Phytocytokines function as immunological modulators of plant immunity

Shuguo Hou, Derui Liu, Ping He

Stress Biology ›› 2021, Vol. 1 ›› Issue (1) : 8. DOI: 10.1007/s44154-021-00009-y
Review

Phytocytokines function as immunological modulators of plant immunity

Author information +
History +

Abstract

Plant plasma membrane-resident immune receptors regulate plant immunity by recognizing microbe-associated molecular patterns (MAMPs), damage-associated molecular patterns (DAMPs), and phytocytokines. Phytocytokines are plant endogenous peptides, which are usually produced in the cytosol and released into the apoplast when plant encounters pathogen infections. Phytocytokines regulate plant immunity through activating an overlapping signaling pathway with MAMPs/DAMPs with some unique features. Here, we highlight the current understanding of phytocytokine production, perception and functions in plant immunity, and discuss how plants and pathogens manipulate phytocytokine signaling for their own benefits during the plant-pathogen warfare.

Keywords

Phytocytokine / Damage-associated molecular pattern (DAMP) / Pattern-recognition receptor (PRR), pattern-triggered immunity (PTI) / Plant immunity

Cite this article

Download citation ▾
Shuguo Hou, Derui Liu, Ping He. Phytocytokines function as immunological modulators of plant immunity. Stress Biology, 2021, 1(1): 8 https://doi.org/10.1007/s44154-021-00009-y

References

[1]
AmanoY, TsubouchiH, ShinoharaH, OgawaM, MatsubayashiY. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci U S A, 2007, 104(46):18333-18338
CrossRef Google scholar
[2]
BanchereauJ, PascualV, O'GarraA. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol, 2012, 13(10):925-931
CrossRef Google scholar
[3]
BeloshistovRE, DreizlerK, GaliullinaRA, TuzhikovAI, SerebryakovaMV, ReichardtS, ShawJ, TalianskyME, PfannstielJ, ChichkovaNV, StintziA, SchallerA, VartapetianAB. Phytaspase-mediated precursor processing and maturation of the wound hormone systemin. New Phytol, 2018, 218(3):1167-1178
CrossRef Google scholar
[4]
Blackburn MR, Haruta M, Moura DS (2020) Twenty years of progress in physiological and biochemical investigation of RALF peptides. Plant Physiol 182(4):1657–1666. https://doi.org/10.1104/pp.19.01310
[5]
ButenkoMA, PattersonSE, GriniPE, StenvikGE, AmundsenSS, MandalA, AalenRB. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell, 2003, 15(10):2296-2307
CrossRef Google scholar
[6]
Chen J, Yu F, Liu Y, Du C, Li X, Zhu S, Wang X, Lan W, Rodriguez PL, Liu X, Li D, Chen L, Luan S (2016) FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proc Natl Acad Sci U S A 113(37):E5519–E5527. https://doi.org/10.1073/pnas.1608449113
[7]
Chen YC, Siems WF, Pearce G, Ryan CA (2008) Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. J Biol Chem 283(17):11469–11476. https://doi.org/10.1074/jbc.M709002200
[8]
ColemanAD, MaroschekJ, RaaschL, TakkenFLW, RanfS, HuckelhovenR. The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune responses to a fungal-derived elicitor. New Phytol, 2021, 229(6):3453-3466
CrossRef Google scholar
[9]
CoutoD, ZipfelC. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol, 2016, 16(9):537-552
CrossRef Google scholar
[10]
DeFalco TA, Zipfel C (2021) Molecular mechanisms of early plant pattern-triggered immune signaling. Mol Cell S1097–2765(21)00598. https://doi.org/10.1016/j.molcel.2021.07.029
[11]
DingY, WangJ, WangJ, StierhofYD, RobinsonDG, JiangL. Unconventional protein secretion. Trends Plant Sci, 2012, 17(10):606-615
CrossRef Google scholar
[12]
Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 11(536):eaao3070. https://doi.org/10.1126/scisignal.aao3070
[13]
Escocard de Azevedo ManhaesAM, Ortiz-MoreaFA, HeP, ShanL. Plant plasma membrane-resident receptors: surveillance for infections and coordination for growth and development. J Integr Plant Biol, 2021, 63(1):79-101
CrossRef Google scholar
[14]
FelixG, DuranJD, VolkoS, BollerT. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J, 1999, 18(3):265-276
CrossRef Google scholar
[15]
Franck CM, Westermann J, Boisson-Dernier A (2018) Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69(1):301–328. https://doi.org/10.1146/annurev-arplant-042817-040557
[16]
GravinoM, LocciF, TundoS, CervoneF, SavatinDV, De LorenzoG. Immune responses induced by oligogalacturonides are differentially affected by AvrPto and loss of BAK1/BKK1 and PEPR1/PEPR2. Mol Plant Pathol, 2017, 18(4):582-595
CrossRef Google scholar
[17]
GullyK, PelletierS, GuillouMC, FerrandM, AligonS, PokotyloI, PerrinA, VergneE, FagardM, RuellandE, GrappinP, BucherE, RenouJP, AubourgS. The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. J Exp Bot, 2019, 70(4):1349-1365
CrossRef Google scholar
[18]
Guo H, Nolan TM, Song G, Liu S, Xie Z, Chen J, Schnable PS, Walley JW, Yin Y (2018) FERONIA receptor kinase contributes to plant immunity by suppressing jasmonic acid signaling in Arabidopsis thaliana. Curr Biol 28:3316–3324 e3316.
[19]
GustAA, PruittR, NurnbergerT. Sensing danger: key to activating plant immunity. Trends Plant Sci, 2017, 22(9):779-791
CrossRef Google scholar
[20]
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao P, Gonçalves A, Pavie B, Boller T, Gevaert K, Van Breusegem F, Bartels S, Stael S (2019) Damage on plants activates Ca2+- dependent metacaspases for release of immunomodulatory peptides. Science 363(6433):eaar7486. https://doi.org/10.1126/science.aar7486
[21]
HarutaM, SabatG, SteckerK, MinkoffBB, SussmanMR. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science, 2014, 343(6169):408-411
CrossRef Google scholar
[22]
HouS, JamiesonP, HeP. The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J, 2018, 475(15):2491-2509
CrossRef Google scholar
[23]
Hou S, Liu D, Huang S, Luo D, Liu Z, Wang P, Mu R, Han Z, Chai J, Shan L, He P (2021a) Immune elicitation by sensing the conserved signature from phytocytokines and microbes via the Arabidopsis MIK2 receptor. bioRxiv preprint. https://doi.org/10.1101/2021.01.28.428652
[24]
Hou S, Liu Z, Shen H, Wu D (2019a) Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci 10:646. https://doi.org/10.3389/fpls.2019.00646
[25]
Hou S, Shen H, Shao H (2019b) PAMP-induced peptide 1 cooperates with salicylic acid to regulate stomatal immunity in Arabidopsis thaliana. Plant Signal Behav 14(11):1666657. https://doi.org/10.1080/15592324.2019.1666657
[26]
HouS, WangX, ChenD, YangX, WangM, TurraD, Di PietroA, ZhangW. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog, 2014, 10(9
CrossRef Google scholar
[27]
HouS, ZhangJ, HeP. Stress-induced activation of receptor signaling by protease-mediated cleavage. Biochem J, 2021, 478 10):1847-1852
CrossRef Google scholar
[28]
HuangY, YinC, LiuJ, FengB, GeD, KongL, Ortiz-MoreaFA, RichterJ, HauserMT, WangWM, ShanL, HeP. A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity. Nat Commun, 2020, 11(1):4859
CrossRef Google scholar
[29]
HuffakerA, DafoeNJ, SchmelzEA. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol, 2011, 155(3):1325-1338
CrossRef Google scholar
[30]
HuffakerA, PearceG, RyanCA. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A, 2006, 103(26):10098-10103
CrossRef Google scholar
[31]
IgarashiD, TsudaK, KatagiriF. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. Plant J, 2012, 71(2):194-204
CrossRef Google scholar
[32]
KemmerlingB, HalterT, MazzottaS, MosherS, NurnbergerT. A genome-wide survey for Arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity. Front Plant Sci, 2011, 2: 88
CrossRef Google scholar
[33]
KimY, TsudaK, IgarashiD, HillmerRA, SakakibaraH, MyersCL, KatagiriF. Mechanisms underlying robustness and tunability in a plant immune signaling network. Cell Host Microbe, 2014, 15(1):84-94
CrossRef Google scholar
[34]
Lewis LA, Polanski K, de Torres-Zabala M, Jayaraman S, Bowden L, Moore J, Penfold CA, Jenkins DJ, Hill C, Baxter L, Kulasekaran S et al (2015) Transcriptional dynamics driving MAMP-triggered immunity and pathogen effector-mediated immunosuppression in Arabidopsis leaves following infection with Pseudomonas syringae pv tomato DC3000. Plant Cell 27(11):3038–3064. https://doi.org/10.1105/tpc.15.00471
[35]
Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM (2015) Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. Elife 4:e06587. https://doi.org/10.7554/eLife.06587
[36]
LiB, MengX, ShanL, HeP. Transcriptional regulation of pattern-triggered immunity in plants. Cell Host Microbe, 2016, 19(5):641-650
CrossRef Google scholar
[37]
LiC, WuHM, CheungAY. FERONIA and her pals: functions and mechanisms. Plant Physiol, 2016, 171(4):2379-2392
CrossRef Google scholar
[38]
LiuJ, HuangY, KongL, YuX, FengB, LiuD, ZhaoB, MendesGC, YuanP, GeD, WangWM, FontesEPB, LiP, ShanL, HeP. The malectin-like receptor-like kinase LETUM1 modulates NLR protein SUMM2 activation via MEKK2 scaffolding. Nat Plants, 2020, 6(9):1106-1115
CrossRef Google scholar
[39]
LiuJ, LiJ, ShanL. SERKs. Curr Biol, 2020, 30(7):R293-R294
CrossRef Google scholar
[40]
LiuZ, WuY, YangF, ZhangY, ChenS, XieQ, TianX, ZhouJM. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proc Natl Acad Sci U S A, 2013, 110(15):6205-6210
CrossRef Google scholar
[41]
LuD, LinW, GaoX, WuS, ChengC, AvilaJ, HeeseA, DevarenneTP, HeP, ShanL. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 2011, 332(6036):1439-1442
CrossRef Google scholar
[42]
LuoL. Plant cytokine or phytocytokine. Plant Signal Behav, 2012, 7(12):1513-1514
CrossRef Google scholar
[43]
Ma X, Xu G, He P, Shan L (2016) SERKing coreceptors for receptors. Trends Plant Sci 21(12):1017–1033. https://doi.org/10.1016/j.tplants.2016.08.014
[44]
MangH, FengB, HuZ, Boisson-DernierA, FranckCM, MengX, HuangY, ZhouJ, XuG, WangT, ShanL, HeP. Differential regulation of two-tiered plant immunity and sexual reproduction by ANXUR receptor-like kinases. Plant Cell, 2017, 29(12):3140-3156
CrossRef Google scholar
[45]
Masachis S, Segorbe D, Turrà D, Leon-Ruiz M, Fürst U, El Ghalid M, Leonard G, López-Berges MS, Richards TA, Felix G, Di Pietro A (2016) A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol 1(6):16043. https://doi.org/10.1038/nmicrobiol.2016.43
[46]
MatsubayashiY. Posttranslationally modified small-peptide signals in plants. Annu Rev Plant Biol, 2014, 65(1):385-413
CrossRef Google scholar
[47]
MatsubayashiY, OgawaM, MoritaA, SakagamiY. An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science, 2002, 296(5572):1470-1472
CrossRef Google scholar
[48]
Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93(15):7623–7627. https://doi.org/10.1073/pnas.93.15.7623
[49]
MatsuzakiY, Ogawa-OhnishiM, MoriA, MatsubayashiY. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science, 2010, 329(5995):1065-1067
CrossRef Google scholar
[50]
McGurlB, PearceG, Orozco-CardenasM, RyanCA. Structure, expression, and antisense inhibition of the systemin precursor gene. Science, 1992, 255(5051):1570-1573
CrossRef Google scholar
[51]
MosherS, SeyboldH, RodriguezP, StahlM, DaviesKA, DayaratneS, MorilloSA, WierzbaM, FaveryB, KellerH, TaxFE, KemmerlingB. The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J, 2013, 73(3):469-482
CrossRef Google scholar
[52]
Narvaez-VasquezJ, PearceG, RyanCA. The plant cell wall matrix harbors a precursor of defense signaling peptides. Proc Natl Acad Sci U S A, 2005, 102(36):12974-12977
CrossRef Google scholar
[53]
NgouBPM, AhnHK, DingP, JonesJDG. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 2021, 592(7852):110-115
CrossRef Google scholar
[54]
OlssonV, JoosL, ZhuS, GevaertK, ButenkoMA, De SmetI. Look closely, the beautiful may be small: precursor-derived peptides in plants. Annu Rev Plant Biol, 2019, 70(1):153-186
CrossRef Google scholar
[55]
Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X, He K, Gou X, Li C, Li J (2016) RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 26(6):686–698. https://doi.org/10.1038/cr.2016.63
[56]
PatharkarOR, WalkerJC. Core mechanisms regulating developmentally timed and environmentally triggered abscission. Plant Physiol, 2016, 172(1):510-520
CrossRef Google scholar
[57]
PearceG, MouraDS, StratmannJ, RyanCA. Production of multiple plant hormones from a single polyprotein precursor. Nature, 2001, 411(6839):817-820
CrossRef Google scholar
[58]
PearceG, MouraDS, StratmannJ, RyanCA Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc Natl Acad Sci U S A, 2001, 98(22):12843-12847
CrossRef Google scholar
[59]
PearceG, StrydomD, JohnsonS, RyanCA. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science, 1991, 253(5022):895-897
CrossRef Google scholar
[60]
Pearce G, Ryan CA (2003) Systemic signaling in tomato plants for defense against herbivores: isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. J Biol Chem 278(32):30044–30050. https://doi.org/10.1074/jbc.M304159200
[61]
Poncini L, Wyrsch I, Denervaud Tendon V, Vorley T, Boller T, Geldner N, Metraux JP, Lehmann S (2017) In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer. PLoS One 12(10):e0185808. https://doi.org/10.1371/journal.pone.0185808
[62]
PoretskyE, DressanoK, WeckwerthP, RuizM, CharSN, ShiD, AbagyanR, YangB, HuffakerA. Differential activities of maize plant elicitor peptides as mediators of immune signaling and herbivore resistance. Plant J, 2020, 104(6):1582-1602
CrossRef Google scholar
[63]
PruittRN, JoeA, ZhangW, FengW, StewartV, SchwessingerB, DinnenyJR, RonaldPC. A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. New Phytol, 2017, 215(2):725-736
CrossRef Google scholar
[64]
Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJ, Luu DD, Chen H et al (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a gram-negative bacterium. Sci Adv 1(6):e1500245. https://doi.org/10.1126/sciadv.1500245
[65]
RanfS, Eschen-LippoldL, PecherP, LeeJ, ScheelD. Interplay between calcium signalling and early signalling elements during defence responses to microbe- or damage-associated molecular patterns. Plant J, 2011, 68(1):100-113
CrossRef Google scholar
[66]
ReichardtS, PiephoHP, StintziA, SchallerA. Peptide signaling for drought-induced tomato flower drop. Science, 2020, 367(6485):1482-1485
CrossRef Google scholar
[67]
RhodesJ, YangH, MoussuS, BoutrotF, SantiagoJ, ZipfelC. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat Commun, 2021, 12(1):705
CrossRef Google scholar
[68]
Rich-GriffinC, EichmannR, ReitzMU, HermannS, Woolley-AllenK, BrownPE, WiwatdirekkulK, EstebanE, PashaA, KogelKH, ProvartNJ, OttS, SchäferP. Regulation of cell type-specific immunity networks in Arabidopsis roots. Plant Cell, 2020, 32(9):2742-2762
CrossRef Google scholar
[69]
Rodiuc N, Barlet X, Hok S, Perfus-Barbeoch L, Allasia V, Engler G, Séassau A, Marteu N, de Almeida-Engler J, Panabières F, Abad P, Kemmerling B, Marco Y, Favery B, Keller H (2016) Evolutionarily distant pathogens require the Arabidopsis phytosulfokine signalling pathway to establish disease. Plant Cell Environ 39(7):1396–1407 https://doi.org/10.1111/pce.12627
[70]
RonaldP, JoeA. Molecular mimicry modulates plant host responses to pathogens. Ann Bot, 2018, 121(1):17-23
CrossRef Google scholar
[71]
RossA, YamadaK, HirumaK, Yamashita-YamadaM, LuX, TakanoY, TsudaK, SaijoY. The Arabidopsis PEPR pathway couples local and systemic plant immunity. EMBO J, 2014, 33(1):62-75
CrossRef Google scholar
[72]
Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proc Natl Acad Sci U S A 100(Suppl 2):14577–14580. https://doi.org/10.1073/pnas.1934788100
[73]
Santiago J, Brandt B, Wildhagen M, Hohmann U, Hothorn LA, Butenko MA, Hothorn M (2016) Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission. Elife 5:e15075. https://doi.org/10.7554/eLife.15075
[74]
SauterM. Phytosulfokine peptide signalling. J Exp Bot, 2015, 66(17):5161-5169
CrossRef Google scholar
[75]
SchardonK, HohlM, GraffL, PfannstielJ, SchulzeW, StintziA, SchallerA. Precursor processing for plant peptide hormone maturation by subtilisin-like serine proteinases. Science, 2016, 354(6319):1594-1597
CrossRef Google scholar
[76]
Shen W, Liu J, Li JF (2019) Type-II metacaspases mediate the processing of plant elicitor peptides in Arabidopsis. Mol Plant 12(11):1524–1533. https://doi.org/10.1016/j.molp.2019.08.003
[77]
Shen Y, Diener AC (2013) Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9(5):e1003525. https://doi.org/10.1371/journal.pgen.1003525
[78]
Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98(19):10763–10768. https://doi.org/10.1073/pnas.181141598
[79]
SongWY, WangGL, ChenLL, KimHS, PiLY, HolstenT, GardnerJ, WangB, ZhaiWX, ZhuLH, FauquetC, RonaldP. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243):1804-1806
CrossRef Google scholar
[80]
SrivastavaR, LiuJX, GuoH, YinY, HowellSH. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J, 2009, 59(6):930-939
CrossRef Google scholar
[81]
SrivastavaR, LiuJX, HowellSH. Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J, 2008, 56(2):219-227
CrossRef Google scholar
[82]
StegmannM, MonaghanJ, Smakowska-LuzanE, RovenichH, LehnerA, HoltonN, BelkhadirY, ZipfelC. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science, 2017, 355(6322):287-289
CrossRef Google scholar
[83]
Stegmann, M, Zecua-Ramirez, P, Ludwig, C, Lee, HS, Peterson, B, Nimchuk, ZL, Belkhadir Y, Hückelhoven, R (2021). RGI-GOLVEN signalling promotes FLS2 abundance to regulate plant immunity. bioRxiv preprint. https://doi.org/10.1101/2021.01.29.428839
[84]
Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20(7):1805–1817. https://doi.org/10.1105/tpc.108.059139
[85]
StuhrwohldtN, BuhlerE, SauterM, SchallerA. Phytosulfokine (PSK) precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis. J Exp Bot, 2021, 72(9):3427-3440
CrossRef Google scholar
[86]
TakahashiF, HanadaK, KondoT, ShinozakiK. Hormone-like peptides and small coding genes in plant stress signaling and development. Curr Opin Plant Biol, 2019, 51: 88-95
CrossRef Google scholar
[87]
TanakaK, HeilM. Damage-associated molecular patterns (DAMPs) in plant innate immunity: applying the danger model and evolutionary perspectives. Annu Rev Phytopathol, 2021, 59(1):53-75
CrossRef Google scholar
[88]
ThynneE, SaurIML, SimbaquebaJ, OgilvieHA, Gonzalez-CendalesY, MeadO, TarantoA, CatanzaritiAM, McDonaldMC, SchwessingerB, JonesDA, RathjenJP, SolomonPS. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides. Mol Plant Pathol, 2017, 18(6):811-824
CrossRef Google scholar
[89]
TintorN, RossA, KaneharaK, YamadaK, FanL, KemmerlingB, NurnbergerT, TsudaK, SaijoY. Layered pattern receptor signaling via ethylene and endogenous elicitor peptides during Arabidopsis immunity to bacterial infection. Proc Natl Acad Sci U S A, 2013, 110(15):6211-6216
CrossRef Google scholar
[90]
VieAK, NajafiJ, LiuB, WingeP, ButenkoMA, HornslienKS, KumpfR, AalenRB, BonesAM, BrembuT. The IDA/IDA-LIKE and PIP/PIP-LIKE gene families in Arabidopsis: phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. J Exp Bot, 2015, 66(17):5351-5365
CrossRef Google scholar
[91]
Wang X, Lupardus P, Laporte SL, Garcia KC (2009) Structural biology of shared cytokine receptors. Annu Rev Immunol 27:29–60. https://doi.org/10.1146/annurev.immunol.24.021605.090616
[92]
WangJ, LiH, HanZ, ZhangH, WangT, LinG, ChangJ, YangW, ChaiJ. Allosteric receptor activation by the plant peptide hormone phytosulfokine. Nature, 2015, 525(7568):265-268
CrossRef Google scholar
[93]
WangL, EinigE, Almeida-TrappM, AlbertM, FliegmannJ, MithoferA, KalbacherH, FelixG. The systemin receptor SYR1 enhances resistance of tomato against herbivorous insects. Nat Plants, 2018, 4(3):152-156
CrossRef Google scholar
[94]
Wang X, Hou S, Wu Q, Lin M, Acharya BR, Wu D, Zhang W (2017) IDL6-HAE/HSL2 impacts pectin degradation and resistance to Pseudomonas syringae pv tomato DC3000 in Arabidopsis leaves. Plant J 89(2):250–263. https://doi.org/10.1111/tpj.13380
[95]
WangX, ZhangN, ZhangL, HeY, CaiC, ZhouJ, LiJ, MengX. Perception of the pathogen-induced peptide RGF7 by the receptor-like kinases RGI4 and RGI5 triggers innate immunity in Arabidopsis thaliana. New Phytol, 2021, 230(3):1110-1125
CrossRef Google scholar
[96]
WhitfordR, FernandezA, TejosR, PerezAC, Kleine-VehnJ, VannesteS, DrozdzeckiA, LeitnerJ, AbasL, AertsM, et al.. GOLVEN secretory peptides regulate auxin carrier turnover during plant gravitropic responses. Dev Cell, 2012, 22(3):678-685
CrossRef Google scholar
[97]
Wood AKM, Walker C, Lee WS, Urban M, Hammond-Kosack KE (2020) Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Fungal Biol 124(9):753–765. https://doi.org/10.1016/j.funbio.2020.05.001
[98]
XiaoY, StegmannM, HanZ, DeFalcoTA, ParysK, XuL, BelkhadirY, ZipfelC, ChaiJ. Mechanisms of RALF peptide perception by a heterotypic receptor complex. Nature, 2019, 572(7768):270-274
CrossRef Google scholar
[99]
YamadaK, Yamashita-YamadaM, HiraseT, FujiwaraT, TsudaK, HirumaK, SaijoY. Danger peptide receptor signaling in plants ensures basal immunity upon pathogen-induced depletion of BAK1. EMBO J, 2016, 35(1):46-61
CrossRef Google scholar
[100]
YamaguchiY, BaronaG, RyanCA, PearceG. GmPep914, an eight-amino acid peptide isolated from soybean leaves, activates defense-related genes. Plant Physiol, 2011, 156(2):932-942
CrossRef Google scholar
[101]
YamaguchiY, HuffakerA, BryanAC, TaxFE, RyanCA. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell, 2010, 22(2):508-522
CrossRef Google scholar
[102]
YamaguchiY, PearceG, RyanCA. The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Natl Acad Sci U S A, 2006, 103(26):10104-10109
CrossRef Google scholar
[103]
YangH, MatsubayashiY, NakamuraK, SakagamiY. Diversity of Arabidopsis genes encoding precursors for phytosulfokine, a peptide growth factor. Plant Physiol, 2001, 127(3):842-851
CrossRef Google scholar
[104]
YuF, QianL, NibauC, DuanQ, KitaD, LevasseurK, LiX, LuC, LiH, HouC, LiL, BuchananBB, ChenL, CheungAY, LiD, LuanS. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci U S A, 2012, 109(36):14693-14698
CrossRef Google scholar
[105]
Yu X, Feng B, He P, Shan L (2017) From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu Rev Phytopathol 55(1):109–137. https://doi.org/10.1146/annurev-phyto-080516-035649
[106]
Yu Z, Xu Y, Zhu L, Zhang L, Liu L, Zhang D, Li D, Wu C, Huang J, Yang G, Yan K, Zhang S, Zheng C (2020) The Brassicaceae-specific secreted peptides, STMPs, function in plant growth and pathogen defense. J Integr Plant Biol 62(4):403–420. https://doi.org/10.1111/jipb.12817
[107]
YuanM, JiangZ, BiG, NomuraK, LiuM, WangY, CaiB, ZhouJM, HeSY, XinXF. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 2021, 592(7852):105-109
CrossRef Google scholar
[108]
Zhang H, Hu Z, Lei C, Zheng C, Wang J, Shao S, Li X, Xia X, Cai X, Zhou J, Zhou Y, Yu J, Foyer CH, Shi K (2018) A plant phytosulfokine peptide initiates auxin-dependent immunity through cytosolic Ca (2+) signaling in tomato. Plant Cell 30(3):652–667. https://doi.org/10.1105/tpc.17.00537
[109]
ZhangH, ZhangH, LinJ. Systemin-mediated long-distance systemic defense responses. New Phytol, 2020, 226(6):1573-1582
CrossRef Google scholar
[110]
ZhangX, PengH, ZhuS, XingJ, LiX, ZhuZ, ZhengJ, WangL, WangB, ChenJ, MingZ, YaoK, JianJ, LuanS, Coleman-DerrD, LiaoH, PengY, PengD, YuF. Nematode-encoded RALF peptide mimics facilitate parasitism of plants through the FERONIA receptor kinase. Mol Plant, 2020, 13(10):1434-1454
CrossRef Google scholar
[111]
ZhaoC, ZayedO, YuZ, JiangW, ZhuP, HsuCC, ZhangL, TaoWA, Lozano-DuranR, ZhuJK. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 2018, 115(51):13123-13128
CrossRef Google scholar
[112]
ZhouJM, ZhangY. Plant immunity: danger perception and signaling. Cell, 2020, 181(5):978-989
CrossRef Google scholar
[113]
Zhu P, Yu XH, Wang C, Zhang Q, Liu W, McSweeney S, Shanklin J, Lam E, Liu Q (2020) Structural basis for Ca (2+)- dependent activation of a plant metacaspase. Nat Commun 11(1):2249. https://doi.org/10.1038/s41467-020-15830-8
[114]
Zhu S, Fu Q, Xu F, Zheng H, Yu F (2021) New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. New Phytol. https://doi.org/10.1111/nph.17683
[115]
ZiemannS, van der LindeK, LahrmannU, AcarB, KaschaniF, ColbyT, KaiserM, DingY, SchmelzE, HuffakerA, HoltonN, ZipfelC, DoehlemannG. An apoplastic peptide activates salicylic acid signalling in maize. Nat Plants, 2018, 4(3):172-180
CrossRef Google scholar
Funding
national institutes of health(R01GM092893); youth innovation technology project of higher school in shandong province(2020KJF013); natural science foundation of shandong province(ZR2020MC022); national science foundation(IOS-1951094)

Accesses

Citations

Detail

Sections
Recommended

/