Research Progress of Osteoarthritis Treatment by Low Intensity Pulsed Ultrasound

Mengtong Guan , Xinyu Zhang , Xinhe Li , Bo Liao , Wang Han , Jindong Tan , Zijie Wang , Lichen Wang , Jieliang Shen , Xiaoyu Han , Dingqun Bai

Smart Medicine ›› 2025, Vol. 4 ›› Issue (2) : e70003

PDF
Smart Medicine ›› 2025, Vol. 4 ›› Issue (2) : e70003 DOI: 10.1002/smmd.70003
REVIEW

Research Progress of Osteoarthritis Treatment by Low Intensity Pulsed Ultrasound

Author information +
History +
PDF

Abstract

With the intensification of global population aging, osteoarthritis (OA) has emerged as a major socioeconomic burden requiring urgent therapeutic interventions. Low-intensity pulsed ultrasound (LIPUS), a non-invasive physical therapy modality, delivers pulsed acoustic energy to target tissues with negligible thermal effects. Accumulating evidence from preclinical studies and randomized controlled trials has demonstrated its potential to decelerate OA progression. This systematic review synthesizes current knowledge on LIPUS-mediated OA management, elucidates mechanistic pathways through biomechanical and molecular analyses, strategies combining LIPUS with biomaterials to improve its efficacy, evaluates clinical translation challenges, and proposes standardized treatment protocols to optimize therapeutic outcomes.

Keywords

combination therapy / low intensity pulsed ultrasound / osteoarthritis / treatment mechanism

Cite this article

Download citation ▾
Mengtong Guan, Xinyu Zhang, Xinhe Li, Bo Liao, Wang Han, Jindong Tan, Zijie Wang, Lichen Wang, Jieliang Shen, Xiaoyu Han, Dingqun Bai. Research Progress of Osteoarthritis Treatment by Low Intensity Pulsed Ultrasound. Smart Medicine, 2025, 4(2): e70003 DOI:10.1002/smmd.70003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. J. Hunter, L. March, and M. Chew, “Osteoarthritis in 2020 and Beyond: A Lancet Commission,” Lancet 396 (2020): 1711.

[2]

Q. Weng, Q. Chen, T. Jiang, et al., “Global Burden of Early-Onset Osteoarthritis, 1990–2019: Results from the Global Burden of Disease Study 2019,” Annals of the Rheumatic Diseases 83 (2024): 915.

[3]

L. Sharma, “Osteoarthritis of the Knee,” New England Journal of Medicine 384 (2021): 51.

[4]

D. Chen, J. Shen, W. Zhao, et al., “Osteoarthritis: Toward a Comprehensive Understanding of Pathological Mechanism,” Bone Research 5 (2017): 16044.

[5]

J. N. Katz, K. R. Arant, and R. F. Loeser, “Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review,” JAMA 325 (2021): 568.

[6]

A. C. Bay-Jensen, C. S. Thudium, O. Gualillo, and A. Mobasheri, “Biochemical Marker Discovery, Testing and Evaluation for Facilitating OA Drug Discovery and Development,” Drug Discovery Today 23 (2018): 349.

[7]

I. N. Ackerman, M. A. Bohensky, E. Zomer, et al. “The Projected Burden of Primary Total Knee and Hip Replacement for Osteoarthritis in Australia to the Year 2030,” BMC Musculoskeletal Disorders 20 (2019): 90.

[8]

L. E. Bayliss, D. Culliford, A. P. Monk, et al., “The Effect of Patient Age at Intervention on Risk of Implant Revision After Total Replacement of the Hip or Knee: A Population-Based Cohort Study,” Lancet 389 (2017): 1424.

[9]

K. Melde, A. G. Athanassiadis, D. Missirlis, M. Shi, S. Seneca, and P. Fischer, “Ultrasound-assisted Tissue Engineering,” Nature Reviews Bioengineering 2 (2024): 486.

[10]

X. Jiang, O. Savchenko, Y. Li, et al., “A Review of Low-Intensity Pulsed Ultrasound for Therapeutic Applications,” IEEE Transactions on Biomedical Engineering 66 (2019): 2704.

[11]

S. M. Z. Uddin, B. Richbourgh, Y. Ding, et al., “Chondro-protective Effects of Low Intensity Pulsed Ultrasound,” Osteoarthritis and Cartilage 24 (2016): 1989.

[12]

S. M. Z. Uddin and D. E. Komatsu, “Therapeutic Potential Low-Intensity Pulsed Ultrasound for Osteoarthritis: Pre-clinical and Clinical Perspectives,” Ultrasound in Medicine and Biology 46 (2020): 909.

[13]

N. Itaya, Y. Yabe, Y. Hagiwara, et al., “Effects of Low-Intensity Pulsed Ultrasound for Preventing Joint Stiffness in Immobilized Knee Model in Rats,” Ultrasound in Medicine & Biology 44 (2018): 1244.

[14]

E. M. da Silva Junior, R. A. Mesquita-Ferrari, C. M. França, L. Andreo, S. K. Bussadori, and K. P. S. Fernandes, “Modulating Effect of Low Intensity Pulsed Ultrasound on the Phenotype of Inflammatory Cells,” Biomedicine & Pharmacotherapy 96 (2017): 1147.

[15]

J. Hahmann, A. Ishaqat, T. Lammers, and A. Herrmann, “Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound,” Angewandte Chemie International Edition 63 (2024): e202317112.

[16]

D. A. W. M. van der Windt, G. J. M. G. van der Heijden, S. G. M. van den Berg, G. Ter Riet, A. F. de Winter, and L. M. Bouter, “Ultrasound Therapy for Musculoskeletal Disorders: A Systematic Review,” Pain 81 (1999): 257.

[17]

A. G. Athanassiadis, Z. Ma, N. Moreno-Gomez, et al., “Ultrasound-Responsive Systems as Components for Smart Materials,” Chemical Reviews 122 (2022): 5165.

[18]

Ç. Özsoy, B. Lafci, M. Reiss, X. L. Deán-Ben, and D. Razansky, “Real-time Assessment of High-Intensity Focused Ultrasound Heating and Cavitation With Hybrid Optoacoustic Ultrasound Imaging,” Photoacoustics 31 (2023): 100508.

[19]

M. Khavari, A. Priyadarshi, J. Morton, et al., “Cavitation-induced Shock Wave Behaviour in Different Liquids,” Ultrasonics Sonochemistry 94 (2023): 106328.

[20]

Z. Lei, X. Pang, L. Li, F. Zhang, W. F. Dong, and Q. Mei, “An Automated System for Nucleic Acid Extraction From Formalin-Fixed Paraffin-Embedded Samples Using High Intensity Focused Ultrasound Technology,” Analytical and Bioanalytical Chemistry 414 (2022): 8201.

[21]

X. Han, W. Yi, S. Chen, et al., “Ultrasound-responsive Smart Composite Biomaterials in Tissue Repair,” Nano Today 49 (2023): 101804.

[22]

J. Zhou, E. Ning, L. Lu, H. Zhang, X. Yang, and Y. Hao, “Effectiveness of Low-Intensity Pulsed Ultrasound on Osteoarthritis: Molecular Mechanism and Tissue Engineering,” Frontiers in Medicine 11 (2024): 1292473.

[23]

C. Liufu, Y. Li, Y. Lin, et al., “Synergistic Ultrasonic Biophysical Effect-Responsive Nanoparticles for Enhanced Gene Delivery to Ovarian Cancer Stem Cells,” Drug Delivery 27 (2020): 1018.

[24]

V. Duong, W. M. Oo, C. Ding, A. G. Culvenor, and D. J. Hunter, “Evaluation and Treatment of Knee Pain: A Review,” JAMA 330 (2023): 1568.

[25]

D. T. Felson, J. Niu, M. Clancy, B. Sack, P. Aliabadi, and Y. Zhang, “Effect of Recreational Physical Activities on the Development of Knee Osteoarthritis in Older Adults of Different Weights: The Framingham Study,” Arthritis & Rheumatism 57 (2007): 6.

[26]

K. E. Barbour, J. M. Hootman, C. G. Helmick, et al., “Meeting Physical Activity Guidelines and the Risk of Incident Knee Osteoarthritis: A Population-Based Prospective Cohort Study,” Arthritis Care & Research 66 (2014): 139.

[27]

R. F. Loeser, S. R. Goldring, C. R. Scanzello, and M. B. Goldring, “Osteoarthritis: A Disease of the Joint as an Organ,” Arthritis & Rheumatism 64 (2012): 1697.

[28]

G. Lin, A. Reed-Maldonado, M. Lin, Z. Xin, and T. Lue, “Effects and Mechanisms of Low-Intensity Pulsed Ultrasound for Chronic Prostatitis and Chronic Pelvic Pain Syndrome,” International Journal of Molecular Sciences 17 (2016): 1057.

[29]

S. Lou, H. Lv, Z. Li, L. Zhang, and P. Tang, “The Effects of Low-Intensity Pulsed Ultrasound on Fresh Fracture: A Meta-Analysis,” Medicine 96 (2017): e8181.

[30]

S. Rutten, M. P. J. van den Bekerom, I. N. Sierevelt, and P. A. Nolte, “Enhancement of Bone-Healing by Low-Intensity Pulsed Ultrasound: A Systematic Review,” JBJS Review 4 (2016): e6.

[31]

L. M. S. Al-Hanbali, A. S. Burhan, M. Y. Hajeer, and F. R. Nawaya, “The Effectiveness of Low-Level Laser Therapy and Low-Intensity Pulsed Ultrasound in Reducing Pain Induced by Orthodontic Separation: A Randomized Controlled Trial,” BMC Oral Health 24 (2024): 166.

[32]

W. Li, X. Li, Z. Kong, et al., “Efficacy of Low-Intensity Pulsed Ultrasound in the Treatment of COVID-19 Pneumonia,” Ultraschall in der Medizin-European Journal of Ultrasound 44 (2023): e274.

[33]

Y. Liao, W. Chen, and S. Jee, “The Additive Efficacy of Therapeutic Low-intensity Pulsed Ultrasound in the Treatment of Vitiligo: A Randomized, Left-right Comparison Clinical Trial,” Dermatologic Therapy 34 (2021): e14648.

[34]

X. Y. Zhou, X. X. Zhang, G. Y. Yu, et al., “Effects of Low-Intensity Pulsed Ultrasound on Knee Osteoarthritis: A Meta-Analysis of Randomized Clinical Trials,” BioMed Research International 2018 (2018): 7469197.

[35]

L. Jia, Y. Wang, J. Chen, and W. Chen, “Efficacy of Focused Low-Intensity Pulsed Ultrasound Therapy for the Management of Knee Osteoarthritis: A Randomized, Double Blind, Placebo-Controlled Trial,” Scientific Reports 6 (2016): 35453.

[36]

S. S. R. R. Samaan, M. G. Sedhom, and M. O. Grace, “A Randomized Comparative Study Between High-Intensity Laser vs Low-Intensity Pulsed Ultrasound Both Combined With Exercises for the Treatment of Knee Osteoarthritis,” International Journal of Rheumatic Diseases 25 (2022): 877.

[37]

A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The Basic Science of Articular Cartilage: Structure, Composition, and Function,” Sports Health 1 (2009): 461.

[38]

Z. Peng, H. Sun, V. Bunpetch, et al., “The Regulation of Cartilage Extracellular Matrix Homeostasis in Joint Cartilage Degeneration and Regeneration,” Biomaterials 268 (2021): 120555.

[39]

T. Hodgkinson, D. C. Kelly, C. M. Curtin, and F. J. O’Brien, “Mechanosignalling in Cartilage: An Emerging Target for the Treatment of Osteoarthritis,” Nature Reviews Rheumatology 18 (2022): 67.

[40]

E. Charlier, C. Deroyer, F. Ciregia, et al., “Chondrocyte Dedifferentiation and Osteoarthritis (OA),” Biochemical Pharmacology 165 (2019): 49.

[41]

E. Capuana, D. Marino, R. Di Gesù, et al., “A High-Throughput Mechanical Activator for Cartilage Engineering Enables Rapid Screening of In Vitro Response of Tissue Models to Physiological and Supra-Physiological Loads,” Cells Tissues Organs 211 (2022): 670.

[42]

J. Vágó, É. Katona, R. Takács, et al., “Cyclic Uniaxial Mechanical Load Enhances Chondrogenesis Through Entraining the Molecular Circadian Clock,” Journal of Pineal Research 73 (2022): e12827.

[43]

R. Issa, M. Boeving, M. Kinter, and T. M. Griffin, “Effect of Biomechanical Stress on Endogenous Antioxidant Networks in Bovine Articular Cartilage,” Journal of Orthopaedic Research 36 (2018): 760.

[44]

F. Sang, J. Xu, Z. Chen, Q. Liu, and W. Jiang, “Low-Intensity Pulsed Ultrasound Alleviates Osteoarthritis Condition through Focal Adhesion Kinase–Mediated Chondrocyte Proliferation and Differentiation,” Cartilage 13 (2021): 196S.

[45]

M. Guan, Y. Zhu, B. Liao, et al., “Low-Intensity Pulsed Ultrasound Inhibits VEGFA Expression in Chondrocytes and Protects Against Cartilage Degeneration in Experimental Osteoarthritis,” FEBS Open Bio 10 (2020): 434.

[46]

D. He, J. Wang, Y. Li, G. Wu, G. Zhu, and L. Chen, “Low-intensity Pulsed Ultrasound Promotes Aggrecan Expression via ZNT-9 in Temporomandibular Joint Chondrocytes,” Gene 768 (2021): 145318.

[47]

J. Sekino, M. Nagao, S. Kato, et al., “Low-intensity Pulsed Ultrasound Induces Cartilage Matrix Synthesis and Reduced MMP13 Expression in Chondrocytes,” Biochemical and Biophysical Research Communications 506 (2018): 290.

[48]

T. Nishida, S. Kubota, E. Aoyama, N. Yamanaka, K. M. Lyons, and M. Takigawa, “Low-intensity Pulsed Ultrasound (LIPUS) Treatment of Cultured Chondrocytes Stimulates Production of CCN Family Protein 2 (CCN2), a Protein Involved in the Regeneration of Articular Cartilage: Mechanism Underlying This Stimulation,” Osteoarthritis and Cartilage 25 (2017): 759.

[49]

C. Pan, F. Lu, X. Hao, et al., “Low-intensity Pulsed Ultrasound Delays the Progression of Osteoarthritis by Regulating the YAP–RIPK1–NF-κB axis and Influencing Autophagy,” Journal of Translational Medicine 22 (2024): 286.

[50]

M. Guan, X. Han, B. Liao, et al., “LIPUS Promotes Calcium Oscillation and Enhances Calcium Dependent Autophagy of Chondrocytes to Alleviate Osteoarthritis,” Advanced Science 12 (2025): 2413930.

[51]

X. Wang, D. J. Hunter, X. Jin, and C. Ding, “The Importance of Synovial Inflammation in Osteoarthritis: Current Evidence From Imaging Assessments and Clinical Trials,” Osteoarthritis and Cartilage 26 (2018): 165.

[52]

A. De Roover, A. Escribano-Núñez, S. Monteagudo, and R. Lories, “Fundamentals of Osteoarthritis: Inflammatory Mediators in Osteoarthritis,” Osteoarthritis and Cartilage 31 (2023): 1303.

[53]

C. R. Scanzello and S. R. Goldring, “The Role of Synovitis in Osteoarthritis Pathogenesis,” Bone 51 (2012): 249.

[54]

D. Hayashi, F. W. Roemer, A. Katur, et al., “Imaging of Synovitis in Osteoarthritis: Current Status and Outlook,” Seminars in Arthritis and Rheumatism 41 (2011): 116.

[55]

B. Zhang, H. Chen, J. Ouyang, et al., “SQSTM1-dependent Autophagic Degradation of PKM2 Inhibits the Production of Mature IL1B/IL-1β and Contributes to LIPUS-Mediated Anti-inflammatory Effect,” Autophagy 16 (2020): 1262.

[56]

B. Liao, M. Guan, Q. Tan, et al., “Low-intensity Pulsed Ultrasound Inhibits Fibroblast-like Synoviocyte Proliferation and Reduces Synovial Fibrosis by Regulating Wnt/β-Catenin Signaling,” Journal of Orthopolgy Translation 30 (2021): 41.

[57]

A. Mathiessen and P. G. Conaghan, “Synovitis in Osteoarthritis: Current Understanding With Therapeutic Implications,” Arthritis Research & Therapy 19 (2017): 18.

[58]

J. Bolander, M. T. Moviglia Brandolina, G. Poehling, et al., “The Synovial Environment Steers Cartilage Deterioration and Regeneration,” Science Advances 9 (2023): eade4645.

[59]

J. Sellam and F. Berenbaum, “The Role of Synovitis in Pathophysiology and Clinical Symptoms of Osteoarthritis,” Nature Reviews Rheumatology 6 (2010): 625.

[60]

T. Feltham, S. Paudel, M. Lobao, L. Schon, and Z. Zhang, “Low-Intensity Pulsed Ultrasound Suppresses Synovial Macrophage Infiltration and Inflammation in Injured Knees in Rats,” Ultrasound in Medicine & Biology 47 (2021): 1045.

[61]

T. Zhou, C. X. Zhou, Q. B. Zhang, F. Wang, and Y. Zhou, “LIPUS Alleviates Knee Joint Capsule Fibrosis in Rabbits by Regulating SOD/ROS Dynamics and Inhibiting the TGF-β1/Smad Signaling Pathway,” Ultrasound in Medicine & Biology 49 (2023): 2510.

[62]

Y. Hu, X. Chen, S. Wang, Y. Jing, and J. Su, “Subchondral Bone Microenvironment in Osteoarthritis and Pain,” Bone Research 9 (2021): 20.

[63]

M. A. J. Finnilä, J. Thevenot, O. M. Aho, et al., “Association Between Subchondral Bone Structure and Osteoarthritis Histopathological Grade,” Journal of Orthopaedic Research 35 (2017): 785.

[64]

H. Fang, L. Huang, I. Welch, et al., “Early Changes of Articular Cartilage and Subchondral Bone in the DMM Mouse Model of Osteoarthritis,” Scientific Reports 8 (2018): 2855.

[65]

S. Donell, “Subchondral Bone Remodelling in Osteoarthritis,” Efort Open Reviews 4 (2019): 221.

[66]

O. M. Aho, M. Finnilä, J. Thevenot, S. Saarakkala, and P. Lehenkari, “Subchondral Bone Histology and Grading in Osteoarthritis,” PLoS One 12 (2017): e0173726.

[67]

D. B. Burr and M. A. Gallant, “Bone Remodelling in Osteoarthritis,” Nature Reviews Rheumatology 8 (2012): 665.

[68]

W. Lee, E. Georgas, D. E. Komatsu, and Y.-X. Qin, “Daily Low-Intensity Pulsed Ultrasound Stimulation Mitigates Joint Degradation and Pain in a Post-traumatic Osteoarthritis Rat Model,” Journal of Orthopedic Translation 44 (2024): 9.

[69]

W. Hu, Y. Chen, C. Dou, and S. Dong, “Microenvironment in Subchondral Bone: Predominant Regulator for the Treatment of Osteoarthritis,” Annals of the Rheumatic Diseases 80 (2021): 413.

[70]

G. Zhen and X. Cao, “Targeting TGFβ Signaling in Subchondral Bone and Articular Cartilage Homeostasis,” Trends in Pharmacological Sciences 35 (2014): 227.

[71]

G. Dai, H. Xiao, J. Liao, et al., “Osteocyte TGFβ1-Smad2/3 is Positively Associated With Bone Turnover Parameters in Subchondral Bone of Advanced Osteoarthritis,” International Journal of Molecular Medicine 46 (2020): 167.

[72]

X. Li, Y. Sun, Z. Zhou, et al., “Mitigation of Articular Cartilage Degeneration and Subchondral Bone Sclerosis in Osteoarthritis Progression Using Low-Intensity Ultrasound Stimulation,” Ultrasound in Medicine & Biology 45 (2019): 148.

[73]

X. Yi, L. Wu, J. Liu, Y. Qin, B. Li, and Q. Zhou, “Low-intensity Pulsed Ultrasound Protects Subchondral Bone in Rabbit Temporomandibular Joint Osteoarthritis by Suppressing TGF-β1/Smad3 Pathway,” Journal of Orthopaedic Research 38 (2020): 2505.

[74]

X. Guo, M. Lv, J. Lin, et al., “Latest Progress of LIPUS in Fracture Healing: A Mini-Review,” Journal of Ultrasound in Medicine 43 (2024): 643.

[75]

S. Yan, D. Wang, L. Zhang, et al., “LIPUS-S/B@NPs Regulates the Release of SDF-1 and BMP-2 to Promote Stem Cell Recruitment-Osteogenesis for Periodontal Bone Regeneration,” Frontiers in Bioengineering and Biotechnology 11 (2023): 1226426.

[76]

W. Yan, W. Dai, J. Cheng, et al., “Advances in the Mechanisms Affecting Meniscal Avascular Zone Repair and Therapies,” Frontiers in Cell and Developmental Biology 9 (2021): 758217.

[77]

N. Ozeki, H. Koga, and I. Sekiya, “Degenerative Meniscus in Knee Osteoarthritis: From Pathology to Treatment,” Life 12 (2022): 603.

[78]

Y. Kamatsuki, E. Aoyama, T. Furumatsu, et al., “Possible Reparative Effect of Low-Intensity Pulsed Ultrasound (LIPUS) on Injured Meniscus,” Journal of Cell Communication and Signaling 13 (2019): 193.

[79]

S. P. Grogan, J. Baek, and D. D. D’Lima, “Meniscal Tissue Repair With Nanofibers: Future Perspectives,” Nanomedicine 15 (2020): 2517.

[80]

K. T. Gao, E. Xie, V. Chen, et al., “Large-Scale Analysis of Meniscus Morphology as Risk Factor for Knee Osteoarthritis,” Arthritis & Rheumatology 75 (2023): 1958.

[81]

M. Babaei, N. Jamshidi, F. Amiri, and M. Rafienia, “Effects of Low-intensity Pulsed Ultrasound Stimulation on Cell Seeded 3D Hybrid Scaffold as a Novel Strategy for Meniscus Regeneration: An In Vitro Study,” Journal of Tissue Engineering and Regenerative Medicine 16 (2022): 812.

[82]

J. Ferreira-Gomes, S. Adães, J. Sarkander, and J. M. Castro-Lopes, “Phenotypic Alterations of Neurons That Innervate Osteoarthritic Joints in Rats,” Arthritis & Rheumatology 62 (2010): 3677.

[83]

S. Grässel and D. Muschter, “Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology,” International Journal of Molecular Sciences 18 (2017): 931.

[84]

S. Zhu, J. Zhu, G. Zhen, et al., “Subchondral Bone Osteoclasts Induce Sensory Innervation and Osteoarthritis Pain,” Journal of Clinical Investigation 129 (2019): 1076.

[85]

Y. Chen, H. Yang, Z. Wang, R. Zhu, L. Cheng, and Q. Cheng, “Low-intensity Pulsed Ultrasound Promotes Mesenchymal Stem Cell Transplantation-Based Articular Cartilage Regeneration via Inhibiting the TNF Signaling Pathway,” Stem Cell Research & Therapy 14 (2023): 93.

[86]

P. Xia, X. Wang, Q. Wang, et al., “Low-Intensity Pulsed Ultrasound Promotes Autophagy-Mediated Migration of Mesenchymal Stem Cells and Cartilage Repair,” Cell Transplantation 30 (2021): 0963689720986142.

[87]

X. Wang, Q. Lin, T. Zhang, et al., “Low-intensity Pulsed Ultrasound Promotes Chondrogenesis of Mesenchymal Stem Cells via Regulation of Autophagy,” Stem Cell Research & Therapy 10 (2019): 41.

[88]

X. Li, Y. Zhong, W. Zhou, et al., “Low-Intensity Pulsed Ultrasound (LIPUS) Enhances the Anti-Inflammatory Effects of Bone Marrow Mesenchymal Stem Cells (BMSCs)-Derived Extracellular Vesicles,” Cellular & Molecular Biology Letters 28 (2023): 9.

[89]

C. H. Chen, S. M. Kuo, Y. C. Tien, P. C. Shen, Y. W. Kuo, and H. H. Huang, “Steady Augmentation of Anti-Osteoarthritic Actions of Rapamycin by Liposome-Encapsulation in Collaboration With Low-Intensity Pulsed Ultrasound,” International Journal of Nanomedicine 15 (2020): 3771.

[90]

Q. Liao, B. J. Li, Y. Li, et al., “Low-intensity Pulsed Ultrasound Promotes Osteoarthritic Cartilage Regeneration by BMSC-Derived Exosomes via Modulating the NF-κB Signaling Pathway,” International Immunopharmacology 97 (2021): 107824.

[91]

D. Zuo, B. Tan, G. Jia, D. Wu, L. Yu, and L. Jia, “A Treatment Combined Prussian Blue Nanoparticles With Low-Intensity Pulsed Ultrasound Alleviates Cartilage Damage in Knee Osteoarthritis by Initiating PI3K/Akt/mTOR Pathway,” American Journal of Translation Research 13 (2021): 3987.

[92]

P. Xia, Q. Wang, J. Song, et al., “Low-Intensity Pulsed Ultrasound Enhances the Efficacy of Bone Marrow–Derived MSCs in Osteoarthritis Cartilage Repair by Regulating Autophagy-Mediated Exosome Release,” Cartilage 13 (2022): 19476035221093060.

[93]

Y. Song, J. Ning, and A. Banaei, “Combination Effects of Low-Intensity Pulsed Ultrasound and Nano-Hydroxyapatite in Rabbit Osteoarthritis Cartilage,” Journal of Radiation Research and Applied Sciences 17 (2024): 100980.

[94]

J. Tavakoli, G. Torkaman, R. Ravanbod, and S. Abroun, “Regenerative Effect of Low-Intensity Pulsed Ultrasound and Platelet-Rich Plasma on the Joint Friction and Biomechanical Properties of Cartilage: A Non-traumatic Osteoarthritis Model in the Guinea Pig,” Ultrasound in Medicine & Biology 48 (2022): 862.

[95]

K. Naito, T. Watari, T. Muta, et al., “Low-intensity Pulsed Ultrasound (LIPUS) Increases the Articular Cartilage Type II Collagen in a Rat Osteoarthritis Model,” Journal of Orthopaedic Research 28 (2010): 361.

[96]

S. Chen, P. Zhu, L. Mao, et al., “Piezocatalytic Medicine: An Emerging Frontier Using Piezoelectric Materials for Biomedical Applications,” Advanced Materials 35 (2023): 2208256.

[97]

X. He, Y. Peng, S. Huang, et al., “Blood Brain Barrier-Crossing Delivery of Felodipine Nanodrug Ameliorates Anxiety-Like Behavior and Cognitive Impairment in Alzheimer’s Disease,” Advanced Science 11 (2024): 2401731.

[98]

A. Carpentier, R. Stupp, A. M. Sonabend, et al., “Repeated Blood–Brain Barrier Opening With a Nine-Emitter Implantable Ultrasound Device in Combination With Carboplatin in Recurrent Glioblastoma: A Phase I/II Clinical Trial,” Nature Communications 15 (2024): 1650.

[99]

W. Han, M. Guan, X. Ding, et al., “Targeting Macrophages via Ultrasonic Contrast Microspheres for Monitoring and Treatment of Knee Synovitis,” Advanced Functional Materials 34 (2024): 2408099.

[100]

L. Yang, L. Sun, H. Zhang, F. Bian, and Y. Zhao, “Ice-Inspired Lubricated Drug Delivery Particles From Microfluidic Electrospray for Osteoarthritis Treatment,” ACS Nano 15 (2021): 20600.

[101]

L. Yang, W. Li, Y. Zhao, and L. Shang, “Magnetic Polysaccharide Mesenchymal Stem Cells Exosomes Delivery Microcarriers for Synergistic Therapy of Osteoarthritis,” ACS Nano 18 (2024): 20101.

[102]

L. Sun, J. Gan, L. Cai, F. Bian, W. Xu, and Y. Zhao, “Multifunctional Inverse Opal Microcarriers-Based Cytokines Delivery System With Stem Cell Homing Capability for Osteoarthritis Treatment,” Aggregate 5 (2024): e537.

[103]

T. Yeğin, L. Altan, and M. Kasapoğlu Aksoy, “The Effect of Therapeutic Ultrasound on Pain and Physical Function in Patients With Knee Osteoarthritis,” Ultrasound in Medicine & Biology 43 (2017): 187.

[104]

H. Chen, Z. Wang, X. Zhang, and M. Sun, “Effects of Low-Intensity Pulsed Ultrasound on Knee Osteoarthritis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials,” Clinical Rehabilitation 36 (2022): 1153.

[105]

X. Zhang, W. Gao, J. Zhou, H. Dai, X. Xiang, and J. Xu, “Low-intensity Pulsed Ultrasound in the Treatment of Masticatory Myositis and Temporomandibular Joint Synovitis: A Clinical Trial,” Journal of Stomatology, Oral and Maxillofacial Surgery 125 (2024): 101632.

[106]

N. G. Jo, M. H. Ko, Y. H. Won, S. H. Park, J. H. Seo, and G. W. Kim, “The Efficacy of Low-Intensity Pulsed Ultrasound on Articular Cartilage and Clinical Evaluations in Patients With Knee Osteoarthritis,” Journal of Back and Musculoskeletal Rehabilitation 35 (2022): 1381.

[107]

E. D. Kim, Y. H. Won, S. H. Park, et al., “Efficacy and Safety of a Stimulator Using Low-Intensity Pulsed Ultrasound Combined With Transcutaneous Electrical Nerve Stimulation in Patients With Painful Knee Osteoarthritis,” Pain Research and Management 2019 (2019): 7964897.

[108]

T. Chen, Y. He, S. Xia, F. Zhou, X. Yuan, and X. Liu, “Evaluation of the Effect of Low-Intensity Pulsed Ultrasound in Pain and Dysfunction for Knee Osteoarthritis: A Double-Blind, Randomised Controlled Trial Protocol,” BMJ Open 14 (2024): e082108.

[109]

Y. A. Martins, T. Z. Pavan, and R. F. V. Lopez, “Sonodynamic Therapy: Ultrasound Parameters and In Vitro Experimental Configurations,” International Journal of Pharmaceutics 610 (2021): 121243.

[110]

Y. Zheng, Z. Zhang, Y. Zhang, et al., “Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions,” Advanced Materials (Early View): 2407395.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

21

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/