Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics

Fanfan Fu , Changyi Liu , Zhenlin Jiang , Qingyu Zhao , Aining Shen , Yilun Wu , Wenyi Gu

Smart Medicine ›› 2024, Vol. 3 ›› Issue (3) : e20240027

PDF
Smart Medicine ›› 2024, Vol. 3 ›› Issue (3) : e20240027 DOI: 10.1002/SMMD.20240027
RESEARCH ARTICLE

Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics

Author information +
History +
PDF

Abstract

Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.

Keywords

epidermal electronics / flexible sensor / hydrogel adhesives / ionic conductive / silk fibroin

Cite this article

Download citation ▾
Fanfan Fu, Changyi Liu, Zhenlin Jiang, Qingyu Zhao, Aining Shen, Yilun Wu, Wenyi Gu. Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Smart Medicine, 2024, 3(3): e20240027 DOI:10.1002/SMMD.20240027

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H. Y. Y. Nyein, M. Bariya, L. Kivimäki, S. Uusitalo, T. S. Liaw, E. Jansson, C. H. Ahn, J. A. Hangasky, J. Zhao, Y. Lin, T. Happonen, M. Chao, C. Liedert, Y. Zhao, L. Tai, J. Hiltunen, A. Javey, Sci. Adv. 2019, 5, eaaw9906.

[2]

F. Fu, L. Shang, Z. Chen, Y. Yu, Y. Zhao, Sci. Robot. 2018, 3, eaar8580.

[3]

B. K. Ahn, D. W. Lee, J. N. Israelachvili, J. H. Waite, Nat. Mater. 2014, 13, 867.

[4]

J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo, X. Zhao, Nat. Mater. 2021, 20, 229.

[5]

Y. Fang, A. Prominski, M. Y. Rotenberg, L. Meng, H. Acaron Ledesma, Y. Lv, J. Yue, E. Schaumann, J. Jeong, N. Yamamoto, Y. Jiang, B. Elbaz, W. Wei, B. Tian, Nat. Nanotechnol. 2021, 16, 206.

[6]

K. I. Hoshino, T. Nakajima, T. Matsuda, T. Sakai, J. Gong, Soft Matter 2018, 14, 9693.

[7]

F. Fu, Z. Chen, H. Wang, C. Liu, Y. Liu, Y. Zhao, Nanoscale 2019, 11, 10846.

[8]

Y. Zhang, N. Zheng, Y. Cao, F. Wang, P. Wang, Y. Ma, B. Lu, G. Hou, Z. Fang, Z. Liang, M. Yue, Y. Li, Y. Chen, J. Fu, J. Wu, T. Xie, X. Feng, Sci. Adv. 2019, 5, eaaw1066.

[9]

T. Zhong, Z. Jiang, C. Xu, Q. Zhen, Mater. Chem. Phys. 2024, 320, 129478.

[10]

Q. Zheng, Z. Jiang, X. Xu, C. Xu, M. Zhu, C. Chen, F. Fu, ACS Appl. Polym. Mater. 2021, 3, 3131.

[11]

Z. Zhang, Y. Wang, Q. Wang, L. Shang, Small 2022, 18, 2105116.

[12]

H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu, J. Luo, X. Zhao, Nat. Commun. 2020, 11, 1604.

[13]

R. Nasseri, N. Bouzari, J. Huang, H. Golzar, S. Jankhani, X. S. Tang, T. H. Mekonnen, A. Aghakhani, H. Shahsavan, Nat. Commun. 2023, 14, 6108.

[14]

F. Fu, J. Wang, Y. Tan, J. Yu, Macromol. Rapid Commun. 2022, 43, 2100776.

[15]

X. Ye, C. Yang, L. Wang, Q. Fan, L. Shang, F. Ye, Aggregate 2023, 5, e542.

[16]

N. Zhao, X. Gao, Z. Chen, Y. Feng, G. Liu, F. Zhou, W. Liu, Chem. Eng. J. 2022, 434, 134763.

[17]

X. Ding, Y. Yu, L. Shang, Y. Zhao, ACS Nano 2022, 16, 19533.

[18]

X. Ye, Q. Fan, L. Shang, F. Ye, Eng. Regen. 2022, 3, 352.

[19]

F. Fu, J. Wang, J. Yu, J. Mater. Chem. C 2021, 9, 11794.

[20]

Y. Fang, E. Han, X. Zhang, Y. Jiang, Y. Lin, J. Shi, J. Wu, L. Meng, X. Gao, P. J. Griffin, X. Xiao, H. Tsai, H. Zhou, X. Zuo, Q. Zhang, M. Chu, Q. Zhang, Y. Gao, L. K. Roth, R. Bleher, Z. Ma, Z. Jiang, J. Yue, C. Kao, C. Chen, A. Tokmakoff, J. Wang, H. M. Jaeger, B. Tian, Matter 2020, 2, 948.

[21]

F. Fu, J. Wang, H. Zeng, J. Yu, ACS Mater. Lett. 2020, 2, 1287.

[22]

C. Xu, Z. Jiang, B. Wang, J. Chen, T. Sun, F. Fu, C. Wang, H. Wang, Chem. Eng. J. 2024, 485, 150014.

[23]

W. Li, Y. Yu, R. Huang, X. Wang, P. Lai, K. Chen, L. Shang, Y. Zhao, Adv. Sci. 2023, 10, 2301479.

[24]

J. Cai, H. Zhang, Y. Hu, Z. Huang, Y. Wang, Y. Xia, X. Chen, J. Guo, H. Cheng, L. Xia, W. Lu, C. Zhang, J. Xie, H. Wang, R. Chai, J. Nanobiotechnol. 2022, 20, 460.

[25]

Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, ACS Nano 2023, 17, 9681.

[26]

J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan, Y. Xue, I. Kandela, M. Pezhouh, M. R. MacEwan, Y. Huang, W. Z. Ray, W. Zhou, J. A. Rogers, Sci. Adv. 2019, 5, eaaw1899.

[27]

V. R. Feig, H. Tran, M. Lee, Z. Bao, Nat. Commun. 2018, 9, 2740.

[28]

C. Liu, K. Peng, Y. Wu, F. Fu, Smart Med. 2023, 2, e20230024.

[29]

Y. Yu, X. Wang, C. Yang, L. Shang, Smart Mater. Med. 2022, 3, 1.

[30]

F. Feng, X. Song, Z. Tan, Y. Tu, L. Xiao, P. Xie, Y. Ma, X. Sun, J. Ma, L. Rong, L. He, Sci. Adv. 2023, 9, eadg0234.

[31]

N. Gogurla, B. Roy, S. Kim, Nano Energy 2020, 77, 105242.

[32]

J. Mei, J. Zhou, L. Kong, Y. Dai, X. Zhang, W. Song, C. Zhu, J. Nanobiotechnol. 2022, 20, 232.

[33]

F. Fu, D. Liu, Y. Wu, Smart Med. 2023, 2, e20230004.

[34]

H. Wang, H. Zhang, Z. Chen, Y. Zhao, Z. Gu, L. Shang, Prog. Mater. Sci. 2023, 135, 101091.

[35]

F. Karimi, N. Farbehi, F. Ziaee, K. Lau, M. Monfared, M. Kordanovski, H. Joukhdar, T. G. Molly, R. Nordon, K. A. Kilian, M. H. Stenzel, K. S. Lim, J. Rnjak-Kovacina, Adv. Funct. Mater. 2024, 34, 2313354.

[36]

N. Gorenkova, M. F. Maitz, G. Bohme, H. A. Alhadrami, E. H. Jiffri, J. D. Totten, C. Werner, H. V. O. Carswell, F. P. Seib, Biomater. Sci. 2021, 9, 7194.

[37]

C. Guo, C. Li, H. V. Vu, P. Hanna, A. Lechtig, Y. Qiu, X. Mu, S. Ling, A. Nazarian, S. J. Lin, D. L. Kaplan, Nat. Mater. 2020, 19, 102.

[38]

J. K. Sahoo, O. Hasturk, T. Falcucci, D. L. Kaplan, Nat. Rev. Chem. 2023, 7, 302.

[39]

P. Mohammadi, A. S. Aranko, C. P. Landowski, K. Jaudzems, W. Wagermaier, M. B. Linder, Sci. Adv. 2019, 5, eaaw2541.

[40]

Y. Wang, L. Li, Y. Ji, T. Wang, Y. Fu, X. Li, G. Li, T. Zheng, L. Wu, Q. Han, Y. Zhang, Y. Wang, D. L. Kaplan, Y. Lu, Proc. Natl. Acad. Sci. 2023, 120, e2305704120.

[41]

X. Zhang, L. Xiao, Z. Ding, Q. Lu, D. L. Kaplan, ACS Nano 2022, 16, 10209.

[42]

O. Hasturk, K. E. Jordan, J. Choi, D. L. Kaplan, Biomaterials 2020, 232, 119720.

[43]

C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078.

[44]

Z. Xu, L. Chen, L. Lu, R. Du, W. Ma, Y. Cai, X. An, H. Wu, Q. Luo, Q. Xu, Q. Zhang, X. Jia, Adv. Funct. Mater. 2021, 31, 2006432.

[45]

J. Wang, N. Zhang, Y. Tan, F. Fu, G. Liu, Y. Fang, X. Zhang, M. Liu, Y. Cheng, J. Yu, ACS Appl. Mater. Interfaces 2022, 14, 21945.

[46]

J. Ling, T. Huang, R. Wu, C. Ma, G. Lin, Z. Zhou, J. Wang, Q. Tu, X. Tang, Y. Liu, M. Liu, L. Yang, Y. Yang, Adv. Funct. Mater. 2023, 33, 2213342.

[47]

D. Li, Y. Fan, G. Han, Z. Guo, ACS Appl. Mater. Interfaces 2020, 12, 10039.

[48]

D. Su, M. Yao, J. Liu, Y. Zhong, X. Chen, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 17489.

[49]

J. Ding, Z. Chen, X. Liu, Y. Tian, J. Jiang, Z. Qiao, Y. Zhang, Z. Xiao, D. Wei, J. Sun, F. Luo, L. Zhou, H. Fan, Mater. Horiz. 2022, 9, 2215.

[50]

S. H. Kim, Y. K. Yeon, J. M. Lee, J. R. Chao, Y. J. Lee, Y. B. Seo, M. T. Sultan, O. J. Lee, J. S. Lee, S. I. Yoon, I. S. Hong, G. Khang, S. J. Lee, J. J. Yoo, C. H. Park, Nat. Commun. 2018, 9, 1620.

[51]

J. E. Elliott, M. Macdonald, J. Nie, C. N. Bowman, Polymer 2004, 45, 1503.

[52]

S. D. Chaudhuri, A. Mandal, A. Dey, D. Chakrabarty, Appl. Clay Sci. 2020, 185, 105405.

[53]

X. Liu, Q. Zhang, Z. Gao, R. Hou, G. Gao, ACS Appl. Mater. Interfaces 2017, 9, 17645.

[54]

Z. Chen, L. Wang, C. Guo, M. Qiu, L. Cheng, K. Chen, J. Qi, L. Deng, C. He, X. Li, Y. Yan, Acta Biomater. 2023, 155, 218.

[55]

C. Mukesh, J. Bhatt, K. Prasad, Macromol. Chem. Phys. 2014, 215, 1498.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

180

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/