuelsL, SchmidKM, WadaH, WeltiR, XuC, ZallotR, OhlroggeJ. Acyl-lipid metabolism. Arabidopsis Book, 2013, 11: e0161 https://doi.org/10.1199/tab.0161
CrossRef Google scholar
[41]
LuS, SongT, KosmaDK, ParsonsEP, RowlandO, JenksMA. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J, 2009, 59(4):553-564 https://doi.org/10.1111/j.1365-313X.2009.03892.x
CrossRef Google scholar
[42]
LuS, et al.. The glossyhead1 allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme a carboxylase in the biosynthesis of cuticular waxes by Arabidopsis. Plant Physiol, 2011, 157(3):1079-1092 https://doi.org/10.1104/pp.111.185132
CrossRef Google scholar
[43]
LuSY, et al.. Arabidopsis ECERIFERUM9 involvement in cuticle formation and maintenance of plant water status. Plant Physiol, 2012, 159(3):930-944 https://doi.org/10.1104/pp.112.198697
CrossRef Google scholar
[44]
MarinoD, FroidureS, CanonneJ, Ben KhaledS, KhafifM, PouzetC, JauneauA, RobyD, RivasS. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nat Commun, 2013, 4(1):1476 https://doi.org/10.1038/ncomms2479
CrossRef Google scholar
[45]
McKennaA, HannaM, BanksE, SivachenkoA, CibulskisK, KernytskyA, GarimellaK, AltshulerD, GabrielS, DalyM, DePristoMA. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20(9):1297-1303 https://doi.org/10.1101/gr.107524.110
CrossRef Google scholar
[46]
Mittelberger C, Yalcinkaya H, Pichler C, Gasser J, Scherzer G, Erhart T, Schumacher S, Holzner B, Janik K, Robatscher P, Müller T, Kräutler B, Oberhuber M (2017) Pathogen-induced leaf chlorosis: products of chlorophyll breakdown found in Degreened leaves of Phytoplasma-infected apple (Malus x domestica Borkh.) and apricot (Prunus armeniaca L.) trees relate to the Pheophorbide a oxygenase/Phyllobilin pathway. J Agric Food Chem 65(13):2651–2660. https://doi.org/10.1021/acs.jafc.6b05501
[47]
OshimaY, ShikataM, KoyamaT, OhtsuboN, MitsudaN, Ohme-TakagiM. MIXTA-like transcription factors and WAX INDUCER1/SHINE1 coordinately regulate cuticle development in Arabidopsis and Torenia fournieri. Plant Cell, 2013, 25(5):1609-1624 https://doi.org/10.1105/tpc.113.110783
CrossRef Google scholar
[48]
PanikashviliD, Savaldi-GoldsteinS, MandelT, YifharT, FrankeRB, HöferŔ, SchreiberL, ChoryJ, AharoniA. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol, 2007, 145(4):1345-1360 https://doi.org/10.1104/pp.107.105676
CrossRef Google scholar
[49]
Pascal S, Bernard A, Sorel M, Pervent M, Vile D, Haslam RP, Napier JA, Lessire R, Domergue F, Joubès J (2013) The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process. Plant J 73(5):733–746. https://doi.org/10.1111/tpj.12060
[50]
PighinJA, ZhengH, BalakshinLJ, GoodmanIP, WesternTL, JetterR, KunstL, SamuelsAL. Plant cuticular lipid export requires an ABC transporter. Science, 2004, 306(5696):702-704 https://doi.org/10.1126/science.1102331
CrossRef Google scholar
[51]
PollardM, BeissonF, LiY, OhlroggeJB. Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci, 2008, 13(5):236-246 https://doi.org/10.1016/j.tplants.2008.03.003
CrossRef Google scholar
[52]
RowlandO, LeeR, FrankeR, SchreiberL, KunstL. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett, 2007, 581(18):3538-3544 https://doi.org/10.1016/j.febslet.2007.06.065
CrossRef Google scholar
[53]
SamuelsL, KunstL, JetterR. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annu Rev Plant Biol, 2008, 59(1):683-707 https://doi.org/10.1146/annurev.arplant.59.103006.093219
CrossRef Google scholar
[54]
ShepherdT, Wynne GriffithsD. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171(3):469-499 https://doi.org/10.1111/j.1469-8137.2006.01826.x
CrossRef Google scholar
[55]
SolovchenkoA, MerzlyakM. Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem Photobiol Sci, 2003, 2(8):861-866 https://doi.org/10.1039/b302478d
CrossRef Google scholar
[56]
SongT, LiK, WuT, WangY, ZhangX, XuX, YaoY, HanZ. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS One, 2019, 14(1):e0210672 https://doi.org/10.1371/journal.pone.0210672
CrossRef Google scholar
[57]
Troncoso-PonceMA, NikovicsK, MarchiveC, LepiniecL, BaudS. New insights on the organization and regulation of the fatty acid biosynthetic network in the model higher plant Arabidopsis thaliana. Biochimie, 2016, 120: 3-8 https://doi.org/10.1016/j.biochi.2015.05.013
CrossRef Google scholar
[58]
WangK, LiM, HakonarsonH. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010, 38(16 https://doi.org/10.1093/nar/gkq603
CrossRef Google scholar
[59]
WangZ, BenningC. Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites. Biochem Soc Trans, 2012, 40 2):457-463 https://doi.org/10.1042/BST20110752
CrossRef Google scholar
[60]
WangZ, TianX, ZhaoQ, LiuZ, LiX, RenY, TangJ, FangJ, XuQ, BuQ. The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates Cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in Rice. Plant Cell, 2018, 30(1):228-244 https://doi.org/10.1105/tpc.17.00823
CrossRef Google scholar
[61]
WuR, LiS, HeS, WaßmannF, YuC, QinG, SchreiberL, QuLJ, GuH. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell, 2011, 23(9):3392-3411 https://doi.org/10.1105/tpc.111.088625
CrossRef Google scholar
[62]
XueY, XiaoS, KimJ, LungSC, ChenL, TannerJA, SuhMC, ChyeML. Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. J Exp Bot, 2014, 65(18):5473-5483 https://doi.org/10.1093/jxb/eru304
CrossRef Google scholar
[63]
YangJ, LeeSH, GoddardME, VisscherPM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet, 2011, 88(1):76-82 https://doi.org/10.1016/j.ajhg.2010.11.011
CrossRef Google scholar
[64]
YeatsTH, RoseJK. The formation and function of plant cuticles. Plant Physiol, 2013, 163(1):5-20 https://doi.org/10.1104/pp.113.222737
CrossRef Google scholar
[65]
YuGC, WangLG, HanYY, HeQY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics, 2012, 16(5):284-287 https://doi.org/10.1089/omi.2011.0118
CrossRef Google scholar
[66]
ZhangC, DongSS, XuJY, HeWM, YangTL. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics, 2019, 35(10):1786-1788 https://doi.org/10.1093/bioinformatics/bty875
CrossRef Google scholar
[67]
ZhangJY, BroecklingCD, SumnerLW, WangZY. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 2007, 64(3):265-278 https://doi.org/10.1007/s11103-007-9150-2
CrossRef Google scholar
[68]
ZhangM, JinZ-Q, ZhaoJ, ZhangG, WuF. Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley. Plant Growth Regul, 2015, 75(2):567-574 https://doi.org/10.1007/s10725-014-0022-x
CrossRef Google scholar
[69]
ZhengH, RowlandO, KunstL. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell, 2005, 17(5):1467-1481 https://doi.org/10.1105/tpc.104.030155
CrossRef Google scholar
[70]
ZhouL, NiE, YangJ, ZhouH, LiangH, LiJ, JiangD, WangZ, LiuZ, ZhuangC. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One, 2013, 8(5):e65139 https://doi.org/10.1371/journal.pone.0065139
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/