Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance

Jinshui Lin, Lei Xu, Jianshe Yang, Zhuo Wang, Xihui Shen

Stress Biology ›› 2021, Vol. 1 ›› Issue (1) : 11. DOI: 10.1007/s44154-021-00008-z

Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance

Author information +
History +

Abstract

Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.

Keywords

Type VI secretion system / Competition / Microbiome / Pathogenesis / Stress resistance / Biofilm

Cite this article

Download citation ▾
Jinshui Lin, Lei Xu, Jianshe Yang, Zhuo Wang, Xihui Shen. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. Stress Biology, 2021, 1(1): 11 https://doi.org/10.1007/s44154-021-00008-z

References

[1]
AhmadS, WangB, WalkerMD, TranHKR, StogiosPJ, SavchenkoA, GrantRA, McArthurAG, LaubMT, WhitneyJC. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature, 2019, 575(7784):674-678
CrossRef Google scholar
[2]
AllsoppLP, WoodTE, HowardSA, MaggiorelliF, NolanLM, WettstadtS, FillouxA. RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 2017, 114(29):7707-7712
CrossRef Google scholar
[3]
AllsoppLP, BernalP, NolanLM, FillouxA. Causalities of war: the connection between type VI secretion system and microbiota. Cell Microbiol, 2020, 22(3):e13153
CrossRef Google scholar
[4]
AndersonMC, VonaeschP, SaffarianA, MarteynBS, SansonettiPJ. Shigella sonnei encodes a functional T6SS used for Interbacterial competition and niche occupancy. Cell Host Microbe, 2017, 21(6):769-776 e3
CrossRef Google scholar
[5]
Bachmann V, Kostiuk B, Unterweger D, Diaz-Satizabal L, Ogg S, Pukatzki S (2015) Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae. PLoS Negl Trop Dis 9(8):e0004031. https://doi.org/10.1371/journal.pntd.0004031
[6]
BaslerM, PilhoferM, HendersonGP, JensenGJ, MekalanosJJ. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature, 2012, 483(7388):182-186
CrossRef Google scholar
[7]
BaslerM, HoBT, MekalanosJJ. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell, 2013, 152(4):884-894
CrossRef Google scholar
[8]
BernalP, LlamasMA, FillouxA. Type VI secretion systems in plant-associated bacteria. Environ Microbiol, 2018, 20(1):1-15
CrossRef Google scholar
[9]
Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A (2009) Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J 28(4):315–325. https://doi.org/10.1038/emboj.2008.269
[10]
BrunetYR, BernardCS, GavioliM, LloubèsR, CascalesE. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet, 2011, 7(7):e1002205
CrossRef Google scholar
[11]
CaiR, GaoF, PanJ, HaoX, YuZ, QuY, LiJ, WangD, WangY, ShenX, LiuX, YangY. The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis. Microbiol Res, 2021, 249: 126787
CrossRef Google scholar
[12]
CerasiM, LiuJZ, AmmendolaS, PoeAJ, PetrarcaP, PesciaroliM, PasqualiP, RaffatelluM, BattistoniA. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence. Metallomics, 2014, 6(4):845-853
CrossRef Google scholar
[13]
ChakrabortyS, SivaramanJ, LeungKY, MokYK. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem, 2011, 286(45):39417-39430
CrossRef Google scholar
[14]
ChenWJ, KuoTY, HsiehFC, ChenPY, WangCS, ShihYL, LaiYM, LiuJR, YangYL, ShihMC. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep, 2016, 6(1):32950
CrossRef Google scholar
[15]
ChenH, YangD, HanF, TanJ, ZhangL, XiaoJ, ZhangY, LiuQ. The bacterial T6SS effector EvpP prevents NLRP3 Inflammasome activation by inhibiting the Ca2+−dependent MAPK-Jnk pathway. Cell Host Microbe, 2017, 21(1):47-58
CrossRef Google scholar
[16]
Chen L, Zou Y, Kronfl AA, Wu Y (2020) Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. Microbiologyopen 9:e991. https://doi.org/10.1002/mbo3.991
[17]
CoyneMJ, RoelofsKG, ComstockLE. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements. BMC Genomics, 2016, 17(1):58
CrossRef Google scholar
[18]
D'AutreauxB, ToledanoMB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol, 2007, 8(10):813-824
CrossRef Google scholar
[19]
DeShazerD. A novel contact-independent T6SS that maintains redox homeostasis via Zn(2+) and Mn(2+) acquisition is conserved in the Burkholderia pseudomallei complex. Microbiol Res, 2019, 226: 48-54
CrossRef Google scholar
[20]
DunlapPV. OscR, a new osmolarity-responsive regulator in Vibrio cholerae. J Bacteriol, 2009, 191(13):4053-4055
CrossRef Google scholar
[21]
DurandE, DerrezE, AudolyG, SpinelliS, Ortiz-LombardiaM, RaoultD, CascalesE, CambillauC. Crystal structure of the VgrG1 actin cross-linking domain of the Vibrio cholerae type VI secretion system. J Biol Chem, 2012, 287(45):38190-38199
CrossRef Google scholar
[22]
DuttaP, JijumonAS, MazumderM, DileepD, MukhopadhyayAK, GourinathS, MaitiS. Presence of actin binding motif in VgrG-1 toxin of Vibrio cholerae reveals the molecular mechanism of actin cross-linking. Int J Biol Macromol, 2019, 133: 775-785
CrossRef Google scholar
[23]
Faulkner MJ, Helmann, JD (2011) Peroxide stress elicits adaptive changes in bacterial metal ion homeostasis. Antioxid Redox Signal 15(1):175-189. https://doi.org/10.1089/ars.2010.3682
[24]
FlinckM, KramerSH, PedersenSF. Roles of pH in control of cell proliferation. Acta Physiol (Oxford), 2018, 223(3):e13068
CrossRef Google scholar
[25]
FreemanBC, ChenC, YuX, NielsenL, PetersonK, BeattieGA. Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol, 2013, 195(20):4742-4752
CrossRef Google scholar
[26]
GalliqueM, DecoinV, BarbeyC, RosayT, FeuilloleyMGJ, OrangeN, MerieauA. Contribution of the Pseudomonas fluorescens MFE01 type VI secretion system to biofilm formation. PLoS One, 2017, 12(1):e0170770
CrossRef Google scholar
[27]
GavrilinMA, AbdelazizDHA, MostafaM, AbdulrahmanBA, GrandhiJ, AkhterA, Abu KhweekA, AubertDF, ValvanoMA, WewersMD, AmerAO. Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. J Immunol, 2012, 188(7):3469-3477
CrossRef Google scholar
[28]
GreenER, ClarkS, CrimminsGT, MackM, KumamotoCA, MecsasJ. Fis is essential for Yersinia pseudotuberculosis virulence and protects against reactive oxygen species produced by phagocytic cells during infection. PLoS Pathog, 2016, 12(9):e1005898
CrossRef Google scholar
[29]
Goldová J, Ulrych A, Hercík K, Branny, P (2011) A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence. BMC Genomics 12:437. https://doi.org/10.1186/1471-2164-12-437
[30]
GrundenAM, ShanmugamKT. Molybdate transport and regulation in bacteria. Arch Microbiol, 1997, 168(5):345-354
CrossRef Google scholar
[31]
GuanJ, XiaoX, XuS, GaoF, WangJ, WangT, SongY, PanJ, ShenX, WangY. Roles of RpoS in Yersinia pseudotuberculosis stress survival, motility, biofilm formation and type VI secretion system expression. J Microbiol, 2015, 53(9):633-642
CrossRef Google scholar
[32]
GueguenE, DurandE, ZhangXY, d’AmalricQ, JournetL, CascalesE. Expression of a Yersinia pseudotuberculosis type VI secretion system is responsive to envelope stresses through the OmpR transcriptional activator. PLoS One, 2013, 8(6):e66615
CrossRef Google scholar
[33]
HachaniA, WoodTE, FillouxA. Type VI secretion and anti-host effectors. Curr Opin Microbiol, 2016, 29: 81-93
CrossRef Google scholar
[34]
HanY, WangT, ChenG, PuQ, LiuQ, ZhangY, XuL, WuM, LiangH. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog, 2019, 15(12):e1008198
CrossRef Google scholar
[35]
HerbstK, BujaraM, HerovenAK, OpitzW, WeichertM, ZimmermannA, DerschP. Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog, 2009, 5(5):e1000435
CrossRef Google scholar
[36]
HeislerDB, KudryashovaE, GrinevichDO, SuarezC, WinkelmanJD, BirukovKG, KothaSR, ParinandiNL, VavylonisD, KovarDR, KudryashovDS. Actin-directed toxin. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization. Science, 2015, 349(6247):535-539
CrossRef Google scholar
[37]
HoibyN. A short history of microbial biofilms and biofilm infections. APMIS, 2017, 125(4):272-275
CrossRef Google scholar
[38]
HoodRD, SinghP, HsuFS, GüvenerT, CarlMA, TrinidadRRS, SilvermanJM, OhlsonBB, HicksKG, PlemelRL, LiM, SchwarzS, WangWY, MerzAJ, GoodlettDR, MougousJD. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010, 7(1):25-37
CrossRef Google scholar
[39]
IshikawaT, SabharwalD, BrömsJ, MiltonDL, SjöstedtA, UhlinBE, WaiSN. Pathoadaptive conditional regulation of the type VI secretion system in Vibrio cholerae O1 strains. Infect Immun, 2012, 80(2):575-584
CrossRef Google scholar
[40]
KraftB, StrousM, TegetmeyerHE. Microbial nitrate respiration--genes, enzymes and environmental distribution. J Biotechnol, 2011, 155(1):104-117
CrossRef Google scholar
[41]
LedvinaHE, KellyKA, EshraghiA, PlemelRL, PetersonSB, LeeB, SteeleS, AdlerM, KawulaTH, MerzAJ, SkerrettSJ, CelliJ, MougousJD. A phosphatidylinositol 3-kinase effector alters Phagosomal maturation to promote intracellular growth of Francisella. Cell Host Microbe, 2018, 24(2):285-295 e8
CrossRef Google scholar
[42]
LertpiriyapongK, GamazonER, FengY, ParkDS, PangJ, BotkaG, GraffamME, GeZ, FoxJG. Campylobacter jejuni type VI secretion system: roles in adaptation to deoxycholic acid, host cell adherence, invasion, and in vivo colonization. PLoS One, 2012, 7(8):e42842
CrossRef Google scholar
[43]
Lewis J, Soto E (2019) Gene expression of putative type VI secretion system (T6SS) genes in the emergent fish pathogen Francisella noatunensis subsp. orientalis in different physiochemical conditions. BMC Microbiol 19:21. https://doi.org/10.1186/s12866-019-1389-7
[44]
LiawJ, HongG, DaviesC, ElmiA, SimaF, StratakosA, StefL, PetI, HachaniA, CorcionivoschiN, WrenBW, GundogduO, DorrellN. The Campylobacter jejuni type VI secretion system enhances the oxidative stress response and host colonization. Front Microbiol, 2019, 10: 2864
CrossRef Google scholar
[45]
Lin J, Cheng J, Chen K, Guo C, Zhang W, Yang X, Ding W, Ma L, Wang Y, Shen X (2015) The icmF3 locus is involved in multiple adaptation- and virulence-related characteristics in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 5:70. https://doi.org/10.3389/fcimb.2015.00070
[46]
LinJ, ZhangW, ChengJ, YangX, ZhuK, WangY, WeiG, QianPY, LuoZQ, ShenX. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun, 2017, 8(1):14888
CrossRef Google scholar
[47]
Lisher JP, Giedroc DP (2013) Manganese acquisition and homeostasis at the host-pathogen interface. Front Cell Infect Microbiol 3:91. https://doi.org/10.3389/fcimb.2013.00091
[48]
LiY, ChenL, ZhangP, BhagirathAY, DuanK. ClpV3 of the H3-type VI secretion system (H3-T6SS) affects multiple virulence factors in Pseudomonas aeruginosa. Front Microbiol, 2020, 11: 1096
CrossRef Google scholar
[49]
Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W (2021) A Type VI secretion system facilitates fitness, homeostasis, and competitive advantages for environmental adaptability and efficient nicotine biodegradation. Appl Environ Microbiol 87(9):e03113-20. https://doi.org/10.1128/AEM.03113-20
[50]
LoganSL, ThomasJ, YanJ, BakerRP, ShieldsDS, XavierJB, HammerBK, ParthasarathyR. The Vibrio cholerae type VI secretion system can modulate host intestinal mechanics to displace gut bacterial symbionts. Proc Natl Acad Sci U S A, 2018, 115(16):E3779-E3787
CrossRef Google scholar
[51]
LoriesB, RoberfroidS, DieltjensL, de CosterD, FosterKR, SteenackersHP. Biofilm bacteria use stress responses to detect and respond to competitors. Curr Biol, 2020, 30(7):1231-1244 e4
CrossRef Google scholar
[52]
MaAT, McAuleyS, PukatzkiS, MekalanosJJ. Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe, 2009, 5(3):234-243
CrossRef Google scholar
[53]
MaAT, MekalanosJJ. In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci U S A, 2010, 107(9):4365-4370
CrossRef Google scholar
[54]
MaLS, HachaniA, LinJS, FillouxA, LaiEM. Agrobacterium tumefaciens deploys a superfamily of type VI secretion DNase effectors as weapons for interbacterial competition in planta. Cell Host Microbe, 2014, 16(1):94-104
CrossRef Google scholar
[55]
MiyataST, KitaokaM, BrooksTM, McAuleySB, PukatzkiS. Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun, 2011, 79(7):2941-2949
CrossRef Google scholar
[56]
Monjaras FeriaJ, ValvanoMA. An Overview of Anti-eukaryotic T6SS Effectors. Front Cell Infect Microbiol, 2020, 10: 584751
CrossRef Google scholar
[57]
OteizaPI. Zinc and the modulation of redox homeostasis. Free Radic Biol Med, 2012, 53(9):1748-1759
CrossRef Google scholar
[58]
PukatzkiS, MaAT, RevelAT, SturtevantD, MekalanosJJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A, 2007, 104(39):15508-15513
CrossRef Google scholar
[59]
QinL, WangX, GaoY, BiK, WangW. Roles of EvpP in Edwardsiella piscicida-macrophage interactions. Front Cell Infect Microbiol, 2020, 10: 53
CrossRef Google scholar
[60]
RobinsonJB, TelepnevMV, ZudinaIV, BouyerD, MontenieriJA, BeardenSW, GageKL, AgarSL, FoltzSM, ChauhanS, ChopraAK, MotinVL. Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog, 2009, 47(5):243-251
CrossRef Google scholar
[61]
Rosales-ReyesR, AubertDF, TolmanJS, AmerAO, ValvanoMA. Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages. PLoS One, 2012, 7(7):e41726
CrossRef Google scholar
[62]
RussellAB, HoodRD, BuiNK, LeRouxM, VollmerW, MougousJD. Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 2011, 475(7356):343-347
CrossRef Google scholar
[63]
RussellAB, LeRouxM, HathaziK, AgnelloDM, IshikawaT, WigginsPA, WaiSN, MougousJD. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature, 2013, 496(7446):508-512
CrossRef Google scholar
[64]
SanaTG, FlaugnattiN, LugoKA, LamLH, JacobsonA, BaylotV, DurandE, JournetL, CascalesE, MonackDM. Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A, 2016, 113(34):E5044-E5051
CrossRef Google scholar
[65]
Steele MI, Kwong WK, Whiteley M, Moran NA, Lindow SE (2017) Diversification of Type VI secretion system toxins reveals ancient antagonism among bee gut microbes. mBio 8(6):e01630. https://doi.org/10.1128/mBio.01630-17
[66]
SiM, ZhaoC, BurkinshawB, ZhangB, WeiD, WangY, DongTG, ShenX. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A, 2017, 114(11):E2233-E2242
CrossRef Google scholar
[67]
SiM, WangY, ZhangB, ZhaoC, KangY, BaiH, WeiD, ZhuL, ZhangL, DongTG, ShenX. The type VI secretion system engages a redox-regulated dual-functional heme transporter for zinc acquisition. Cell Rep, 2017, 20(4):949-959
CrossRef Google scholar
[68]
SongY, XiaoX, LiC, WangT, ZhaoR, ZhangW, ZhangL, WangY, ShenX. The dual transcriptional regulator RovM regulates the expression of AR3- and T6SS4-dependent acid survival systems in response to nutritional status in Yersinia pseudotuberculosis. Environ Microbiol, 2015, 17(11):4631-4645
CrossRef Google scholar
[69]
SongL, PanJ, YangY, ZhangZ, CuiR, JiaS, WangZ, YangC, XuL, DongTG, WangY, ShenX. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun, 2021, 12(1):423
CrossRef Google scholar
[70]
TianY, ZhaoY, WuX, LiuF, HuB, WalcottRR. The type VI protein secretion system contributes to biofilm formation and seed-to-seedling transmission of Acidovorax citrulli on melon. Mol Plant Pathol, 2015, 16(1):38-47
CrossRef Google scholar
[71]
TingSY, BoschDE, MangiameliSM, RadeyMC, HuangS, ParkYJ, KellyKA, FilipSK, GooYA, EngJK, AllaireM, VeeslerD, WigginsPA, PetersonSB, MougousJD. Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins. Cell, 2018, 175(5):1380-1392 e14
CrossRef Google scholar
[72]
TownsleyL, Sison MangusMP, MehicS, YildizFH. Response of Vibrio cholerae to low-temperature shifts: CspV regulation of type VI secretion, biofilm formation, and association with zooplankton. Appl Environ Microbiol, 2016, 82(14):4441-4452
CrossRef Google scholar
[73]
TrunkK, PeltierJ, LiuYC, DillBD, WalkerL, GowNAR, StarkMJR, QuinnJ, StrahlH, TrostM, CoulthurstSJ. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol, 2018, 3(8):920-931
CrossRef Google scholar
[74]
VacheronJ, Péchy-TarrM, BrochetS, HeimanCM, StojiljkovicM, MaurhoferM, KeelC. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J, 2019, 13(5):1318-1329
CrossRef Google scholar
[75]
Vega-CabreraLA, Pardo-LopezL. Membrane remodeling and organization: elements common to prokaryotes and eukaryotes. IUBMB Life, 2017, 69(2):55-62
CrossRef Google scholar
[76]
WanB, ZhangQ, NiJ, LiS, WenD, LiJ, XiaoH, HeP, OuHY, TaoJ, TengQ, LuJ, WuW, YaoYF. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathog, 2017, 13(3):e1006246
CrossRef Google scholar
[77]
WangT, SiM, SongY, ZhuW, GaoF, WangY, ZhangL, ZhangW, WeiG, LuoZQ, ShenX. Type VI secretion system transports Zn2+ to combat multiple stresses and host immunity. PLoS Pathog, 2015, 11(7):e1005020
CrossRef Google scholar
[78]
WangT, ChenK, GaoF, KangY, ChaudhryMT, WangZ, WangY, ShenX. ZntR positively regulates T6SS4 expression in Yersinia pseudotuberculosis. J Microbiol, 2017, 55(6):448-456
CrossRef Google scholar
[79]
WangJ, BrodmannM, BaslerM. Assembly and subcellular localization of bacterial type VI secretion systems. Annu Rev Microbiol, 2019, 73(1):621-638
CrossRef Google scholar
[80]
Wang S, Yang D, Wu X, Yi Z, Wang Y, Xin S, Wang D, Tian M, Li T, Qi J, Ding C, Yu S (2019b) The ferric uptake regulator represses type VI secretion system function by binding directly to the clpV Promoter in Salmonella enterica serovar Typhimurium. Infect Immun 87(10):e00562-19. https://doi.org/10.1128/IAI.00562-19
[81]
WangZ, WangT, CuiR, ZhangZ, ChenK, LiM, HuaY, GuH, XuL, WangY, YangY, ShenX. HpaR, the repressor of aromatic compound metabolism, positively regulates the expression of T6SS4 to resist oxidative stress in Yersinia pseudotuberculosis. Front Microbiol, 2020, 11: 705
CrossRef Google scholar
[82]
WangT, duX, JiL, HanY, DangJ, WenJ, WangY, PuQ, WuM, LiangH. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis. Cell Rep, 2021, 35(2):108957
CrossRef Google scholar
[83]
WeberB, HasicM, ChenC, WaiSN, MiltonDL. Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol, 2009, 11(12):3018-3028
CrossRef Google scholar
[84]
WeberBS, MiyataST, IwashkiwJA, MortensenBL, SkaarEP, PukatzkiS, FeldmanMF. Genomic and functional analysis of the type VI secretion system in Acinetobacter. PLoS One, 2013, 8(1):e55142
CrossRef Google scholar
[85]
WettstadtS, FillouxA. Manipulating the type VI secretion system spike to shuttle passenger proteins. PLoS One, 2020, 15(2):e0228941
CrossRef Google scholar
[86]
WhitneyJC, QuentinD, SawaiS, LeRouxM, HardingBN, LedvinaHE, TranBQ, RobinsonH, GooYA, GoodlettDR, RaunserS, MougousJD. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell, 2015, 163(3):607-619
CrossRef Google scholar
[87]
WoodTE, AksoyE, HachaniA. From welfare to warfare: the arbitration of host-microbiota interplay by the type VI secretion system. Front Cell Infect Microbiol, 2020, 10: 587948
CrossRef Google scholar
[88]
WuCF, LinJS, ShawGC, LaiEM. Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. PLoS Pathog, 2012, 8(9):e1002938
CrossRef Google scholar
[89]
YangX, SongY, DaiQ, ZhangH, SongL, WangZ, PanJ, WangY. The stringent response factor, RelA, positively regulates T6SS4 expression through the RovM/RovA pathway in Yersinia pseudotuberculosis. Microbiol Res, 2019, 220: 32-41
CrossRef Google scholar
[90]
Yu Y, Fang L, Zhang Y, Sheng H, Fang W (2015) VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages. Front Microbiol 6:168. https://doi.org/10.3389/fmicb.2015.00168
[91]
Yu KW, Xue P, Fu Y, Yang L (2021) T6SS mediated stress responses for bacterial environmental survival and host adaptation. Int J Mol Sci 22(2):478. https://doi.org/10.3390/ijms22020478
[92]
ZeidlerS, MullerV. Coping with low water activities and osmotic stress in Acinetobacter baumannii: significance, current status and perspectives. Environ Microbiol, 2019, 21(7):2212-2230
CrossRef Google scholar
[93]
ZhangL, HinzAJ, NadeauJP, MahTF. Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol, 2011, 193(19):5510-5513
CrossRef Google scholar
[94]
ZhangW, XuS, LiJ, ShenX, WangY, YuanZ. Modulation of a thermoregulated type VI secretion system by AHL-dependent quorum sensing in Yersinia pseudotuberculosis. Arch Microbiol, 2011, 193(5):351-363
CrossRef Google scholar
[95]
ZhangW, WangY, SongY, WangT, XuS, PengZ, LinX, ZhangL, ShenX. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol, 2013, 15(2):557-569
CrossRef Google scholar
[96]
ZhaoW, CaroF, RobinsW, MekalanosJJ. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science, 2018, 359(6372):210-213
CrossRef Google scholar
Funding
National Natural Science Foundation of China(31800113); Postdoctoral Research Foundation of China(2018M631201); Shaanxi Province Postdoctoral Science Foundation(2018BSHTDZZ20); national key r&d program of china(2018YFA0901200)

Accesses

Citations

Detail

Sections
Recommended

/