Targeting KRAS Sensitizes Ferroptosis by Coordinately Regulating the TCA Cycle and Nrf2-SLC7A11-GPX4 Signaling in Hepatocellular Carcinoma

Jiaxin Zhang , Zuojia Liu , Wenjing Zhao , Chang Li , Fei Liu , Jin Wang

Smart Medicine ›› 2025, Vol. 4 ›› Issue (2) : e70005

PDF
Smart Medicine ›› 2025, Vol. 4 ›› Issue (2) : e70005 DOI: 10.1002/smmd.70005
RESEARCH ARTICLE

Targeting KRAS Sensitizes Ferroptosis by Coordinately Regulating the TCA Cycle and Nrf2-SLC7A11-GPX4 Signaling in Hepatocellular Carcinoma

Author information +
History +
PDF

Abstract

Oncogenic KRAS, a notorious driver of cancer progression, remains a therapeutic challenge. In hepatocellular carcinoma (HCC), KRAS overexpression correlates with tumor aggressiveness. Here, we demonstrate that NSC48160 induces HCC cell death by suppressing KRAS expression. Metabolomic profiling revealed that NSC48160 significantly enhances intracellular tricarboxylic acid (TCA) cycle activity and fructose metabolism, disrupting redox homeostasis, and triggering ferroptosis. Combining NSC48160 with the SLC7A11 inhibitor HG106 synergistically eliminated HCC cells in vitro and suppressed tumor growth in vivo. Mechanistically, NSC48160 indirectly inhibits the Nrf2-SLC7A11-GPX4 axis, as evidenced by ferroptosis-pathway array assays. Specifically, NSC48160 downregulates Nrf2 expression, thereby suppressing its downstream targets GPX4 and SLC7A11, ultimately promoting ferroptosis. Our findings establish NSC48160 as a novel KRAS inhibitor that induces ferroptosis through metabolic and redox reprogramming, offering a promising therapeutic strategy for KRAS-driven HCC.

Keywords

ferroptosis / hepatocellular carcinoma / KRAS / metabolomics / NSC48160

Cite this article

Download citation ▾
Jiaxin Zhang, Zuojia Liu, Wenjing Zhao, Chang Li, Fei Liu, Jin Wang. Targeting KRAS Sensitizes Ferroptosis by Coordinately Regulating the TCA Cycle and Nrf2-SLC7A11-GPX4 Signaling in Hepatocellular Carcinoma. Smart Medicine, 2025, 4(2): e70005 DOI:10.1002/smmd.70005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Sung, J. Ferlay, R. L. Siegel, et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 71 (2021): 209–249.

[2]

J. M. Llovet, R. Montal, D. Sia, and R. S. Finn, “Molecular Therapies and Precision Medicine for Hepatocellular Carcinoma,” Nature Reviews Clinical Oncology 15 (2018): 599–616.

[3]

A. Vogel, T. Meyer, G. Sapisochin, R. Salem, and A. Saborowski, “Hepatocellular Carcinoma,” Lancet 400 (2022): 1345–1362.

[4]

R. S. Finn and A. X. Zhu, “Evolution of Systemic Therapy for Hepatocellular Carcinoma,” Hepatology 73 (2021): 150–157.

[5]

A. Jemal, E. M. Ward, C. J. Johnson, et al., “Annual Report to the Nation on the Status of Cancer, 1975–2014, Featuring Survival,” Journal of the National Cancer Institute 109 (2017): djx030.

[6]

S. A. Kerk, T. Papagiannakopoulos, Y. M. Shah, and C. A. Lyssiotis, “Metabolic Networks in Mutant KRAS-Driven Tumours: Tissue Specificities and the Microenvironment,” Nature Reviews Cancer 21 (2021): 510–525.

[7]

D. Tang, G. Kroemer, and R. Kang, “Oncogenic KRAS Blockade Therapy: Renewed Enthusiasm and Persistent Challenges,” Molecular Cancer 20 (2021): 128.

[8]

Y. Qiu, Y. Wang, Z. Chai, et al., “Targeting RAS Phosphorylation in Cancer Therapy: Mechanisms and Modulators,” Acta Pharmaceutica Sinica B 11 (2021): 3433–3446.

[9]

A. Anandhan, M. Dodson, A. Shakya, et al., “NRF2 Controls Iron Homeostasis and Ferroptosis Through HERC2 and VAMP8,” Science Advances 9 (2023): eade9585.

[10]

P. Koppula, L. Zhuang, and B. Gan, “Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy,” Protein & Cell 12 (2021): 599–620.

[11]

Q. Xue, D. Yan, X. Chen, et al., “Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis,” Autophagy 19 (2023): 1982–1996.

[12]

M. Maiorino, M. Conrad, and F. Ursini, “GPX4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues,” Antioxidants & Redox Signaling 29 (2018): 61–74.

[13]

Y. Wang, L. Zheng, W. Shang, et al., “Wnt/Beta-Catenin Signaling Confers Ferroptosis Resistance by Targeting GPX4 in Gastric Cancer,” Cell Death & Differentiation 29 (2022): 2190–2202.

[14]

W. S. Yang and B. R. Stockwell, “Ferroptosis: Death by Lipid Peroxidation,” Trends in Cell Biology 26 (2016): 165–176.

[15]

F. Müller, J. K. M. Lim, C. M. Bebber, et al., “Elevated FSP1 Protects KRAS-Mutated Cells From Ferroptosis During Tumor Initiation,” Cell Death & Differentiation 30 (2023): 442–456.

[16]

T. Tadokoro, M. Ikeda, T. Ide, et al., “Mitochondria-Dependent Ferroptosis Plays a Pivotal Role in Doxorubicin Cardiotoxicity,” JCI Insight 5 (2020): e132747.

[17]

L. D’Artista, A. A. Moschopoulou, I. Barozzi, et al., “MYC Determines Lineage Commitment in KRAS-Driven Primary Liver Cancer Development,” Journal of Hepatology 79 (2023): 141–149.

[18]

N. Perurena, L. Situ, and K. Cichowski, “Combinatorial Strategies to Target RAS-Driven Cancers,” Nature Reviews Cancer 24 (2024): 316–337.

[19]

J. Zhang, Z. Liu, W. Zhao, et al., “Discovery of Small Molecule NSC290956 as a Therapeutic Agent for KRas Mutant Non-Small-Cell Lung Cancer,” Frontiers in Pharmacology 12 (2022): 797821.

[20]

K. Hu, K. Li, J. Lv, et al., “Suppression of the SLC7A11/glutathione Axis Causes Synthetic Lethality in KRAS-Mutant Lung Adenocarcinoma,” Journal of Clinical Investigation 130 (2020): 1752–1766.

[21]

P. Chen, X. Li, R. Zhang, et al., “Combinative Treatment of β-elemene and Cetuximab Is Sensitive to KRAS Mutant Colorectal Cancer Cells by Inducing Ferroptosis and Inhibiting Epithelial-Mesenchymal Transformation,” Theranostics 10 (2020): 5107–5119.

[22]

Y. Liu, Y. Sun, Y. Guo, et al., “An Overview: The Diversified Role of Mitochondria in Cancer Metabolism,” International Journal of Biological Sciences 19 (2023): 897–915.

[23]

Y. Zhang, R. V. Swanda, L. Nie, et al., “mTORC1 Couples Cyst (e)ine Availability With GPX4 Protein Synthesis and Ferroptosis Regulation,” Nature Communications 12 (2021): 1589.

[24]

F. Bi, Y. Qiu, Z. Wu, et al., “METTL9-SLC7A11 Axis Promotes Hepatocellular Carcinoma Progression Through Ferroptosis Inhibition,” Cell Death Discovery 9 (2023): 428.

[25]

I. A. Prior, F. E. Hood, and J. L. Hartley, “The Frequency of Ras Mutations in Cancer,” Cancer Research 80 (2020): 2969–2974.

[26]

K. Chen, Y. Zhang, L. Qian, and P. Wang, “Emerging Strategies to Target RAS Signaling in Human Cancer Therapy,” Journal of Hematology & Oncology 14 (2021): 116.

[27]

G. Zhu, L. Pei, H. Xia, Q. Tang, and F. Bi, “Role of Oncogenic KRAS in the Prognosis, Diagnosis and Treatment of Colorectal Cancer,” Molecular Cancer 20 (2021): 143.

[28]

K. Liu, J. Liu, B. Zou, et al., “Trypsin-Mediated Sensitization to Ferroptosis Increases the Severity of Pancreatitis in Mice,” Cellular and Molecular Gastroenterology and Hepatology 13 (2022): 483–500.

[29]

A. G. Singal, F. Kanwal, and J. M. Llovet, “Global Trends in Hepatocellular Carcinoma Epidemiology: Implications for Screening, Prevention and Therapy,” Nature Reviews Clinical Oncology 20 (2023): 864–884.

[30]

M. Guo, L. Zhao, C. Jiang, et al., “Multiomics Analyses Reveal Pathological Mechanisms of HBV Infection and Integration in Liver Cancer,” Journal of Medical Virology 95 (2023): e28980.

[31]

J. D. Yang, P. Hainaut, G. J. Gores, A. Amadou, A. Plymoth, and L. R. Roberts, “A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management,” Nature Reviews Gastroenterology & Hepatology 16 (2019): 589–604.

[32]

N. Fujiwara, S. L. Friedman, N. Goossens, and Y. Hoshida, “Risk Factors and Prevention of Hepatocellular Carcinoma in the Era of Precision Medicine,” Journal of Hepatology 68 (2018): 526–549.

[33]

X. Yao, W. Li, D. Fang, et al., “Emerging Roles of Energy Metabolism in Ferroptosis Regulation of Tumor Cells,” Advanced Science 8 (2021): 2100997.

[34]

X. Chen, C. Yu, R. Kang, and D. Tang, “Iron Metabolism in Ferroptosis,” Frontiers in Cell and Developmental Biology 8 (2020): 590226.

[35]

D. Liang, A. M. Minikes, and X. Jiang, “Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling,” Molecular Cell 82 (2022): 2215–2227.

[36]

S. Zhang, Q. Liu, M. Chang, et al., “Chemotherapy Impairs Ovarian Function Through Excessive ROS-Induced Ferroptosis,” Cell Death & Disease 14 (2023): 340.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

55

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/