Contribution of Sex-Biased Expressed Genes in Osteoarthritis

Cuicui Wang , Meng Shi , Tiandao Li , Shuang Liu , Liang Fang , Ming Xu , Bo Zhang , Jie Shen

Smart Medicine ›› 2025, Vol. 4 ›› Issue (4) : e70019

PDF
Smart Medicine ›› 2025, Vol. 4 ›› Issue (4) : e70019 DOI: 10.1002/smmd.70019
RESEARCH ARTICLE

Contribution of Sex-Biased Expressed Genes in Osteoarthritis

Author information +
History +
PDF

Abstract

Human osteoarthritis (OA) displays sex-specific patterns in its clinical presentation. Key features of the disease—such as prevalence, age of onset, progression, and response to treatment—vary between males and females. These differences have been associated with sex hormones, as well as anatomical, biomechanical, and behavioral distinctions between the sexes. However, the underlying mechanisms driving these sex-specific disparities in OA pathogenesis remain largely unknown. In this study, we analyzed transcriptomic data from human knee articular cartilage to investigate sex-specific gene expression in articular chondrocytes. We identified genes that are uniquely or predominantly expressed in either males or females in healthy cartilage. Notably, many of these sex-biased genes were significantly dysregulated in osteoarthritic cartilage, particularly those with higher expression in females. Furthermore, female-specific OA genes may exert protective effects on cartilage degeneration, whereas male-specific OA genes could impair cartilage homeostasis. Our findings provide insights into the genetic regulation of OA and highlight the influence of sex on its molecular pathology.

Keywords

cartilage / hormone / osteoarthritis / sex / transcriptomics / transposable element

Cite this article

Download citation ▾
Cuicui Wang, Meng Shi, Tiandao Li, Shuang Liu, Liang Fang, Ming Xu, Bo Zhang, Jie Shen. Contribution of Sex-Biased Expressed Genes in Osteoarthritis. Smart Medicine, 2025, 4(4): e70019 DOI:10.1002/smmd.70019

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. L. Vincent, “Of Mice and Men: Converging on a Common Molecular Understanding of Osteoarthritis,” Lancet Rheumatology 2 (2020): e633–e645.

[2]

D. Contartese, M. Tschon, M. De Mattei, and M. Fini, “Sex Specific Determinants in Osteoarthritis: A Systematic Review of Preclinical Studies,” International Journal of Molecular Sciences 21 (2020): 3696.

[3]

M. Peshkova, A. Lychagin, M. Lipina, et al., “Gender-Related Aspects in Osteoarthritis Development and Progression: A Review,” International Journal of Molecular Sciences 23 (2022): 2767.

[4]

M. Tschon, D. Contartese, S. Pagani, V. Borsari, and M. Fini, “Gender and Sex Are Key Determinants in Osteoarthritis Not Only Confounding Variables. A Systematic Review of Clinical Data,” Journal of Clinical Medicine 10 (2021): 3178.

[5]

N. A. Segal, J. M. Nilges, and W. M. Oo, “Sex Differences in Osteoarthritis Prevalence, Pain Perception, Physical Function and Therapeutics,” Osteoarthritis and Cartilage 32 (2024): 1045–1053.

[6]

S. T. Ngo, F. J. Steyn, and P. A. McCombe, “Gender Differences in Autoimmune Disease,” Frontiers in Neuroendocrinology 35 (2014): 347–369.

[7]

D. Westergaard, P. Moseley, F. K. H. Sørup, P. Baldi, and S. Brunak, “Population-Wide Analysis of Differences in Disease Progression Patterns in Men and Women,” Nature Communications 10 (2019): 666.

[8]

D. Zheng, J. Trynda, C. Williams, et al., “Sexual Dimorphism in the Incidence of Human Cancers,” BMC Cancer 19 (2019): 684.

[9]

D. Prieto-Alhambra, A. Judge, M. K. Javaid, C. Cooper, A. Diez-Perez, and N. K. Arden, “Incidence and Risk Factors for Clinically Diagnosed Knee, Hip and Hand Osteoarthritis: Influences of Age, Gender and Osteoarthritis Affecting Other Joints,” Annals of the Rheumatic Diseases 73 (2014): 1659–1664.

[10]

I. A. Szilagyi, J. H. Waarsing, D. Schiphof, J. B. J. van Meurs, and S. M. A. Bierma-Zeinstra, “Towards Sex-specific Osteoarthritis Risk Models: Evaluation of Risk Factors for Knee Osteoarthritis in Males and Females,” Rheumatology 61 (2022): 648–657.

[11]

H. Long, Q. Liu, H. Yin, et al., “Prevalence Trends of Site-Specific Osteoarthritis From 1990 to 2019: Findings From the Global Burden of Disease Study 2019,” Arthritis & Rheumatology 74 (2022): 1172–1183.

[12]

Q. Pan, M. I. O'Connor, R. D. Coutts, et al., “Characterization of Osteoarthritic Human Knees Indicates Potential Sex Differences,” Biology of Sex Differences 7 (2016): 27.

[13]

X. T. Xue, T. Zhang, S. J. Cui, et al., “Sexual Dimorphism of Estrogen-Sensitized Synoviocytes Contributes to Gender Difference in Temporomandibular Joint Osteoarthritis,” Oral Diseases 24 (2018): 1503–1513.

[14]

C. M. Lopes-Ramos, C. Y. Chen, M. L. Kuijjer, et al., “Sex Differences in Gene Expression and Regulatory Networks Across 29 Human Tissues,” Cell Reports 31 (2020): 107795.

[15]

A. Phinyomark, S. T. Osis, B. A. Hettinga, D. Kobsar, and R. Ferber, “Gender Differences in Gait Kinematics for Patients With Knee Osteoarthritis,” BMC Musculoskeletal Disorders 17 (2016): 157.

[16]

I. A. Rosner, V. M. Goldberg, L. Getzy, and R. W. Moskowitz, “Effects of Estrogen on Cartilage and Experimentally Induced Osteoarthritis,” Arthritis & Rheumatism 22 (1979): 52–58.

[17]

Y. Mei, J. S. Williams, E. K. Webb, A. K. Shea, M. J. MacDonald, and B. K. Al-Khazraji, “Roles of Hormone Replacement Therapy and Menopause on Osteoarthritis and Cardiovascular Disease Outcomes: A Narrative Review,” Frontiers in Rehabilitation Sciences 3 (2022): 825147.

[18]

J. A. Roman-Blas, S. Castañeda, R. Largo, and G. Herrero-Beaumont, “Osteoarthritis Associated With Estrogen Deficiency,” Arthritis Research & Therapy 11 (2009): 241.

[19]

K. M. Fisch, R. Gamini, O. Alvarez-Garcia, et al., “Identification of Transcription Factors Responsible for Dysregulated Networks in Human Osteoarthritis Cartilage by Global Gene Expression Analysis,” Osteoarthritis and Cartilage 26 (2018): 1531–1538.

[20]

Y. Liu, J. C. Chang, C. C. Hon, et al., “Chromatin Accessibility Landscape of Articular Knee Cartilage Reveals Aberrant Enhancer Regulation in Osteoarthritis,” Scientific Reports 8 (2018): 15499.

[21]

M. Oliva, M. Muñoz-Aguirre, S. Kim-Hellmuth, et al., “The Impact of Sex on Gene Expression Across Human Tissues,” Science 369 (2020): eaba3066.

[22]

G. Bindea, B. Mlecnik, H. Hackl, et al., “ClueGO: A Cytoscape Plug-In to Decipher Functionally Grouped Gene Ontology and Pathway Annotation Networks,” Bioinformatics 25 (2009): 1091–1093.

[23]

S. Naqvi, A. K. Godfrey, J. F. Hughes, M. L. Goodheart, R. N. Mitchell, and D. C. Page, “Conservation, Acquisition, and Functional Impact of Sex-Biased Gene Expression in Mammals,” Science 365 (2019): eaaw7317.

[24]

R. Sladek, B. Beatty, J. Squire, et al., “Chromosomal Mapping of the Human and Murine Orphan Receptors ERRα (ESRRA) and ERRβ (ESRRB) and Identification of a Novel Human ERRα-Related Pseudogene,” Genomics 45 (1997): 320–326.

[25]

J. M. Vanacker, K. Pettersson, J. A. Gustafsson, and V. Laudet, “Transcriptional Targets Shared by Estrogen Receptor-Related Receptors (ERRs) and Estrogen Receptor (ER) α, but Not by ERβ,” EMBO Journal 18 (1999): 4270–4279.

[26]

G. Deblois and V. Giguère, “Functional and Physiological Genomics of Estrogen-Related Receptors (ERRs) in Health and Disease,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1812 (2011): 1032–1040.

[27]

V. Giguère, N. Yang, P. Segui, and R. M. Evans, “Identification of a New Class of Steroid Hormone Receptors,” Nature 331 (1988): 91–94.

[28]

J. M. Huss, W. G. Garbacz, and W. Xie, “Constitutive Activities of Estrogen-Related Receptors: Transcriptional Regulation of Metabolism by the ERR Pathways in Health and Disease,” Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1852 (2015): 1912–1927.

[29]

G. Deblois and V. Giguère, “Oestrogen-Related Receptors in Breast Cancer: Control of Cellular Metabolism and Beyond,” Nature Reviews Cancer 13 (2013): 27–36.

[30]

W. Meuleman, A. Muratov, E. Rynes, et al., “Index and Biological Spectrum of Human DNase I Hypersensitive Sites,” Nature 584 (2020): 244–251.

[31]

C. E. Mason, F. J. Shu, C. Wang, et al., “Location Analysis for the Estrogen Receptor-α Reveals Binding to Diverse ERE Sequences and Widespread Binding Within Repetitive DNA Elements,” Nucleic Acids Research 38 (2010): 2355–2368.

[32]

E. L. Kuyinu, G. Narayanan, L. S. Nair, and C. T. Laurencin, “Animal Models of Osteoarthritis: Classification, Update, and Measurement of Outcomes,” Journal of Orthopaedic Surgery and Research 11 (2016): 19.

[33]

M. F. Rai, R. H. Brophy, and L. J. Sandell, “Osteoarthritis Following Meniscus and Ligament Injury: Insights From Translational Studies and Animal Models,” Current Opinion in Rheumatology 31 (2019): 70–79.

[34]

J. Temp, D. Labuz, R. Negrete, V. Sunkara, and H. Machelska, “Pain and Knee Damage in Male and Female Mice in the Medial Meniscal Transection-Induced Osteoarthritis,” Osteoarthritis and Cartilage 28 (2020): 475–485.

[35]

I. S. von Loga, V. Batchelor, C. Driscoll, et al., “Does Pain at an Earlier Stage of Chondropathy Protect Female Mice Against Structural Progression After Surgically Induced Osteoarthritis?,” Arthritis & Rheumatology 72 (2020): 2083–2093.

[36]

A. Cui, H. Li, D. Wang, J. Zhong, Y. Chen, and H. Lu, “Global, Regional Prevalence, Incidence and Risk Factors of Knee Osteoarthritis in Population-Based Studies,” eClinicalMedicine 29 (2020): 100587.

[37]

V. Silverwood, M. Blagojevic-Bucknall, C. Jinks, J. L. Jordan, J. Protheroe, and K. P. Jordan, “Current Evidence on Risk Factors for Knee Osteoarthritis in Older Adults: A Systematic Review and Meta-Analysis,” Osteoarthritis and Cartilage 23 (2015): 507–515.

[38]

F. S. Hanna, A. J. Teichtahl, A. E. Wluka, et al., “Women Have Increased Rates of Cartilage Loss and Progression of Cartilage Defects at the Knee Than Men: A Gender Study of Adults Without Clinical Knee Osteoarthritis,” Menopause 16 (2009): 666–670.

[39]

C. Li and Z. Zheng, “Males and Females Have Distinct Molecular Events in the Articular Cartilage During Knee Osteoarthritis,” International Journal of Molecular Sciences 22 (2021): 7876.

[40]

Y. Liu, A. Beyer, and R. Aebersold, “On the Dependency of Cellular Protein Levels on mRNA Abundance,” Cell 165 (2016): 535–550.

[41]

I. A. Szilagyi, J. H. Waarsing, J. B. J. van Meurs, S. M. A. Bierma-Zeinstra, and D. Schiphof, “A Systematic Review of the Sex Differences in Risk Factors for Knee Osteoarthritis,” Rheumatology 62 (2023): 2037–2047.

[42]

L. Kong, L. Wang, F. Meng, J. Cao, and Y. Shen, “Association Between Smoking and Risk of Knee Osteoarthritis: A Systematic Review and Meta-Analysis,” Osteoarthritis and Cartilage 25 (2017): 809–816.

[43]

H. L. Ma, T. J. Blanchet, D. Peluso, B. Hopkins, E. A. Morris, and S. S. Glasson, “Osteoarthritis Severity Is Sex Dependent in a Surgical Mouse Model,” Osteoarthritis and Cartilage 15 (2007): 695–700.

[44]

P. Høegh-Andersen, L. B. Tankó, T. L. Andersen, et al., “Ovariectomized Rats as a Model of Postmenopausal Osteoarthritis: Validation and Application,” Arthritis Research & Therapy 6 (2004): R169–R180.

[45]

X. Xu, X. Li, Y. Liang, et al., “Estrogen Modulates Cartilage and Subchondral Bone Remodeling in an Ovariectomized Rat Model of Postmenopausal Osteoarthritis,” Medical Science Monitor 25 (2019): 3146–3153.

[46]

G. Gilmer, H. Iijima, Z. R. Hettinger, et al., “Menopause-Induced 17β-estradiol and Progesterone Loss Increases Senescence Markers, Matrix Disassembly and Degeneration in Mouse Cartilage,” Nature Aging 5 (2025): 65–86.

[47]

W. Y. Hou, C. Y. Zhu, Y. F. Gu, L. Zhu, and Z. X. Zhou, “Association of Hormone Replacement Therapy and the Risk of Knee Osteoarthritis: A Meta-Analysis,” Medicine (Baltimore) 101 (2022): e32466.

[48]

Y. P. Xiao, F. M. Tian, M. W. Dai, W. Y. Wang, L. T. Shao, and L. Zhang, “Are Estrogen-Related Drugs New Alternatives for the Management of Osteoarthritis?,” Arthritis Research & Therapy 18 (2016): 151.

[49]

S. Park, S. Kang, D. S. Kim, and T. Zhang, “Protection Against Osteoarthritis Symptoms by Aerobic Exercise With a High-Protein Diet by Reducing Inflammation in a Testosterone-Deficient Animal Model,” Life 12 (2022): 177.

[50]

G. Freystaetter, K. Fischer, E. J. Orav, et al., “Total Serum Testosterone and Western Ontario and McMaster Universities Osteoarthritis Index Pain and Function Among Older Men and Women With Severe Knee Osteoarthritis,” Arthritis Care & Research 72 (2020): 1511–1518.

[51]

L. Cheng and S. Wang, “Lower Serum Testosterone Is Associated With Increased Likelihood of Arthritis,” Scientific Reports 13 (2023): 19241.

[52]

A. Dobin, C. A. Davis, F. Schlesinger, et al., “STAR: Ultrafast Universal RNA-Seq Aligner,” Bioinformatics 29 (2013): 15–21.

[53]

M. Haeussler, A. S. Zweig, C. Tyner, et al., “The UCSC Genome Browser Database: 2019 Update,” Nucleic Acids Research 47 (2019): D853–D858.

[54]

D. Risso, J. Ngai, T. P. Speed, and S. Dudoit, “Normalization of RNA-Seq Data Using Factor Analysis of Control Genes or Samples,” Nature Biotechnology 32 (2014): 896–902.

[55]

M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data,” Bioinformatics 26 (2010): 139–140.

[56]

M. I. Love, W. Huber, and S. Anders, “Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data With DESeq2,” Genome Biology 15 (2014): 550.

[57]

P. Bardou, J. Mariette, F. Escudié, C. Djemiel, and C. Klopp, “jvenn: An Interactive Venn Diagram Viewer,” BMC Bioinformatics 15 (2014): 293.

[58]

D. Szklarczyk, R. Kirsch, M. Koutrouli, et al., “The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest,” Nucleic Acids Research 51 (2023): D638–D646.

[59]

P. Shannon, A. Markiel, O. Ozier, et al., “Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks,” Genome Research 13 (2003): 2498–2504.

[60]

S. Liu, D. Li, C. Lyu, et al., “AIAP: A Quality Control and Integrative Analysis Package to Improve ATAC-Seq Data Analysis,” Genomics, Proteomics & Bioinformatics 19 (2021): 641–651.

[61]

Y. Tanigawa, E. S. Dyer, and G. Bejerano, “WhichTF Is Functionally Important in Your Open Chromatin Data?,” PLoS Computational Biology 18 (2022): e1010378.

[62]

C. E. Grant, T. L. Bailey, and W. S. Noble, “FIMO: Scanning for Occurrences of a Given Motif,” Bioinformatics 27 (2011): 1017–1018.

[63]

J. A. Castro-Mondragon, R. Riudavets-Puig, I. Rauluseviciute, et al., “JASPAR 2022: The 9th Release of the Open-Access Database of Transcription Factor Binding Profiles,” Nucleic Acids Research 50 (2022): D165–D173.

[64]

J. Chen, E. E. Bardes, B. J. Aronow, and A. G. Jegga, “ToppGene Suite for Gene List Enrichment Analysis and Candidate Gene Prioritization,” Nucleic Acids Research 37 (2009): W305–W311.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

44

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/