The islet of Langerhans, functioning as a “mini organ”, plays a vital role in regulating endocrine activities due to its intricate structure. Dysfunction in these islets is closely associated with the development of diabetes mellitus (DM). To offer valuable insights for DM research and treatment, various approaches have been proposed to create artificial islets or islet organoids with high similarity to natural islets, under the collaborative effort of biologists, clinical physicians, and biomedical engineers. This review investigates the design and fabrication of artificial islets considering both biological and tissue engineering aspects. It begins by examining the natural structures and functions of native islets and proceeds to analyze the protocols for generating islets from stem cells. The review also outlines various techniques used in crafting artificial islets, with a specific focus on hydrogel-based ones. Additionally, it provides a concise overview of the materials and devices employed in the clinical applications of artificial islets. Throughout, the primary goal is to develop artificial islets, thereby bridging the realms of developmental biology, clinical medicine, and tissue engineering.
Ferroptosis is a predominant contributor to graft kidney ischemia–reperfusion injury (IRI), resulting in delayed graft function (DGF). However, much less is known about the early predicting biomarkers and therapeutic targets of DGF, especially aiming at ferroptosis. Here, we propose a precise predicting model for DGF, relying on the Akirin1 level in extracellular vesicles (EVs) derived from recipient urine 48 h after kidney transplant. In addition, we decipher a new molecular mechanism whereby Akirin1 induces ferroptosis by strengthening TP53-mediated suppression of SLC7A11 during the graft kidney IRI process, that is, Akirin1 activates the EGR1/TP53 axis and inhibits MDM2- mediated TP53 ubiquitination, accordingly upregulating TP53 in two ways. Meanwhile, we present the first evidence that miR-136-5p enriched in EVs secreted by human umbilical cord mesenchymal stem cells (UM-EVs) confers robust protection against ferroptosis and graft kidney IRI by targeted inhibition of Akirin1 but knockout of miR-136-5p in UM sharply mitigates the protection of UM-EVs. The functional and mechanistic regulation of Akirin1 is further corroborated in an allograft kidney transplant model in wild-type and Akirin1-knockout mice. In summary, these findings suggest that Akirin1, which prominently induces ferroptosis, is a pivotal biomarker and target for early diagnosis and treatment of graft kidney IRI and DGF after kidney transplant.
Global health faces an immense burden from infectious diseases caused by viruses and intracellular protozoan parasites such as the coronavirus disease (COVID-19) and malaria, respectively. These pathogens propagate through the infection of human host cells. The first stage of this host cell infection mechanism is cell attachment, which typically involves interactions between the infectious agent and surface components on the host cell membranes, specifically heparan sulfate (HS) and/or sialic acid (SA). Hence, nanoparticles (NPs) which contain or mimic HS/SA that can directly bind to the pathogen surface and inhibit cell infection are emerging as potential candidates for an alternative antiinfection therapeutic strategy. These NPs can be prepared from metals, soft matter (lipid, polymer, and dendrimer), DNA, and carbon-based materials among others and can be designed to include aspects of multivalency, broadspectrum activity, biocidal mechanisms, and multifunctionality. This review provides an overview of such anti-pathogen nanomedicines beyond drug delivery. Nanoscale inhibitors acting against viruses and obligate intracellular protozoan parasites are discussed. In the future, the availability of broadly applicable nanotherapeutics would allow early tackling of existing and upcoming viral diseases. Invasion inhibitory NPs could also provide urgently needed effective treatments for protozoan parasitic infections.
The development of non-antibiotic pharmaceuticals with biocompatible and efficient antibacterial properties is of great significance for the treatment of bacterial keratitis. In this study, we have developed antibacterial iron-doped nanozymes (Fe3+-doped nanozymes, FNEs) with distinguished capacity to fight against bacterial infections. The iron-doped nanozymes are composed of Fe3+ doped zeolitic imidazolate framework-8 (Fe/ZIF-8) and polyethylene imide (PEI), which were functionally coated on the surface of Fe/ZIF-8 and imparted the FNEs with improved water dispersibility and biocompatibility. FNEs possess a significant spontaneous peroxidase-mimic activity without the need for external stimulation, thus elevating cellular reactive oxygen species level by catalyzing local H2O2 at the infection site and resulting in bacteria damaged to death. FNEs eliminated 100% of Staphylococcus aureus within 6 h, and significantly relieved inflammation and bacterial infection levels in mice bacterial keratitis, exhibiting higher bioavailability and a superior therapeutic effect compared to conventional antibiotic eye drops. In addition, the FNEs would not generate drug resistance, suggesting that FNEs have great potential in overcoming infectious diseases caused by antimicrobial resistant bacteria.
Vulnerable atherosclerotic plaques serve as the primary pathological basis for fatal cardiovascular and cerebrovascular diseases. The precise identification and treatment of these vulnerable plaques hold paramount clinical importance in mitigating the incidence of myocardial infarction and stroke. Nevertheless, the identification of vulnerable plaques within the diffuse atherosclerotic plaques dispersed throughout the systemic circulation continues to pose a substantial challenge in clinical practice. Double emulsion solvent evaporation method, specifically the water-in-oil-in-water (W/O/W) technique, was employed to fabricate Fe3O4-based poly (lactic-co-glycolic acid) (PLGA) nanoparticles (Fe3O4@PLGA). Platelet membranes (PM) were extracted through hypotonic lysis, followed by ultrasound-assisted encapsulation onto the surface of Fe3O4@PLGA, resulting in the formation of PM-coated Fe3O4 nanoparticles (PM/Fe3O4@PLGA). Characterization of PM/Fe3O4@PLGA involved the use of dynamic light scattering, transmission electron microscopy, western blotting, and magnetic resonance imaging (MRI). A model of atherosclerotic vulnerable plaques was constructed by carotid artery coarctation and a high-fat diet fed to ApoE−/− (Apolipoprotein E knockout) mice. Immunofluorescence and MRI techniques were employed to verify the functionality of PM/Fe3O4@PLGA. In this study, we initially synthesized Fe3O4@PLGA as the core material. Subsequently, a platelet membrane was employed as a coating for the Fe3O4@PLGA, aiming to enable the detection of vulnerable atherosclerotic plaques through MRI. In vitro, PM/Fe3O4@PLGA not only exhibited excellent biosafety but also showed targeted collagen characteristics and MR imaging performance. In vivo, the adhesion of PM/ Fe3O4@PLGA to atherosclerotic lesions was confirmed in a mouse model of vulnerable atherosclerotic plaques. Simultaneously, PM/Fe3O4@PLGA as a novel contrast agent for MRI has shown effective identification of vulnerable atherosclerotic plaques. In terms of safety profile in vivo, PM/Fe3O4@PLGA has not demonstrated significant organ toxicity or inflammatory response in the bloodstream. In this study, we successfully developed a plateletmembrane- coated nanoparticle system for the targeted delivery of Fe3O4@PLGA to vulnerable atherosclerotic plaques. This innovative system allows for the visualization of vulnerable plaques using MRI, thereby demonstrating its potential for enhancing the clinical diagnosis of vulnerable atherosclerotic plaques.
Nucleic acid amplification testing (NAAT) remains one of the most reliable methods for pathogen identification. However, conventional bulk NAATs may not be sufficiently fast or sensitive enough for the detection of clinically-relevant pathogens in point-of-care testing. Here, we have developed a digital droplet RT-LAMP (ddRT-LAMP) assay that rapidly and quantitatively detects the SARS-CoV-2 viral E gene in microfluidic drops. Droplet partitioning using ddRT-LAMP significantly accelerates detection times across a wide range of template concentrations compared to bulk RT-LAMP assays. We discover that a reduction in droplet diameter decreases assay times up to a certain size, upon which surface adsorption of the RT-LAMP polymerase reduces reaction efficiency. Optimization of drop size and polymerase concentration enables rapid, sensitive, and quantitative detection of the SARS-CoV-2 E gene in only 8 min. These results highlight the potential of ddRT-LAMP assays as an excellent platform for quantitative point-of-care testing.
In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-onchips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on. In this perspective, we present a review of organs-on-chips for biomedical applications. After introducing the key elements and manufacturing craft of organson- chips, we intend to review their cut-edging applications in biomedical fields, incorporating biological analysis, drug development, robotics and so on. Finally, the emphasis is focused on the perspectives of organs-on-chips.
Recent studies indicate a significant upregulation of gasdermin D (GSDMD) in acute kidney injury (AKI), a severe medical condition characterized by high morbidity and mortality globally. In this study, we identified and validated the therapeutic effects of small molecule inhibitors targeting the GSDMD pathway for AKI treatment. Using a drug screening assay, we evaluated thousands of small molecules from DrugBank against Lipopolysaccharide (LPS) and Nigericin-stimulated immortalized bone marrow-derived macrophages (iBMDMs) to discern GSDMD pathway activators. We simulated AKI in primary renal tubular epithelial cells using hydrogen peroxide (H2O2) exposure. Furthermore, AKI in mouse models was induced via cisplatin and ischemia/reperfusion. Our findings highlight stevioside as a potent GSDMD activator exhibiting minimal toxicity. Experimental results, both in vitro and in vivo, demonstrate stevioside’s significant potential in alleviating renal tubular epithelial cell injury and AKI histological damage. After stevioside treatment, a notable decrease in cleaved GSDMD-N terminal levels was observed coupled with diminished inflammatory factor release. This observation was consistent in both cisplatin- and ischemia/reperfusion-induced AKI mouse models. Collectively, our research suggests that stevioside could be a promising candidate for modulating GSDMD signaling in AKI treatment.