Biomineralize Mitochondria in Metal-Organic Frameworks to Promote Mitochondria Transplantation From Non-Tumorigenic Cells Into Cancer Cells

Jun-Nian Zhou , Chang Liu , Yonghui Wang , Yong Guo , Xiao-Yu Xu , Elina Vuorimaa-Laukkanen , Oliver Koivisto , Anne M. Filppula , Jiangbin Ye , Hongbo Zhang

Smart Medicine ›› 2025, Vol. 4 ›› Issue (1) : e134

PDF
Smart Medicine ›› 2025, Vol. 4 ›› Issue (1) : e134 DOI: 10.1002/smmd.134
RESEARCH ARTICLE

Biomineralize Mitochondria in Metal-Organic Frameworks to Promote Mitochondria Transplantation From Non-Tumorigenic Cells Into Cancer Cells

Author information +
History +
PDF

Abstract

Mitochondria are crucial to cellular physiology, and growing evidence highlights the significant impact of mitochondrial dysfunction in diabetes, aging, neurodegenerative disorders, and cancers. Therefore, mitochondrial transplantation shows great potential for therapeutic use in treating these diseases. However, transplantation process is notably challenging due to very low efficiency and rapid loss of bioactivity post-isolation, leading to poor reproducibility and reliability. In this study, we develop a novel strategy to form a nanometer-thick protective shell around isolated mitochondria using Metal-Organic Frameworks (MOFs) through biomineralization. Our findings demonstrate that this encapsulation method effectively maintains mitochondria bioactivity for at least 4 weeks at room temperature. Furthermore, the efficiency of intracellular delivery of mitochondria is significantly enhanced through the surface functionalization of MOFs with polyethyleneimine (PEI) and the cellpenetrating peptide Tat. The successful delivery of mitochondria isolated from non-tumorigenic cells into cancer cells results in notable tumor-suppressive effects. Taken together, our technology represents a significant advancement in mitochondria research, particularly on understanding their role in cancer. It also lays the groundwork for utilizing mitochondria as therapeutic agents in cancer treatment.

Keywords

biomineralization / cancer cells / metal-organic frameworks / mitochondria / mitochondria transplantation

Cite this article

Download citation ▾
Jun-Nian Zhou, Chang Liu, Yonghui Wang, Yong Guo, Xiao-Yu Xu, Elina Vuorimaa-Laukkanen, Oliver Koivisto, Anne M. Filppula, Jiangbin Ye, Hongbo Zhang. Biomineralize Mitochondria in Metal-Organic Frameworks to Promote Mitochondria Transplantation From Non-Tumorigenic Cells Into Cancer Cells. Smart Medicine, 2025, 4(1): e134 DOI:10.1002/smmd.134

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. E. Porporato, N. Filigheddu, J. M. B. Pedro, G. Kroemer, and L. Galluzzi, “Mitochondrial Metabolism and Cancer,” Cell Research 28 (2018):265–280.

[2]

Z. ElBeck, M. B. Hossain, H. Siga, et al., “Epigenetic Modulators Link Mitochondrial Redox Homeostasis to Cardiac Function in a Sex-Dependent Manner,” Nature Communications 15 (2024):2358.

[3]

D. M. Wolf, M. Segawa, A. K. Kondadi, et al., “Individual Cristae Within the Same Mitochondrion Display Different Membrane Potentials and Are Functionally Independent,” EMBO Journal 38 (2019): e101056.

[4]

S. Srinivasan, M. Guha, A. Kashina, and N. G. Avadhani, “Mitochondrial Dysfunction and Mitochondrial Dynamics-The Cancer Connection,” Biochimica et Biophysica Acta (BBA) – Bioenergetics 1858 (2017):602–614.

[5]

O. M. Russell, G. S. Gorman, R. N. Lightowlers, and D. M. Turnbull, “Mitochondrial Diseases: Hope for the Future,” Cell 181 (2020):168–188.

[6]

K. Wang, C. Zhu, Y. He, et al., “Restraining Cancer Cells by Dual Metabolic Inhibition With a Mitochondrion-Targeted Platinum(II) Complex,” Angewandte Chemie International Edition in English 58 (2019):4638–4643.

[7]

C. Shen, X. Yue, L. Dai, et al., “Hyperbaric Oxygen Enhanced the Chemotherapy of Mitochondrial Targeting Molecule IR-780 in Bladder Cancer,” Journal of Cancer Research and Clinical Oncology 149 (2023):683–699.

[8]

A. P. Thomas, L. Palanikumar, M. T. Jeena, K. Kim, and J. H. Ryu, “Cancer-Mitochondria-Targeted Photodynamic Therapy With Supramolecular Assembly of HA and a Water Soluble NIR Cyanine Dye,” Chemical Science 8 (2017):8351–8356.

[9]

X. Du, P. Zhang, H. Fu, H. M. Ahsan, J. Gao, and Q. Chen, “Smart Mitochondrial-Targeted Cancer Therapy: Subcellular Distribution, Selective TrxR2 Inhibition Accompany With Declined Antioxidant Capacity,” International Journal of Pharmaceutics 555 (2019):346–355.

[10]

P. Wang, H. Fang, M. Wang, et al., “A Mitochondria Targeting Ir(III) Complex Triggers Ferroptosis and Autophagy for Cancer Therapy: A Case of Aggregation Enhanced PDT Strategy for Metal Complexes,” Chinese Chemical Letters 36 (2025):110099.

[11]

H. Cheng, R. R. Zheng, G. L. Fan, et al., “Mitochondria and Plasma Membrane Dual-Targeted Chimeric Peptide for Single-Agent Synergistic Photodynamic Therapy,” Biomaterials 188 (2019):1–11.

[12]

R. Xu, L. Huang, J. Liu, et al., “Remodeling of Mitochondrial Metabolism by a Mitochondria-Targeted RNAi Nanoplatform for Effective Cancer Therapy,” Small 20 (2024): e2305923.

[13]

H. Lu, W. Tong, M. Jiang, et al., “Mitochondria-Targeted Multifunctional Nanoprodrugs by Inhibiting Metabolic Reprogramming for Combating Cisplatin-Resistant Lung Cancer,” ACS Nano 18 (2024):21156–21170.

[14]

M. Quintela-Fandino, S. Morales, A. Cortes-Salgado, et al., “Randomized Phase 0/I Trial of the Mitochondrial Inhibitor ME-344 or Placebo Added to Bevacizumab in Early HER2-Negative Breast Cancer,” Clinical Cancer Research 26 (2020):35–45.

[15]

J. J. Mistry, C. R. Marlein, J. A. Moore, et al., “ROS-Mediated PI3K Activation Drives Mitochondrial Transfer From Stromal Cells to Hematopoietic Stem Cells in Response to Infection,” Proceedings of the National Academy of Sciences of the U S A 116 (2019):24610–24619.

[16]

J. C. Chang, H. S. Chang, Y. C. Wu, et al., “Mitochondrial Transplantation Regulates Antitumour Activity, Chemoresistance and Mitochondrial Dynamics in Breast Cancer,” Journal of Experimental & Clinical Cancer Research 38 (2019):30.

[17]

D. B. Cowan, R. Yao, V. Akurathi, et al., “Intracoronary Delivery of Mitochondria to the Ischemic Heart for Cardioprotection,” PLoS One 11 (2016): e0160889.

[18]

J. D. McCully, D. B. Cowan, S. M. Emani, and P. J. Del Nido, “Mitochondrial Transplantation: From Animal Models to Clinical Use in Humans,” Mitochondrion 34 (2017):127–134.

[19]

C. Sun, X. Liu, B. Wang, et al., “Endocytosis-Mediated Mitochondrial Transplantation: Transferring Normal Human Astrocytic Mitochondria Into Glioma Cells Rescues Aerobic Respiration and Enhances Radiosensitivity,” Theranostics 9 (2019):3595–3607.

[20]

H. Furukawa, K. E. Cordova, M. O’Keeffe, and O. M. Yaghi, “The Chemistry and Applications of Metal-Organic Frameworks,” Science 341 (2013):1230444.

[21]

H. Deng, S. Grunder, K. E. Cordova, et al., “Large-pore Apertures in a Series of Metal-Organic Frameworks,” Science 336 (2012):1018–1023.

[22]

B. Le Ouay, H. Takaya, and T. Uemura, “Controlling the Packing of Metal-Organic Layers by Inclusion of Polymer Guests,” Journal of the American Chemical Society 141 (2019):14549–14553.

[23]

G. Chen, S. Huang, X. Kou, et al., “A Convenient and Versatile Amino-Acid-Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules Within Metal-Organic Frameworks,” Angewandte Chemie International Edition in English 58 (2019):1463–1467.

[24]

K. Liang, R. Ricco, C. M. Doherty, et al., “Biomimetic Mineralization of Metal-Organic Frameworks as Protective Coatings for Biomacromolecules,” Nature Communications 6 (2015):7240.

[25]

X. Xu, C. Liu, Y. Wang, et al., “Nanotechnology-based Delivery of CRISPR/Cas9 for Cancer Treatment,” Advanced Drug Delivery Reviews 176 (2021):113891.

[26]

R. Cheng, L. Jiang, H. Gao, et al., “A pH-Responsive Cluster Metal-Organic Framework Nanoparticle for Enhanced Tumor Accumulation and Antitumor Effect,” Advanced Materials 34 (2022):2203915.

[27]

X. Geng, N. Zhang, Z. Li, M. Zhao, H. Zhang, and J. Li, “Iron-Doped Nanozymes With Spontaneous Peroxidase-Mimic Activity as a Promising Antibacterial Therapy for Bacterial Keratitis,” Smart Medicine 3 (2024): e20240004.

[28]

C. Liu, X. Xu, O. Koivisto, et al., “Improving the Knock-In Efficiency of the MOF-Encapsulated CRISPR/Cas9 System Through Controllable Embedding Structures,” Nanoscale 13 (2021):16525–16532.

[29]

X. Xu, C. Liu, S. Wang, et al., “Microfluidic-assisted Biomineralization of CRISPR/Cas9 in Near-Infrared Responsive Metal-Organic Frameworks for Programmable Gene-Editing,” Nanoscale 14 (2022):15832–15844.

[30]

J. Yan, C. Liu, Q. Wu, et al., “Mineralization of pH-Sensitive Doxorubicin Prodrug in ZIF-8 to Enable Targeted Delivery to Solid Tumors,” Analytical Chemistry 92 (2020):11453–11461.

[31]

C. Liu, Y. Chen, X. Xu, M. Yin, H. Zhang, and W. Su, “Utilizing Macrophages Missile for Sulfate-Based Nanomedicine Delivery in Lung Cancer Therapy,” Research 7 (2024):0448.

[32]

M. A. Luzuriaga, C. E. Benjamin, M. W. Gaertner, et al., “ZIF-8 Degrades in Cell Media, Serum, and Some-But Not All-Common Laboratory Buffers,” Supramolecular Chemistry 31 (2019):485–490.

[33]

S. Pu, X. Zhang, C. Yang, et al., “The Effects of NaCl on Enzyme Encapsulation by Zeolitic Imidazolate Frameworks-8,” Enzyme and Microbial Technology 122 (2019):1–6.

[34]

C. Raymond, R. Tom, S. Perret, et al., “A Simplified Polyethylenimine-Mediated Transfection Process for Large-Scale and High-Throughput Applications,” Methods 55 (2011):44–51.

[35]

J. Xu, A. R. Khan, M. Fu, R. Wang, J. Ji, and G. Zhai, “Cell-penetrating Peptide: A Means of Breaking Through the Physiological Barriers of Different Tissues and Organs,” Journal of Controlled Release 309 (2019):106–124.

[36]

J. N. Zhou, Q. Zeng, H. Y. Wang, et al., “MicroRNA-125b Attenuates Epithelial-Mesenchymal Transitions and Targets Stem-Like Liver Cancer Cells Through Small Mothers Against Decapentaplegic 2 and 4,” Hepatology 62 (2015):801–815.

[37]

V. N. Nukala, I. N. Singh, L. M. Davis, and P. G. Sullivan, “Cryopreservation of Brain Mitochondria: A Novel Methodology for Functional Studies,” Journal of Neuroscience Methods 152 (2006):48–54.

[38]

Z. Li, H. Cai, Z. Li, et al., “A Tumor Cell Membrane-Coated Self-Amplified Nanosystem as a Nanovaccine to Boost the Therapeutic Effect of Anti-PD-L1 Antibody,” Bioactive Materials 21 (2023):299–312.

[39]

C. Wang, S. Tadepalli, J. Luan, et al., “Metal-Organic Framework as a Protective Coating for Biodiagnostic Chips,” Advanced Materials 29 (2017):1604433.

[40]

K. Liang, J. J. Richardson, J. Cui, F. Caruso, C. J. Doonan, and P. Falcaro, “Metal-Organic Framework Coatings as Cytoprotective Exoskeletons for Living Cells,” Advanced Materials 28 (2016):7910–7914.

[41]

W. Liang, H. Xu, F. Carraro, et al., “Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal-Organic Frameworks,” Journal of the American Chemical Society 141 (2019):2348–2355.

[42]

H. Wang, Z. Huang, X. Shen, et al., “Rejuvenation of Aged Oocyte through Exposure to Young Follicular Microenvironment,” Nature Aging 4 (2024):1194–1210.

[43]

R. L. Elliott, X. P. Jiang, and J. F. Head, “Mitochondria Organelle Transplantation: Introduction of Normal Epithelial Mitochondria into Human Cancer Cells Inhibits Proliferation and Increases Drug Sensitivity,” Breast Cancer Research and Treatment 136 (2012):347–354.

[44]

A. M. Roushandeh, Y. Kuwahara, and M. H. Roudkenar, “Mitochondrial Transplantation as a Potential and Novel Master Key for Treatment of Various Incurable Diseases,” Cytotechnology 71 (2019):647–663.

[45]

N. D. Donahue, H. Acar, and S. Wilhelm, “Concepts of Nanoparticle Cellular Uptake, Intracellular Trafficking, and Kinetics in Nanomedicine,” Advanced Drug Delivery Reviews 143 (2019):68–96.

[46]

M. Lewin, N. Carlesso, C. H. Tung, et al., “Tat Peptide-Derivatized Magnetic Nanoparticles Allow In Vivo Tracking and Recovery of Progenitor Cells,” Nature Biotechnology 18 (2000):410–414.

[47]

R. Cai and C. Chen, “The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine,” Advanced Materials 31 (2019):1805740.

[48]

J. Ren, N. Andrikopoulos, K. Velonia, et al., “Chemical and Biophysical Signatures of the Protein Corona in Nanomedicine,” Journal of the American Chemical Society 144 (2022):9184–9205.

[49]

G. Duan, S. G. Kang, X. Tian, et al., “Protein Corona Mitigates the Cytotoxicity of Graphene Oxide by Reducing its Physical Interaction With Cell Membrane,” Nanoscale 7 (2015):15214–15224.

[50]

S. R. Saptarshi, A. Duschl, and A. L. Lopata, “Interaction of Nanoparticles With Proteins: Relation to Bio-Reactivity of the Nanoparticle,” Journal of Nanobiotechnology 11 (2013):26.

[51]

M. A. Thomas, M. J. Fahey, B. R. Pugliese, R. M. Irwin, M. A. Antonyak, and M. L. Delco, “Human Mesenchymal Stromal Cells Release Functional Mitochondria in Extracellular Vesicles,” Frontiers in Bioengineering and Biotechnology 10 (2022):870193.

[52]

W. D. Yao, J. N. Zhou, C. Tang, et al., “Hydrogel Microneedle Patches Loaded With Stem Cell Mitochondria-Enriched Microvesicles Boost the Chronic Wound Healing,” ACS Nano 18 (2024):26733–26750.

[53]

X. Zhou, S. Liu, Y. Lu, M. Wan, J. Cheng, and J. Liu, “MitoEVs: A New Player in Multiple Disease Pathology and Treatment,” Journal of Extracellular Vesicles 12 (2023):12320.

[54]

G. Ikeda, M. R. Santoso, Y. Tada, et al., “Mitochondria-Rich Extracellular Vesicles From Autologous Stem Cell-Derived Cardiomyocytes Restore Energetics of Ischemic Myocardium,” Journal of the American College of Cardiology 77 (2021):1073–1088.

[55]

S. K. Alsaiari, S. Patil, M. Alyami, et al., “Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework,” Journal of the American Chemical Society 140 (2018):143–146.

[56]

A. K. Patel, J. C. Kaczmarek, S. Bose, et al., “Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium,” Advanced Materials 31 (2019):1805116.

[57]

D. C. Watson, D. Bayik, S. Storevik, et al., “GAP43-dependent Mitochondria Transfer From Astrocytes Enhances Glioblastoma Tumorigenicity,” Nature Cancer 4 (2023):648-664.

[58]

M. Rosina, V. Ceci, R. Turchi, et al., “Ejection of Damaged Mitochondria and Their Removal by Macrophages Ensure Efficient Thermogenesis in Brown Adipose Tissue,” Cell Metabolism 34 (2022):533-548.e512.

[59]

J. N. Zhou, T. C. Rautio, C. Liu, et al., “Delivery of Protein Kinase A by CRISPRMAX and its Effects on Breast Cancer Stem-Like Properties, Pharmaceutics,” Pharmaceutics 13 (2020):11.

RIGHTS & PERMISSIONS

2025 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

513

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/