Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics

Fanfan Fu, Changyi Liu, Zhenlin Jiang, Qingyu Zhao, Aining Shen, Yilun Wu, Wenyi Gu

Smart Medicine ›› 2024, Vol. 3 ›› Issue (3) : e20240027.

PDF
Smart Medicine ›› 2024, Vol. 3 ›› Issue (3) : e20240027. DOI: 10.1002/SMMD.20240027
RESEARCH ARTICLE

Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics

Author information +
History +

Abstract

Silk fibroin (SF)-based hydrogels are promising multifunctional adhesive candidates for real-world applications in tissue engineering, implantable bioelectronics, artificial muscles, and artificial skin. However, developing conductive SF-based hydrogels that are suitable for the micro-physiological environment and maintain their physical and chemical properties over long periods of use remains challenging. Herein, we developed an ion-conductive SF hydrogel composed of glycidyl methacrylate silk fibroin (SilMA) and bioionic liquid choline acylate (ChoA) polymer chains, together with the modification of acrylated thymine (ThyA) and adenine (AdeA) functional groups. The resulting polymeric ion-conductive SF composite hydrogel demonstrated high bioactivity, strong adhesion strength, good mechanical compliance, and stretchability. The formed hydrogel network of ChoA chains can coordinate with the ionic strength in the micro-physiological environment while maintaining the adaptive coefficient of expansion and stable mechanical properties. These features help to form a stable ion-conducting channel for the hydrogel. Additionally, the hydrogel network modified with AdeA and ThyA, can provide a strong adhesion to the surface of a variety of substrates, including wet tissue through abundant hydrogen bonding. The biocompatible and ionic conductive SF composite hydrogels can be easily prepared and incorporated into flexible skin or epidermal sensing devices. Therefore, our polymeric SF-based hydrogel has great potential and wide application to be an important component of many flexible electronic devices for personalized healthcare.

Keywords

epidermal electronics / flexible sensor / hydrogel adhesives / ionic conductive / silk fibroin

Cite this article

Download citation ▾
Fanfan Fu, Changyi Liu, Zhenlin Jiang, Qingyu Zhao, Aining Shen, Yilun Wu, Wenyi Gu. Polymeric silk fibroin hydrogel as a conductive and multifunctional adhesive for durable skin and epidermal electronics. Smart Medicine, 2024, 3(3): e20240027 https://doi.org/10.1002/SMMD.20240027

References

[1]
H. Y. Y. Nyein, M. Bariya, L. Kivimäki, S. Uusitalo, T. S. Liaw, E. Jansson, C. H. Ahn, J. A. Hangasky, J. Zhao, Y. Lin, T. Happonen, M. Chao, C. Liedert, Y. Zhao, L. Tai, J. Hiltunen, A. Javey, Sci. Adv. 2019, 5, eaaw9906.
[2]
F. Fu, L. Shang, Z. Chen, Y. Yu, Y. Zhao, Sci. Robot. 2018, 3, eaar8580.
[3]
B. K. Ahn, D. W. Lee, J. N. Israelachvili, J. H. Waite, Nat. Mater. 2014, 13, 867.
CrossRef Google scholar
[4]
J. Deng, H. Yuk, J. Wu, C. E. Varela, X. Chen, E. T. Roche, C. F. Guo, X. Zhao, Nat. Mater. 2021, 20, 229.
CrossRef Google scholar
[5]
Y. Fang, A. Prominski, M. Y. Rotenberg, L. Meng, H. Acaron Ledesma, Y. Lv, J. Yue, E. Schaumann, J. Jeong, N. Yamamoto, Y. Jiang, B. Elbaz, W. Wei, B. Tian, Nat. Nanotechnol. 2021, 16, 206.
CrossRef Google scholar
[6]
K. I. Hoshino, T. Nakajima, T. Matsuda, T. Sakai, J. Gong, Soft Matter 2018, 14, 9693.
CrossRef Google scholar
[7]
F. Fu, Z. Chen, H. Wang, C. Liu, Y. Liu, Y. Zhao, Nanoscale 2019, 11, 10846.
CrossRef Google scholar
[8]
Y. Zhang, N. Zheng, Y. Cao, F. Wang, P. Wang, Y. Ma, B. Lu, G. Hou, Z. Fang, Z. Liang, M. Yue, Y. Li, Y. Chen, J. Fu, J. Wu, T. Xie, X. Feng, Sci. Adv. 2019, 5, eaaw1066.
[9]
T. Zhong, Z. Jiang, C. Xu, Q. Zhen, Mater. Chem. Phys. 2024, 320, 129478.
CrossRef Google scholar
[10]
Q. Zheng, Z. Jiang, X. Xu, C. Xu, M. Zhu, C. Chen, F. Fu, ACS Appl. Polym. Mater. 2021, 3, 3131.
CrossRef Google scholar
[11]
Z. Zhang, Y. Wang, Q. Wang, L. Shang, Small 2022, 18, 2105116.
[12]
H. Yuk, B. Lu, S. Lin, K. Qu, J. Xu, J. Luo, X. Zhao, Nat. Commun. 2020, 11, 1604.
[13]
R. Nasseri, N. Bouzari, J. Huang, H. Golzar, S. Jankhani, X. S. Tang, T. H. Mekonnen, A. Aghakhani, H. Shahsavan, Nat. Commun. 2023, 14, 6108.
[14]
F. Fu, J. Wang, Y. Tan, J. Yu, Macromol. Rapid Commun. 2022, 43, 2100776.
CrossRef Google scholar
[15]
X. Ye, C. Yang, L. Wang, Q. Fan, L. Shang, F. Ye, Aggregate 2023, 5, e542.
[16]
N. Zhao, X. Gao, Z. Chen, Y. Feng, G. Liu, F. Zhou, W. Liu, Chem. Eng. J. 2022, 434, 134763.
CrossRef Google scholar
[17]
X. Ding, Y. Yu, L. Shang, Y. Zhao, ACS Nano 2022, 16, 19533.
CrossRef Google scholar
[18]
X. Ye, Q. Fan, L. Shang, F. Ye, Eng. Regen. 2022, 3, 352.
CrossRef Google scholar
[19]
F. Fu, J. Wang, J. Yu, J. Mater. Chem. C 2021, 9, 11794.
CrossRef Google scholar
[20]
Y. Fang, E. Han, X. Zhang, Y. Jiang, Y. Lin, J. Shi, J. Wu, L. Meng, X. Gao, P. J. Griffin, X. Xiao, H. Tsai, H. Zhou, X. Zuo, Q. Zhang, M. Chu, Q. Zhang, Y. Gao, L. K. Roth, R. Bleher, Z. Ma, Z. Jiang, J. Yue, C. Kao, C. Chen, A. Tokmakoff, J. Wang, H. M. Jaeger, B. Tian, Matter 2020, 2, 948.
CrossRef Google scholar
[21]
F. Fu, J. Wang, H. Zeng, J. Yu, ACS Mater. Lett. 2020, 2, 1287.
CrossRef Google scholar
[22]
C. Xu, Z. Jiang, B. Wang, J. Chen, T. Sun, F. Fu, C. Wang, H. Wang, Chem. Eng. J. 2024, 485, 150014.
CrossRef Google scholar
[23]
W. Li, Y. Yu, R. Huang, X. Wang, P. Lai, K. Chen, L. Shang, Y. Zhao, Adv. Sci. 2023, 10, 2301479.
[24]
J. Cai, H. Zhang, Y. Hu, Z. Huang, Y. Wang, Y. Xia, X. Chen, J. Guo, H. Cheng, L. Xia, W. Lu, C. Zhang, J. Xie, H. Wang, R. Chai, J. Nanobiotechnol. 2022, 20, 460.
[25]
Y. Zhang, Y. Tan, J. Lao, H. Gao, J. Yu, ACS Nano 2023, 17, 9681.
CrossRef Google scholar
[26]
J. Shin, Z. Liu, W. Bai, Y. Liu, Y. Yan, Y. Xue, I. Kandela, M. Pezhouh, M. R. MacEwan, Y. Huang, W. Z. Ray, W. Zhou, J. A. Rogers, Sci. Adv. 2019, 5, eaaw1899.
[27]
V. R. Feig, H. Tran, M. Lee, Z. Bao, Nat. Commun. 2018, 9, 2740.
[28]
C. Liu, K. Peng, Y. Wu, F. Fu, Smart Med. 2023, 2, e20230024.
[29]
Y. Yu, X. Wang, C. Yang, L. Shang, Smart Mater. Med. 2022, 3, 1.
CrossRef Google scholar
[30]
F. Feng, X. Song, Z. Tan, Y. Tu, L. Xiao, P. Xie, Y. Ma, X. Sun, J. Ma, L. Rong, L. He, Sci. Adv. 2023, 9, eadg0234.
[31]
N. Gogurla, B. Roy, S. Kim, Nano Energy 2020, 77, 105242.
CrossRef Google scholar
[32]
J. Mei, J. Zhou, L. Kong, Y. Dai, X. Zhang, W. Song, C. Zhu, J. Nanobiotechnol. 2022, 20, 232.
[33]
F. Fu, D. Liu, Y. Wu, Smart Med. 2023, 2, e20230004.
[34]
H. Wang, H. Zhang, Z. Chen, Y. Zhao, Z. Gu, L. Shang, Prog. Mater. Sci. 2023, 135, 101091.
CrossRef Google scholar
[35]
F. Karimi, N. Farbehi, F. Ziaee, K. Lau, M. Monfared, M. Kordanovski, H. Joukhdar, T. G. Molly, R. Nordon, K. A. Kilian, M. H. Stenzel, K. S. Lim, J. Rnjak-Kovacina, Adv. Funct. Mater. 2024, 34, 2313354.
[36]
N. Gorenkova, M. F. Maitz, G. Bohme, H. A. Alhadrami, E. H. Jiffri, J. D. Totten, C. Werner, H. V. O. Carswell, F. P. Seib, Biomater. Sci. 2021, 9, 7194.
CrossRef Google scholar
[37]
C. Guo, C. Li, H. V. Vu, P. Hanna, A. Lechtig, Y. Qiu, X. Mu, S. Ling, A. Nazarian, S. J. Lin, D. L. Kaplan, Nat. Mater. 2020, 19, 102.
CrossRef Google scholar
[38]
J. K. Sahoo, O. Hasturk, T. Falcucci, D. L. Kaplan, Nat. Rev. Chem. 2023, 7, 302.
CrossRef Google scholar
[39]
P. Mohammadi, A. S. Aranko, C. P. Landowski, K. Jaudzems, W. Wagermaier, M. B. Linder, Sci. Adv. 2019, 5, eaaw2541.
[40]
Y. Wang, L. Li, Y. Ji, T. Wang, Y. Fu, X. Li, G. Li, T. Zheng, L. Wu, Q. Han, Y. Zhang, Y. Wang, D. L. Kaplan, Y. Lu, Proc. Natl. Acad. Sci. 2023, 120, e2305704120.
[41]
X. Zhang, L. Xiao, Z. Ding, Q. Lu, D. L. Kaplan, ACS Nano 2022, 16, 10209.
CrossRef Google scholar
[42]
O. Hasturk, K. E. Jordan, J. Choi, D. L. Kaplan, Biomaterials 2020, 232, 119720.
CrossRef Google scholar
[43]
C. Liu, N. Morimoto, L. Jiang, S. Kawahara, T. Noritomi, H. Yokoyama, K. Mayumi, K. Ito, Science 2021, 372, 1078.
CrossRef Google scholar
[44]
Z. Xu, L. Chen, L. Lu, R. Du, W. Ma, Y. Cai, X. An, H. Wu, Q. Luo, Q. Xu, Q. Zhang, X. Jia, Adv. Funct. Mater. 2021, 31, 2006432.
[45]
J. Wang, N. Zhang, Y. Tan, F. Fu, G. Liu, Y. Fang, X. Zhang, M. Liu, Y. Cheng, J. Yu, ACS Appl. Mater. Interfaces 2022, 14, 21945.
CrossRef Google scholar
[46]
J. Ling, T. Huang, R. Wu, C. Ma, G. Lin, Z. Zhou, J. Wang, Q. Tu, X. Tang, Y. Liu, M. Liu, L. Yang, Y. Yang, Adv. Funct. Mater. 2023, 33, 2213342.
[47]
D. Li, Y. Fan, G. Han, Z. Guo, ACS Appl. Mater. Interfaces 2020, 12, 10039.
CrossRef Google scholar
[48]
D. Su, M. Yao, J. Liu, Y. Zhong, X. Chen, Z. Shao, ACS Appl. Mater. Interfaces 2017, 9, 17489.
CrossRef Google scholar
[49]
J. Ding, Z. Chen, X. Liu, Y. Tian, J. Jiang, Z. Qiao, Y. Zhang, Z. Xiao, D. Wei, J. Sun, F. Luo, L. Zhou, H. Fan, Mater. Horiz. 2022, 9, 2215.
CrossRef Google scholar
[50]
S. H. Kim, Y. K. Yeon, J. M. Lee, J. R. Chao, Y. J. Lee, Y. B. Seo, M. T. Sultan, O. J. Lee, J. S. Lee, S. I. Yoon, I. S. Hong, G. Khang, S. J. Lee, J. J. Yoo, C. H. Park, Nat. Commun. 2018, 9, 1620.
[51]
J. E. Elliott, M. Macdonald, J. Nie, C. N. Bowman, Polymer 2004, 45, 1503.
CrossRef Google scholar
[52]
S. D. Chaudhuri, A. Mandal, A. Dey, D. Chakrabarty, Appl. Clay Sci. 2020, 185, 105405.
CrossRef Google scholar
[53]
X. Liu, Q. Zhang, Z. Gao, R. Hou, G. Gao, ACS Appl. Mater. Interfaces 2017, 9, 17645.
CrossRef Google scholar
[54]
Z. Chen, L. Wang, C. Guo, M. Qiu, L. Cheng, K. Chen, J. Qi, L. Deng, C. He, X. Li, Y. Yan, Acta Biomater. 2023, 155, 218.
CrossRef Google scholar
[55]
C. Mukesh, J. Bhatt, K. Prasad, Macromol. Chem. Phys. 2014, 215, 1498.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/