Change in p53 nuclear localization in response to extracellular matrix stiffness

Yan Zu , Jing Du , Yipu Xu , Mengying Niu , Canlin Hong , Chun Yang

Smart Medicine ›› 2024, Vol. 3 ›› Issue (4) : e20240026

PDF
Smart Medicine ›› 2024, Vol. 3 ›› Issue (4) : e20240026 DOI: 10.1002/SMMD.20240026
RESEARCH ARTICLE

Change in p53 nuclear localization in response to extracellular matrix stiffness

Author information +
History +
PDF

Abstract

Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes. Here we investigated the effect of extracellular matrix stiffness on mouse articular chondrocyte phenotype, growth, and subcellular p53 localization. Chondrocytes were seeded on collagen-coated substrates varying in elasticity: 0.5 and 100 kPa. Immunocytochemical staining and immunoblotting showed that a softer substrate significantly increased p53 nuclear localization in chondrocytes. Furthermore, we identified microRNA-532 (miR-532) as a potential p53 target gene to influence cell function, indicating a new target for tissue engineering. These findings provide insight into the influence of physical cues on cell phenotype maintenance and could help improve understanding of cartilagerelated pathologies such as osteoarthritis.

Keywords

chondrocytes fate / ECM stiffness / miR-532 / p53 subcellular localization

Cite this article

Download citation ▾
Yan Zu, Jing Du, Yipu Xu, Mengying Niu, Canlin Hong, Chun Yang. Change in p53 nuclear localization in response to extracellular matrix stiffness. Smart Medicine, 2024, 3(4): e20240026 DOI:10.1002/SMMD.20240026

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. M. Watt, W. T. Huck, Nat. Rev. Mol. Cell Biol. 2013, 14, 467.

[2]

C. Feng, Y. Cheng, P. G. Chao, Acta Biomater. 2013, 9, 5502.

[3]

D. E. Discher, P. Janmey, Y. Wang, Science 2005, 310, 1139.

[4]

A. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher, Cell 2006, 126, 677.

[5]

E. A. Klein, L. Yin, D. Kothapalli, P. Castagnino, F. J. Byfield, T. Xu, I. Levental, E. Hawthorne, P. A. Janmey, R. K. Assoian, Curr. Biol. 2009, 19, 1511.

[6]

J. Du, Y. Zu, J. Li, S. Du, Y. Xu, L. Zhang, L. Jiang, Z. Wang, S. Chien, C. Yang, Sci. Rep. 2016, 6, 20395.

[7]

A. Pathak, S. Kumar, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 10334.

[8]

T. A. Ulrich, E. M. de Juan Pardo, S. Kumar, Cancer Res. 2009, 69, 4167.

[9]

K. Martyniak, A. Lokshina, M. A. Cruz, M. Karimzadeh, R. Kemp, T. J. Kean, Acta Biomater. 2022, 152, 221.

[10]

B. Bachmann, S. Spitz, B. Schädl, A. H. Teuschl, H. Redl, S. Nürnberger, P. Ertl, Front. Bioeng. Biotechnol. 2020, 8, 373.

[11]

C. Chen, J. Xie, L. Deng, L. Yang, ACS Appl. Mater. Interfaces 2014, 6, 16106.

[12]

J. L. Allen, M. E. Cooke, T. Alliston, Mol. Biol. Cell 2012, 23, 3731.

[13]

Y. Lei, Q. Zhang, G. Kuang, X. Wang, Q. Fan, F. Ye, Smart Med. 2022, 1, e20220014.

[14]

A. K. Williamson, A. C. Chen, R. L. Sah, J. Orthop. Res. 2001, 19, 1113.

[15]

L. A. Setton, D. M. Elliott, V. C. Mow, Osteoarthritis Cartilage 1999, 7, 2.

[16]

R. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, G. Duda, Osteoarthritis Cartilage 2005, 13, 958.

[17]

E. Schuh, J. Kramer, J. Rohwedel, H. Notbohm, R. Müller, T. Gutsmann, N. Rotter, Tissue Eng. Part A 2010, 16, 1281.

[18]

F. Guilak, W. R. Jones, H. P. Ting-Beall, G. M. Lee, Osteoarthritis Cartilage 1999, 7, 59.

[19]

H. Iijima, G. Gilmer, K. Wang, A. C. Bean, Y. He, H. Lin, W. Tang, D. Lamont, C. Tai, A. Ito, J. J. Jones, C. Evans, F. Ambrosio, Nat. Commun. 2023, 14, 18.

[20]

N. H. Kim, H. S. Kim, X. Li, I. Lee, H. S. Choi, S. E. Kang, S. Y. Cha, J. K. Ryu, D. Yoon, E. R. Fearon, R. G. Rowe, S. Lee, C. A. Maher, S. J. Weiss, J. I. Yook, J. Cell Biol. 2011, 195, 417.

[21]

S. Hashimoto, T. Nishiyama, S. Hayashi, T. Fujishiro, K. Takebe, N. Kanzaki, R. Kuroda, M. Kurosaka, Arthritis Rheum. 2009, 60, 2340.

[22]

J. Lotem, L. Sachs, Cell Growth Differ. 1993, 4, 41.

[23]

L. Zitvogel, L. Apetoh, F. Ghiringhelli, G. Kroemer, Nat. Rev. Immunol. 2008, 8, 59.

[24]

T. Velletri, N. Xie, Y. Wang, Y. Huang, Q. Yang, X. Chen, Q. Chen, P. Shou, Y. Gan, G. Cao, G. Melino, Y. Shi, Cell Death Dis. 2016, 7, e2015.

[25]

N. Zamzami, G. Kroemer, Biochem. Biophys. Res. Commun. 2005, 331, 685.

[26]

L. R. Livingstone, A. White, J. Sprouse, E. Livanos, T. Jacks, T. D. Tlsty, Cell 1992, 70, 923.

[27]

C. B. Khatiwala, S. R. Peyton, A. J. Putnam, Am. J. Physiol. Cell Physiol. 2006, 290, C1640.

[28]

Q. Li, Z. Wang, N. Shi, Y. Qi, W. Yao, J. Yu, Y. Lu, Smart Med. 2023, 2, e20230030.

[29]

L. M. Calvi, G. B. Adams, K. W. Weibrecht, J. M. Weber, D. P. Olson, M. C. Knight, R. P. Martin, E. Schipani, P. Divieti, F. R. Bringhurst, L. A. Milner, H. M. Kronenberg, D. T. Scadden, Nature 2003, 425, 841.

[30]

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, L. Peterson, N. Engl. J. Med. 1994, 331, 889.

[31]

H. Huang, C. Xu, Y. Wang, C. Meng, W. Liu, Y. Zhao, X. Huang, W. You, B. Feng, Z. Zheng, Y. Huang, H. Lan, J. Qin, Y. Xia, Kidney Int. 2018, 93, 855.

[32]

C. D. Wiley, M. C. Velarde, P. Lecot, S. Liu, E. A. Sarnoski, A. Freund, K. Shirakawa, H. W. Lim, S. S. Davis, A. Ramanathan, A. A. Gerencser, E. Verdin, J. Campisi, Cell Metab. 2016, 23, 303.

[33]

C. Yao, X. Guan, G. Carraro, T. Parimon, X. Liu, G. Huang, A. Mulay, H. J. Soukiasian, G. David, S. S. Weigt, J. A. Weigt, P. Chen, D. Jiang, P. W. Noble, B. R. Stripp, Am. J. Respir. Crit. Care Med. 2021, 203, 707.

RIGHTS & PERMISSIONS

2024 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/