Phytocytokines function as immunological modulators of plant immunity
Shuguo Hou, Derui Liu, Ping He
Phytocytokines function as immunological modulators of plant immunity
Plant plasma membrane-resident immune receptors regulate plant immunity by recognizing microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), and phytocytokines. Phytocytokines are plant endogenous peptides, which are usually produced in the cytosol and released into the apoplast when plant encounters pathogen infections. Phytocytokines regulate plant immunity through activating an overlapping signaling pathway with MAMPs/DAMPs with some unique features. Here, we highlight the current understanding of phytocytokine production, perception and functions in plant immunity, and discuss how plants and pathogens manipulate phytocytokine signaling for their own benefits during the plant-pathogen warfare.
Phytocytokine / Damage-associated molecular pattern (DAMP) / Pattern-recognition receptor (PRR), pattern-triggered immunity (PTI) / Plant immunity
[1] |
|
[2] |
|
[3] |
|
[4] |
Blackburn MR, Haruta M, Moura DS (2020) Twenty years of progress in physiological and biochemical investigation of RALF peptides. Plant Physiol 182(4):1657–1666. https://doi.org/10.1104/pp.19.01310
|
[5] |
|
[6] |
Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A 113(37):E5519–E5527. https://doi.org/10.1073/pnas.1608449113
|
[7] |
Chen YC, Siems WF, Pearce G, Ryan CA (2008) Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283(17):11469–11476. https://doi.org/10.1074/jbc.M709002200
|
[8] |
|
[9] |
|
[10] |
DeFalco TA, Zipfel C (2021) Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell S1097–2765(21)00598. https://doi.org/10.1016/j.molcel.2021.07.029
|
[11] |
|
[12] |
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 11(536):eaao3070. https://doi.org/10.1126/scisignal.aao3070
|
[13] |
|
[14] |
|
[15] |
Franck CM, Westermann J, Boisson-Dernier A (2018) Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69(1):301–328. https://doi.org/10.1146/annurev-arplant-042817-040557
|
[16] |
|
[17] |
|
[18] |
Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y (2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28:3316–3324 e3316.
|
[19] |
|
[20] |
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao P, Gonçalves A, Pavie B, Boller T, Gevaert K, Van Breusegem F, Bartels S, Stael S (2019) Damage on plants activates Ca2+- dependent metacaspases for release of immunomodulatory peptides. Science 363(6433):eaar7486. https://doi.org/10.1126/science.aar7486
|
[21] |
|
[22] |
|
[23] |
Hou S, Liu D, Huang S, Luo D, Liu Z, Wang P, Mu R, Han Z, Chai J, Shan L, He P (2021a) Immune elicitation by sensing the conserved signature from phytocytokines and microbes via the Arabidopsis MIK2 receptor. bioRxiv preprint. https://doi.org/10.1101/2021.01.28.428652
|
[24] |
Hou S, Liu Z, Shen H, Wu D (2019a) Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci 10:646. https://doi.org/10.3389/fpls.2019.00646
|
[25] |
Hou S, Shen H, Shao H (2019b) PAMP-induced peptide 1 cooperates with salicylic acid to regulate stomatal immunity in Arabidopsis thaliana. Plant Signal Behav 14(11):1666657. https://doi.org/10.1080/15592324.2019.1666657
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, Kulasekaran S et al (2015) Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. Plant Cell 27(11):3038–3064. https://doi.org/10.1105/tpc.15.00471
|
[35] |
Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4:e06587. https://doi.org/10.7554/eLife.06587
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
Ma X, Xu G, He P, Shan L (2016) SERKing coreceptors for receptors. Trends Plant Sci 21(12):1017–1033. https://doi.org/10.1016/j.tplants.2016.08.014
|
[44] |
|
[45] |
Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U, El Ghalid M, Leonard G, López-Berges MS, Richards TA, Felix G, Di Pietro A (2016) A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol 1(6):16043. https://doi.org/10.1038/nmicrobiol.2016.43
|
[46] |
|
[47] |
|
[48] |
Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93(15):7623–7627. https://doi.org/10.1073/pnas.93.15.7623
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, Li J (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 26(6):686–698. https://doi.org/10.1038/cr.2016.63
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores: isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278(32):30044–30050. https://doi.org/10.1074/jbc.M304159200
|
[61] |
Poncini L, Wyrsch I, Denervaud Tendon V, Vorley T, Boller T, Geldner N, Metraux JP, Lehmann S (2017) In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 12(10):e0185808. https://doi.org/10.1371/journal.pone.0185808
|
[62] |
|
[63] |
|
[64] |
Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJ, Luu DD, Chen H et al (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a gram-negative bacterium. Sci Adv 1(6):e1500245. https://doi.org/10.1126/sciadv.1500245
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
Rodiuc N, Barlet X, Hok S, Perfus-Barbeoch L, Allasia V, Engler G, Séassau A, Marteu N, de Almeida-Engler J, Panabières F, Abad P, Kemmerling B, Marco Y, Favery B, Keller H (2016) Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease. Plant Cell Environ 39(7):1396–1407 https://doi.org/10.1111/pce.12627
|
[70] |
|
[71] |
|
[72] |
Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci U S A 100(Suppl 2):14577–14580. https://doi.org/10.1073/pnas.1934788100
|
[73] |
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M (2016) Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. Elife 5:e15075. https://doi.org/10.7554/eLife.15075
|
[74] |
|
[75] |
|
[76] |
Shen W, Liu J, Li JF (2019) Type-II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis. Mol Plant 12(11):1524–1533. https://doi.org/10.1016/j.molp.2019.08.003
|
[77] |
Shen Y, Diener AC (2013) Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9(5):e1003525. https://doi.org/10.1371/journal.pgen.1003525
|
[78] |
Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98(19):10763–10768. https://doi.org/10.1073/pnas.181141598
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
Stegmann, M, Zecua-Ramirez, P, Ludwig, C, Lee, HS, Peterson, B, Nimchuk, ZL, Belkhadir Y, Hückelhoven, R (2021). RGI-GOLVEN signalling promotes FLS2 abundance to regulate plant immunity. bioRxiv preprint. https://doi.org/10.1101/2021.01.29.428839
|
[84] |
Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20(7):1805–1817. https://doi.org/10.1105/tpc.108.059139
|
[85] |
|
[86] |
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
Wang X, Lupardus P, Laporte SL, Garcia KC (2009) Structural biology of shared cytokine receptors. Annu Rev Immunol 27:29–60. https://doi.org/10.1146/annurev.immunol.24.021605.090616
|
[92] |
|
[93] |
|
[94] |
Wang X, Hou S, Wu Q, Lin M, Acharya BR, Wu D, Zhang W (2017) IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Plant J 89(2):250–263. https://doi.org/10.1111/tpj.13380
|
[95] |
|
[96] |
|
[97] |
Wood AKM, Walker C, Lee WS, Urban M, Hammond-Kosack KE (2020) Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biol 124(9):753–765. https://doi.org/10.1016/j.funbio.2020.05.001
|
[98] |
|
[99] |
|
[100] |
|
[101] |
|
[102] |
|
[103] |
|
[104] |
|
[105] |
Yu X, Feng B, He P, Shan L (2017) From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol 55(1):109–137. https://doi.org/10.1146/annurev-phyto-080516-035649
|
[106] |
Yu Z, Xu Y, Zhu L, Zhang L, Liu L, Zhang D, Li D, Wu C, Huang J, Yang G, Yan K, Zhang S, Zheng C (2020) The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. J Integr Plant Biol 62(4):403–420. https://doi.org/10.1111/jipb.12817
|
[107] |
|
[108] |
Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li X, Xia X, Cai X, Zhou J, Zhou Y, Yu J, Foyer CH, Shi K (2018) A plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca (2+) signaling in tomato. Plant Cell 30(3):652–667. https://doi.org/10.1105/tpc.17.00537
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
Zhu P, Yu XH, Wang C, Zhang Q, Liu W, McSweeney S, Shanklin J, Lam E, Liu Q (2020) Structural basis for Ca (2+)- dependent activation of a plant metacaspase. Nat Commun 11(1):2249. https://doi.org/10.1038/s41467-020-15830-8
|
[114] |
Zhu S, Fu Q, Xu F, Zheng H, Yu F (2021) New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. New Phytol. https://doi.org/10.1111/nph.17683
|
[115] |
|
/
〈 | 〉 |