Self-Assembled Hydroxypropyl Celluloses With Structural Colors for Biomedical Applications

Zhuohao Zhang , Luoran Shang

Smart Medicine ›› 2025, Vol. 4 ›› Issue (2) : e70004

PDF
Smart Medicine ›› 2025, Vol. 4 ›› Issue (2) : e70004 DOI: 10.1002/smmd.70004
REVIEW

Self-Assembled Hydroxypropyl Celluloses With Structural Colors for Biomedical Applications

Author information +
History +
PDF

Abstract

Hydroxypropyl cellulose (HPC), a cellulose derivative with biocompatibility, edibility, and exceptional solubility in many polar solvents, holds significant potential for biomedical applications. Within a specific concentration range, HPC undergoes self-assembly to form cholesteric liquid crystals, which display distinct structural colors. These colors result from the interaction between incident light and the periodic nano-architecture of HPC, providing long-lasting visual effects that can be dynamically adjusted by factors such as concentration, temperature, and functional additives. This review includes the mechanisms underlying the genesis of structural colors and the regulation of HPCs while summarizing advanced techniques for fabricating HPC-based materials with diverse configurations. Furthermore, through representative examples, we highlight the multifaceted applications of these materials in sensors, bionic skins, drug delivery, and anti-counterfeiting labels. We also propose strategies to address current research and application challenges with the goal of exploring the potential of structural color HPCs for scientific breakthroughs and societal well-being. We hope this review catalyzes HPC-based structural color materials’ advancement and future biomedical applications.

Keywords

3D printing / anti-counterfeiting label / bionic skin / cholesteric liquid crystal / drug delivery / hydroxypropyl cellulose / sensor / structural color

Cite this article

Download citation ▾
Zhuohao Zhang, Luoran Shang. Self-Assembled Hydroxypropyl Celluloses With Structural Colors for Biomedical Applications. Smart Medicine, 2025, 4(2): e70004 DOI:10.1002/smmd.70004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, “Bio-Inspired Variable Structural Color Materials,” Chemical Society Reviews 41 (2012): 3297.

[2]

A. G. Dumanli and T. Savin, “Recent Advances in the Biomimicry of Structural Colours,” Chemical Society Reviews 45 (2016): 6698.

[3]

L. Wu, J. He, W. Shang, et al., “Optical Functional Materials Inspired by Biology,” Advanced Optical Materials 4 (2016): 195.

[4]

A. E. Goodling, S. Nagelberg, B. Kaehr, et al., “Colouration by Total Internal Reflection and Interference at Microscale Concave Interfaces,” Nature 566 (2019): 523.

[5]

M. M. Ito, A. H. Gibbons, D. Qin, et al., “Structural Colour Using Organized Microfibrillation in Glassy Polymer Films,” Nature 570 (2019): 363.

[6]

D. Qu, O. J. Rojas, B. Wei, and E. Zussman, “Responsive Chiral Photonic Cellulose Nanocrystal Materials,” Advanced Optical Materials 10 (2022): 2201201.

[7]

J. Zhang, J. Zhang, Y. Ou, et al., “Photonic Plasticines With Uniform Structural Colors, High Processability, and Self-Healing Properties,” Small 17 (2021): 2007426.

[8]

S. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Bio-Optics and Bio-Inspired Optical Materials,” Chemical Reviews 117 (2017): 12705.

[9]

R. M. Parker, G. Guidetti, C. A. Williams, et al., “The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance,” Advanced Materials 30 (2018): 1704477.

[10]

F. Fu, L. Shang, Z. Chen, Y. Yu, and Y. Zhao, “Bioinspired Living Structural Color Hydrogels,” Science Robotics 3 (2018): eaar8580.

[11]

Y. Zhao, L. Shang, Y. Cheng, and Z. Gu, “Spherical Colloidal Photonic Crystals,” Accounts of Chemical Research 47 (2014): 3632.

[12]

A. Lonergan and C. O’Dwyer, “Many Facets of Photonic Crystals: From Optics and Sensors to Energy Storage and Photocatalysis,” Advanced Materials Technologies 8 (2023): 2201410.

[13]

M. E. McConney, M. Rumi, N. P. Godman, U. N. Tohgha, and T. J. Bunning, “Photoresponsive Structural Color in Liquid Crystalline Materials,” Advanced Optical Materials 7 (2019): 1900429.

[14]

J. Hou, M. Li, and Y. Song, “Patterned Colloidal Photonic Crystals,” Angewandte Chemie International Edition 57 (2018): 2544.

[15]

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural Colors: From Plasmonic to Carbon Nanostructures,” Small 7 (2011): 3128.

[16]

S. Miao, Y. Wang, L. Sun, and Y. Zhao, “Freeze-Derived Heterogeneous Structural Color Films,” Nature Communications 13 (2022): 4044.

[17]

M. Xiao, Z. Hu, Z. Wang, et al., “Bioinspired Bright Noniridescent Photonic Melanin Supraballs,” Science Advances 3 (2017): e1701151.

[18]

X. Zhu, W. Yan, U. Levy, N. A. Mortensen, and A. Kristensen, “Resonant Laser Printing of Structural Colors on High-Index Dielectric Metasurfaces,” Science Advances 3 (2017): e1602487.

[19]

G. von Freymann, V. Kitaev, B. V. Lotschz, and G. A. Ozin, “Bottom-Up Assembly of Photonic Crystals,” Chemical Society Reviews 42 (2013): 2528.

[20]

M. Li, Q. Lyu, B. Peng, X. Chen, L. Zhang, and J. Zhu, “Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications,” Advanced Materials 34 (2022): 2110488.

[21]

G. K. Kole and J. J. Vittal, “Solid-State Reactivity and Structural Transformations Involving Coordination Polymers,” Chemical Society Reviews 42 (2013): 1755.

[22]

Z. Wang, C. L. C. Chan, T. H. Zhao, R. M. Parker, and S. Vignolini, “Recent Advances in Block Copolymer Self-Assembly for the Fabrication of Photonic Films and Pigments,” Advanced Optical Materials 9 (2021): 2100519.

[23]

F. Bian, L. Sun, L. Cai, Y. Wang, Y. Wang, and Y. Zhao, “Colloidal Crystals From Microfluidics,” Small 16 (2020): 1903931.

[24]

Z. Zhang, Z. Chen, L. Shang, and Y. Zhao, “Structural Color Materials From Natural Polymers,” Advanced Materials Technologies 6 (2021): 2100296.

[25]

C. Duan, Z. Cheng, B. Wang, et al., “Chiral Photonic Liquid Crystal Films Derived From Cellulose Nanocrystals,” Small 17 (2021): 2007306.

[26]

G. Conio, E. Bianchi, A. Ciferri, A. Tealdi, and M. A. Aden, “Mesophase Formation and Chain Rigidity in Cellulose and Derivatives. 1. (Hydroxypropyl)Cellulose in Dimethylacetamide,” Macromolecules 16 (1983): 1264.

[27]

R. S. Werbowyj and D. G. Gray, “Liquid Crystalline Structure in Aqueous Hydroxypropyl Cellulose Solutions,” Molecular Crystals and Liquid Crystals 34 (1976): 97.

[28]

R. S. Werbowyj and D. G. Gray, “Ordered Phase Formation in Concentrated Hydroxpropylcellulose Solutions,” Macromolecules 13 (1980): 69.

[29]

R. S. Werbowyj and D. G. Gray, “Optical Properties of Hydroxypropyl Cellulose Liquid Crystals. I. Cholesteric Pitch and Polymer Concentration,” Macromolecules 17 (1984): 1512.

[30]

P. L. Almeida, S. Tavares, A. F. Martins, M. H. Godinho, M. T. Cidade, and J. L. Figueirinhas, “Cross-Linked Hydroxypropylcellulose Films: Mechanical Behaviour and Electro-Optical Properties of PDLC Type Cells,” Optical Materials 20 (2002): 97.

[31]

S. Suto, H. Tashiro, and M. Karasawa, “Preparation and Mechanical Properties of Chemically Cross-Linked Hydroxypropyl Cellulose Solid Films Retaining Cholesteric Liquid Crystalline Order,” Journal of Applied Polymer Science 45 (1992): 1569.

[32]

T. Balcerowski, B. Ozbek, O. Akbulut, and A. G. Dumanli, “Hierarchical Organization of Structurally Colored Cholesteric Phases of Cellulose via 3D Printing,” Small 19 (2023): 2205506.

[33]

C. L. C. Chan, I. M. Lei, G. T. van de Kerkhof, et al., “3D Printing of Liquid Crystalline Hydroxypropyl Cellulose—Toward Tunable and Sustainable Volumetric Photonic Structures,” Advanced Functional Materials 32 (2022): 2108566.

[34]

A. Tran, C. E. Boott, and M. J. MacLachlan, “Understanding the Self-Assembly of Cellulose Nanocrystals—Toward Chiral Photonic Materials,” Advanced Materials 32 (2020): 1905876.

[35]

P. Chen, B. Y. Wei, W. Hu, and Y. Q. Lu, “Liquid-Crystal-Mediated Geometric Phase: From Transmissive to Broadband Reflective Planar Optics,” Advanced Materials 32 (2020): 1903665.

[36]

H. K. Bisoyi, T. J. Bunning, and Q. Li, “Stimuli-Driven Control of the Helical Axis of Self-Organized Soft Helical Superstructures,” Advanced Materials 30 (2018): 1706512.

[37]

A. P. C. Almeida, J. P. Canejo, S. N. Fernandes, C. Echeverria, P. L. Almeida, and M. H. Godinho, “Cellulose-Based Biomimetics and Their Applications,” Advanced Materials 30 (2018): 1703655.

[38]

M. O’Neill and S. M. Kelly, “Ordered Materials for Organic Electronics and Photonics,” Advanced Materials 23 (2011): 566.

[39]

G. Kamita, B. Frka-Petesic, A. Allard, et al., “Biocompatible and Sustainable Optical Strain Sensors for Large-Area Applications,” Advanced Optical Materials 4 (2016): 1950.

[40]

H. Yi, S. H. Lee, H. Ko, et al., “Ultra-Adaptable and Wearable Photonic Skin Based on a Shape-Memory, Responsive Cellulose Derivative,” Advanced Functional Materials 29 (2019): 1902720.

[41]

L. Bai, Y. Jin, X. Shang, H. Jin, Y. Zhou, and L. Shi, “Highly Synergistic, Electromechanical and Mechanochromic Dual-Sensing Ionic Skin With Multiple Monitoring, Antibacterial, Self-Healing, and Anti-Freezing Functions,” Journal of Materials Chemistry A 9 (2021): 23916.

[42]

M. H. Godinho, D. G. Gray, and P. Pieranski, “Revisiting (Hydroxypropyl) Cellulose (HPC)/Water Liquid Crystalline System,” Liquid Crystals 44 (2017): 2108.

[43]

Z. Zhang, Z. Chen, Y. Wang, and Y. Zhao, “Bioinspired Conductive Cellulose Liquid-Crystal Hydrogels as Multifunctional Electrical Skins,” Proceedings of the National Academy of Sciences 117 (2020): 18310.

[44]

Z. Zhang, Z. Chen, Y. Wang, Y. Zhao, and L. Shang, “Cholesteric Cellulose Liquid Crystals With Multifunctional Structural Colors,” Advanced Functional Materials 32 (2022): 2107242.

[45]

Z. Zhang, C. Wang, Q. Wang, Y. Zhao, and L. Shang, “Cholesteric Cellulose Liquid Crystal Ink for Three-Dimensional Structural Coloration,” Proceedings of the National Academy of Sciences 119 (2022): e2204113119.

[46]

D. G. Gray, “Chiral Nematic Ordering of Polysaccharides,” Carbohydrate Polymers 25 (1994): 277.

[47]

D. V. Saraiva, R. Chagas, B. M. de Abreu, et al., “Flexible and Structural Coloured Composite Films From Cellulose Nanocrystals/Hydroxypropyl Cellulose Lyotropic Suspensions,” Crystals 10 (2020): 122.

[48]

R. M. Parker, T. G. Parton, C. L. C. Chan, M. M. Bay, B. Frka-Petesic, and S. Vignolini, “Bioinspired Photonic Materials From Cellulose: Fabrication, Optical Analysis, and Applications,” Accounts of Materials Research 4 (2023): 522.

[49]

H. de Vries, “Rotatory Power and Other Optical Properties of Certain Liquid Crystals,” Acta Crystallographica 4 (1951): 219.

[50]

C. H. Barty-King, C. L. C. Chan, R. M. Parker, et al., “Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared from Hydroxypropyl Cellulose and Gelatin,” Advanced Materials 33 (2021): 2102112.

[51]

H. Yi, S. H. Lee, D. Kim, H. E. Jeong, and C. Jeong, “Colorimetric Sensor Based on Hydroxypropyl Cellulose for Wide Temperature Sensing Range,” Sensors 22 (2022): 886.

[52]

A. Espinha, C. Dore, C. Matricardi, M. I. Alonso, A. R. Goñi, and A. Mihi, “Hydroxypropyl Cellulose Photonic Architectures by Soft Nanoimprinting Lithography,” Nature Photonics 12 (2018): 343.

[53]

K. Hayata, T. Suzuki, M. Fukawa, and S. Furumi, “Thermotropic Cholesteric Liquid Crystals From Cellulose Derivatives With Ester and Carbamate Groups,” Journal of Photopolymer Science and Technology 32 (2019): 645.

[54]

S. Lu, B. Du, S. A. Khan, and S. Huang, “Laser-Inscribable, Moisture-Responsive Cellulosic Supramolecular Structures With Tunable Broadband Coloration,” Advanced Functional Materials 34 (2024): 2406902.

[55]

Y. Wang, L. Shang, G. Chen, L. Sun, X. Zhang, and Y. Zhao, “Bioinspired Structural Color Patch With Anisotropic Surface Adhesion,” Science Advances 6 (2020): eaax8258.

[56]

Y. Wang, Z. Zhang, H. Chen, H. Zhang, H. Zhang, and Y. Zhao, “Bio-Inspired Shape-Memory Structural Color Hydrogel Film,” Science Bulletin 67 (2022): 512.

[57]

Z. Zhang, Z. Chen, Y. Wang, J. Chi, Y. Wang, and Y. Zhao, “Bioinspired Bilayer Structural Color Hydrogel Actuator With Multienvironment Responsiveness and Survivability,” Small Methods 3 (2019): 1900519.

[58]

Z. Zhang, Y. Wang, Q. Wang, and L. Shang, “Smart Film Actuators for Biomedical Applications,” Small 18 (2022): 2105116.

[59]

Y. Wang, Y. Yu, J. Guo, Z. Zhang, X. Zhang, and Y. Zhao, “Bio-Inspired Stretchable, Adhesive, and Conductive Structural Color Film for Visually Flexible Electronics,” Advanced Functional Materials 30 (2020): 2000151.

[60]

Y. Zheng, H. Huang, J. Yu, Z. Hu, and Y. Wang, “Highly Stretchable and Strong Poly (Vinyl Alcohol)-Based Hydrogel for Reprogrammable Actuator Applications,” Chemical Engineering Journal 454 (2023): 140054.

[61]

J. Li, R. Wang, D. Ruan, H. Wu, L. Cheng, and A. Liu, “Actuation Behavior of PNIPAM-Based Bilayer Hydrogel Regulated by Polyvinyl Alcohol Polymer Film,” Functional Materials Letters 16 (2023): 2350013.

[62]

M. Dong, D. Jiao, Q. Zheng, and Z. L. Wu, “Recent Progress in Fabrications and Applications of Functional Hydrogel Films,” Journal of Polymer Science 61 (2023): 1026.

[63]

R. Yu, L. Zhu, Y. Xia, et al., “Octopus Inspired Hydrogel Actuator With Synergistic Structural Color and Shape Change,” Advanced Materials Interfaces 9 (2022): 2200401.

[64]

M. S. Ting, B. N. Narasimhan, J. Travas-Sejdic, and J. Malmström, “Soft Conducting Polymer Polypyrrole Actuation Based on poly(N-Isopropylacrylamide) Hydrogels,” Sensors and Actuators B: Chemical 343 (2021): 130167.

[65]

S. Zakharchenko and L. Ionov, “Anisotropic Liquid Microcapsules from Biomimetic Self-Folding Polymer Films,” ACS Applied Materials & Interfaces 7 (2015): 12367.

[66]

H. L. Liang, M. M. Bay, R. Vadrucci, et al., “Roll-to-Roll Fabrication of Touch-Responsive Cellulose Photonic Laminates,” Nature Communications 9 (2018): 4632.

[67]

R. Chiba, Y. Nishio, Y. Sato, M. Ohtaki, and Y. Miyashita, “Preparation of Cholesteric (Hydroxypropyl)Cellulose/Polymer Networks and Ion-Mediated Control of Their Optical Properties,” Biomacromolecules 7 (2006): 3076.

[68]

S. Suto and S. Hasegawa, “Self-Colored Crosslinked Cholesteric Liquid Crystalline Solid Films of Hydroxypropyl Cellulose,” Journal of Materials Science 37 (2002): 4857.

[69]

C. L. C. Chan, M. M. Bay, G. Jacucci, et al., “Visual Appearance of Chiral Nematic Cellulose-Based Photonic Films: Angular and Polarization Independent Color Response With a Twist,” Advanced Materials 31 (2019): 1905151.

[70]

C. Chen, J. Feng, J. Li, Y. Guo, X. Shi, and H. Peng, “Functional Fiber Materials to Smart Fiber Devices,” Chemical Reviews 123 (2023): 613.

[71]

J. Li, S. Li, J. Huang, et al., “Spider Silk-Inspired Artificial Fibers,” Advanced Science 9 (2022): 2103965.

[72]

J. Xiong, J. Chen, and P. S. Lee, “Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface,” Advanced Materials 33 (2021): 2002640.

[73]

A. Fakharuddin, H. Li, F. Di Giacomo, et al., “Fiber-Shaped Electronic Devices,” Advanced Energy Materials 11 (2021): 2101443.

[74]

A. Gumennik, A. M. Stolyarov, B. R. Schell, et al., “All-in-Fiber Chemical Sensing,” Advanced Materials 24 (2012): 6005.

[75]

S. Egusa, Z. Wang, N. Chocat, et al., “Multimaterial Piezoelectric Fibres,” Nature Materials 9 (2010): 643.

[76]

A. F. Abouraddy, M. Bayindir, G. Benoit, et al., “Towards Multimaterial Multifunctional Fibres That See, Hear, Sense and Communicate,” Nature Materials 6 (2007): 336.

[77]

Z. Zhang, Q. Wang, Y. Li, C. Wang, X. Yang, and L. Shang, “Cholesteric Cellulose Liquid Crystal Fibers by Direct Drawing,” Research 7 (2024): 0527.

[78]

Q. Qin and Y. Xu, “Hydroxypropyl Cellulose-Based Meter-Long Structurally Colored Fibers for Advanced Fabrics,” Advanced Science 11 (2024): 2404761.

[79]

W. Li, L. Zhang, X. Ge, et al., “Microfluidic Fabrication of Microparticles for Biomedical Applications,” Chemical Society Reviews 47 (2018): 5646.

[80]

M. Yang, Y. Liu, and X. Jiang, “Barcoded Point-of-Care Bioassays,” Chemical Society Reviews 48 (2019): 850.

[81]

Z. Farka, T. Jurik, D. Kovar, L. Trnkova, and P. Skladal, “Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges,” Chemical Reviews 117 (2017): 9973.

[82]

W. Tong, X. Song, and C. Gao, “Layer-by-Layer Assembly of Microcapsules and Their Biomedical Applications,” Chemical Society Reviews 41 (2012): 6103.

[83]

M. Colombo, S. Carregal-Romero, M. F. Casula, et al., “Biological Applications of Magnetic Nanoparticles,” Chemical Society Reviews 41 (2012): 4306.

[84]

E. Ruiz-Hitzky, M. Darder, P. Aranda, and K. Ariga, “Advances in Biomimetic and Nanostructured Biohybrid Materials,” Advanced Materials 22 (2010): 323.

[85]

S. Ming, X. Zhang, C. L. C. Chan, et al., “Exploiting the Thermotropic Behavior of Hydroxypropyl Cellulose to Produce Edible Photonic Pigments,” Advanced Sustainable Systems 7 (2023): 2200469.

[86]

Q. Wang, Z. Zhang, C. Wang, X. Yang, Z. Fang, and L. Shang, “Bioinspired Confined Assembly of Cellulosic Cholesteric Liquid Crystal Bubbles,” Advanced Science 11 (2024): 2308442.

[87]

M. Anyfantakis, V. S. R. Jampani, R. Kizhakidathazhath, B. P. Binks, and J. P. F. Lagerwall, “Responsive Photonic Liquid Marbles,” Angewandte Chemie International Edition 59 (2020): 19260.

[88]

C. Zhao, J. Wang, Z. Zhang, and C. Chi, “Research Progress on the Design of Structural Color Materials Based on 3D Printing,” Advanced Materials Technologies 8 (2023): 2200257.

[89]

A. Schwab, R. Levato, M. D’Este, S. Piluso, D. Eglin, and J. Malda, “Printability and Shape Fidelity of Bioinks in 3D Bioprinting,” Chemical Reviews 120 (2020): 11028.

[90]

J. A. H. P. Sol, L. G. Smits, A. P. H. J. Schenning, and M. G. Debije, “Direct Ink Writing of 4D Structural Colors,” Advanced Functional Materials 32 (2022): 2201766.

[91]

J. A. H. P. Sol, H. Sentjens, L. Yang, N. Grossiord, A. P. H. J. Schenning, and M. G. Debije, “Anisotropic Iridescence and Polarization Patterns in a Direct Ink Written Chiral Photonic Polymer,” Advanced Materials 33 (2021): 2103309.

[92]

J. Li and M. Pumera, “3D Printing of Functional Microrobots,” Chemical Society Reviews 50 (2021): 2794.

[93]

R. Bi, X. Li, X. Ou, et al., “3D-Printed Biomimetic Structural Colors,” Small 20 (2024): 2306646.

[94]

J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Advanced Functional Materials 16 (2006): 2193.

[95]

K. George, M. Esmaeili, J. Wang, N. Taheri-Qazvini, A. Abbaspourrad, and M. Sadati, “3D Printing of Responsive Chiral Photonic Nanostructures,” Proceedings of the National Academy of Sciences 120 (2023): e2220032120.

[96]

J. Wei, X. Aeby, and G. Nyström, “Printed Structurally Colored Cellulose Sensors and Displays,” Advanced Materials Technologies 8 (2023): 2200897.

[97]

J. Ge and Y. Yin, “Responsive Photonic Crystals,” Angewandte Chemie International Edition 50 (2011): 1492.

[98]

Z. Chen, F. Fu, Y. Yu, H. Wang, Y. Shang, and Y. Zhao, “Cardiomyocytes-Actuated Morpho Butterfly Wings,” Advanced Materials 31 (2019): 1805431.

[99]

G. Chen and W. Hong, “Mechanochromism of Structural-Colored Materials,” Advanced Optical Materials 8 (2020): 2000984.

[100]

Y. Zhao, Y. Cheng, L. Shang, J. Wang, Z. Xie, and Z. Gu, “Microfluidic Synthesis of Barcode Particles for Multiplex Assays,” Small 11 (2015): 151.

[101]

C. Fenzl, T. Hirsch, and O. S. Wolfbeis, “Photonic Crystals for Chemical Sensing and Biosensing,” Angewandte Chemie International Edition 53 (2014): 3318.

[102]

F. Han, T. Wang, G. Liu, et al., “Materials With Tunable Optical Properties for Wearable Epidermal Sensing in Health Monitoring,” Advanced Materials 34 (2022): 2109055.

[103]

H. Inan, M. Poyraz, F. Inci, et al., “Photonic Crystals: Emerging Biosensors and Their Promise for Point-of-Care Applications,” Chemical Society Reviews 46 (2017): 366.

[104]

A. Stein, B. E. Wilson, and S. G. Rudisill, “Design and Functionality of Colloidal-Crystal-Templated Materials—Chemical Applications of Inverse Opals,” Chemical Society Reviews 42 (2013): 2763.

[105]

K. Miyagi, T. Takano, and Y. Teramoto, “Glucose-Sensitive Structural Color Change of Cholesteric Liquid Crystal Formed by Hydroxypropyl Cellulose With Phenylboronic Acid Moieties,” Journal of Applied Polymer Science 139 (2022): e52984.

[106]

G. Kamita, S. Vignolini, and A. G. Dumanli, “Edible Cellulose-Based Colorimetric Timer,” Nanoscale Horizons 8 (2023): 887.

[107]

H. Zhang, J. Guo, Y. Wang, L. Sun, and Y. Zhao, “Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins,” Advanced Science 8 (2021): 2102156.

[108]

J. Guo, Y. Yu, H. Zhang, L. Sun, and Y. Zhao, “Elastic MXene Hydrogel Microfiber-Derived Electronic Skin for Joint Monitoring,” ACS Applied Materials & Interfaces 13 (2021): 47800.

[109]

M. Xu, S. Liang, W. Zhang, et al., “Biomimetic Color-Changing Skin Based on Temperature-Responsive Hydrogel Microspheres With the Photonic Crystal Structure,” Journal of Polymer Science 61 (2023): 100.

[110]

H. Chen, L. Hu, M. Ju, et al., “Chiral Smart Bionic Skin Film With Changeable Structural Colors and Tunable Luminescence by Polymer-Assisted Supramolecular Assembly of the Photonic Crystals,” Applied Materials Today 29 (2022): 101654.

[111]

H. Luo, Y. Shen, Z. Liao, X. Yang, B. Gao, and B. He, “Spidroin Composite Biomimetic Multifunctional Skin With Meta-Structure,” Advanced Materials Technologies 7 (2022): 2101097.

[112]

X. Xia, X. Zhang, M. J. Serpe, and Q. Zhang, “Microgel-Based Devices as Wearable Capacitive Electronic Skins for Monitoring Cardiovascular Risks,” Advanced Materials Technologies 5 (2020): 1900818.

[113]

M. Xie, K. Hisano, M. Zhu, et al., “Flexible Multifunctional Sensors for Wearable and Robotic Applications,” Advanced Materials Technologies 4 (2019): 1800626.

[114]

L. Gao, Y. Zhang, V. Malyarchuk, et al., “Epidermal Photonic Devices for Quantitative Imaging of Temperature and Thermal Transport Characteristics of the Skin,” Nature Communications 5 (2014): 4938.

[115]

Z. Zhang, M. Pan, X. Yang, L. Shang, and Y. Zhao, “Structural Color Contact Lenses from Cholesteric Cellulose Liquid Crystals,” Small Methods (Early View): 2401582.

[116]

H. Huang, H. Li, J. Yin, K. Gu, J. Guo, and C. Wang, “Butterfly-Inspired Tri-State Photonic Crystal Composite Film for Multilevel Information Encryption and Anti-Counterfeiting,” Advanced Materials 35 (2023): 2211117.

[117]

X. Lai, Q. Ren, F. Vogelbacher, et al., “Bioinspired Quasi-3D Multiplexed Anti-Counterfeit Imaging via Self-Assembled and Nanoimprinted Photonic Architectures,” Advanced Materials 34 (2022): 2107243.

[118]

L. Cai, Y. Wang, L. Sun, J. Guo, and Y. Zhao, “Bio-Inspired Multi-Responsive Structural Color Hydrogel With Constant Volume and Wide Viewing Angles,” Advanced Optical Materials 9 (2021): 2100831.

[119]

Y. Liu, C. Shao, Y. Wang, L. Sun, and Y. Zhao, “Bio-Inspired Self-Adhesive Bright Non-Iridescent Graphene Pigments,” Matter 1 (2019): 1581.

[120]

Z. Zhang, Z. Chen, L. Sun, X. Zhang, and Y. Zhao, “Bio-inspired Angle-independent Structural Color Films With Anisotropic Colloidal Crystal Array Domains,” Nano Research 12 (2019): 1579.

[121]

W. Wang, Y. Zhou, L. Yang, et al., “Stimulus-Responsive Photonic Crystals for Advanced Security,” Advanced Functional Materials 32 (2022): 2204744.

[122]

W. Hong, Z. Yuan, and X. Chen, “Structural Color Materials for Optical Anticounterfeiting,” Small 16 (2020): 1907626.

[123]

X. Wen, J. Zhang, J. Li, et al., “Bio-Inspired Cholesteric Phase Cellulose Composite With Thermochromic and Circularly Polarized Structural Color for Multilevel Encryption,” Advanced Functional Materials 34 (2023): 2308973.

[124]

X. Wen, Y. Yue, C. Wang, et al., “Bio-Inspired Cellulose Composites With Multicolor Separation via Electro-Thermal and Magneto-Thermal Techniques for Multifunctional Applications,” Advanced Functional Materials 34 (2024): 2408792.

[125]

X. Shi, Y. Zuo, P. Zhai, et al., “Large-Area Display Textiles Integrated With Functional Systems,” Nature 591 (2021): 240.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/