Change in p53 nuclear localization in response to extracellular matrix stiffness

Yan Zu, Jing Du, Yipu Xu, Mengying Niu, Canlin Hong, Chun Yang

Smart Medicine ›› 2024, Vol. 3 ›› Issue (4) : e20240026.

PDF
Smart Medicine ›› 2024, Vol. 3 ›› Issue (4) : e20240026. DOI: 10.1002/SMMD.20240026
RESEARCH ARTICLE

Change in p53 nuclear localization in response to extracellular matrix stiffness

Author information +
History +

Abstract

Chondrocytes are commonly applied in regenerative medicine and tissue engineering. Thus, the discovery of optimal culture conditions to obtain cells with good properties and behavior for transplantation is important. In addition to biochemical cues, physical and biomechanical changes can affect the proliferation and protein expression of chondrocytes. Here we investigated the effect of extracellular matrix stiffness on mouse articular chondrocyte phenotype, growth, and subcellular p53 localization. Chondrocytes were seeded on collagen-coated substrates varying in elasticity: 0.5 and 100 kPa. Immunocytochemical staining and immunoblotting showed that a softer substrate significantly increased p53 nuclear localization in chondrocytes. Furthermore, we identified microRNA-532 (miR-532) as a potential p53 target gene to influence cell function, indicating a new target for tissue engineering. These findings provide insight into the influence of physical cues on cell phenotype maintenance and could help improve understanding of cartilagerelated pathologies such as osteoarthritis.

Keywords

chondrocytes fate / ECM stiffness / miR-532 / p53 subcellular localization

Cite this article

Download citation ▾
Yan Zu, Jing Du, Yipu Xu, Mengying Niu, Canlin Hong, Chun Yang. Change in p53 nuclear localization in response to extracellular matrix stiffness. Smart Medicine, 2024, 3(4): e20240026 https://doi.org/10.1002/SMMD.20240026

References

[1]
F. M. Watt, W. T. Huck, Nat. Rev. Mol. Cell Biol. 2013, 14, 467.
CrossRef Google scholar
[2]
C. Feng, Y. Cheng, P. G. Chao, Acta Biomater. 2013, 9, 5502.
CrossRef Google scholar
[3]
D. E. Discher, P. Janmey, Y. Wang, Science 2005, 310, 1139.
CrossRef Google scholar
[4]
A. J. Engler, S. Sen, H. L. Sweeney, D. E. Discher, Cell 2006, 126, 677.
CrossRef Google scholar
[5]
E. A. Klein, L. Yin, D. Kothapalli, P. Castagnino, F. J. Byfield, T. Xu, I. Levental, E. Hawthorne, P. A. Janmey, R. K. Assoian, Curr. Biol. 2009, 19, 1511.
CrossRef Google scholar
[6]
J. Du, Y. Zu, J. Li, S. Du, Y. Xu, L. Zhang, L. Jiang, Z. Wang, S. Chien, C. Yang, Sci. Rep. 2016, 6, 20395.
[7]
A. Pathak, S. Kumar, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 10334.
CrossRef Google scholar
[8]
T. A. Ulrich, E. M. de Juan Pardo, S. Kumar, Cancer Res. 2009, 69, 4167.
CrossRef Google scholar
[9]
K. Martyniak, A. Lokshina, M. A. Cruz, M. Karimzadeh, R. Kemp, T. J. Kean, Acta Biomater. 2022, 152, 221.
CrossRef Google scholar
[10]
B. Bachmann, S. Spitz, B. Schädl, A. H. Teuschl, H. Redl, S. Nürnberger, P. Ertl, Front. Bioeng. Biotechnol. 2020, 8, 373.
[11]
C. Chen, J. Xie, L. Deng, L. Yang, ACS Appl. Mater. Interfaces 2014, 6, 16106.
CrossRef Google scholar
[12]
J. L. Allen, M. E. Cooke, T. Alliston, Mol. Biol. Cell 2012, 23, 3731.
CrossRef Google scholar
[13]
Y. Lei, Q. Zhang, G. Kuang, X. Wang, Q. Fan, F. Ye, Smart Med. 2022, 1, e20220014.
[14]
A. K. Williamson, A. C. Chen, R. L. Sah, J. Orthop. Res. 2001, 19, 1113.
CrossRef Google scholar
[15]
L. A. Setton, D. M. Elliott, V. C. Mow, Osteoarthritis Cartilage 1999, 7, 2.
CrossRef Google scholar
[16]
R. Kleemann, D. Krocker, A. Cedraro, J. Tuischer, G. Duda, Osteoarthritis Cartilage 2005, 13, 958.
CrossRef Google scholar
[17]
E. Schuh, J. Kramer, J. Rohwedel, H. Notbohm, R. Müller, T. Gutsmann, N. Rotter, Tissue Eng. Part A 2010, 16, 1281.
CrossRef Google scholar
[18]
F. Guilak, W. R. Jones, H. P. Ting-Beall, G. M. Lee, Osteoarthritis Cartilage 1999, 7, 59.
CrossRef Google scholar
[19]
H. Iijima, G. Gilmer, K. Wang, A. C. Bean, Y. He, H. Lin, W. Tang, D. Lamont, C. Tai, A. Ito, J. J. Jones, C. Evans, F. Ambrosio, Nat. Commun. 2023, 14, 18.
[20]
N. H. Kim, H. S. Kim, X. Li, I. Lee, H. S. Choi, S. E. Kang, S. Y. Cha, J. K. Ryu, D. Yoon, E. R. Fearon, R. G. Rowe, S. Lee, C. A. Maher, S. J. Weiss, J. I. Yook, J. Cell Biol. 2011, 195, 417.
CrossRef Google scholar
[21]
S. Hashimoto, T. Nishiyama, S. Hayashi, T. Fujishiro, K. Takebe, N. Kanzaki, R. Kuroda, M. Kurosaka, Arthritis Rheum. 2009, 60, 2340.
CrossRef Google scholar
[22]
J. Lotem, L. Sachs, Cell Growth Differ. 1993, 4, 41.
[23]
L. Zitvogel, L. Apetoh, F. Ghiringhelli, G. Kroemer, Nat. Rev. Immunol. 2008, 8, 59.
CrossRef Google scholar
[24]
T. Velletri, N. Xie, Y. Wang, Y. Huang, Q. Yang, X. Chen, Q. Chen, P. Shou, Y. Gan, G. Cao, G. Melino, Y. Shi, Cell Death Dis. 2016, 7, e2015.
CrossRef Google scholar
[25]
N. Zamzami, G. Kroemer, Biochem. Biophys. Res. Commun. 2005, 331, 685.
CrossRef Google scholar
[26]
L. R. Livingstone, A. White, J. Sprouse, E. Livanos, T. Jacks, T. D. Tlsty, Cell 1992, 70, 923.
CrossRef Google scholar
[27]
C. B. Khatiwala, S. R. Peyton, A. J. Putnam, Am. J. Physiol. Cell Physiol. 2006, 290, C1640.
CrossRef Google scholar
[28]
Q. Li, Z. Wang, N. Shi, Y. Qi, W. Yao, J. Yu, Y. Lu, Smart Med. 2023, 2, e20230030.
[29]
L. M. Calvi, G. B. Adams, K. W. Weibrecht, J. M. Weber, D. P. Olson, M. C. Knight, R. P. Martin, E. Schipani, P. Divieti, F. R. Bringhurst, L. A. Milner, H. M. Kronenberg, D. T. Scadden, Nature 2003, 425, 841.
CrossRef Google scholar
[30]
M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, L. Peterson, N. Engl. J. Med. 1994, 331, 889.
CrossRef Google scholar
[31]
H. Huang, C. Xu, Y. Wang, C. Meng, W. Liu, Y. Zhao, X. Huang, W. You, B. Feng, Z. Zheng, Y. Huang, H. Lan, J. Qin, Y. Xia, Kidney Int. 2018, 93, 855.
[32]
C. D. Wiley, M. C. Velarde, P. Lecot, S. Liu, E. A. Sarnoski, A. Freund, K. Shirakawa, H. W. Lim, S. S. Davis, A. Ramanathan, A. A. Gerencser, E. Verdin, J. Campisi, Cell Metab. 2016, 23, 303.
CrossRef Google scholar
[33]
C. Yao, X. Guan, G. Carraro, T. Parimon, X. Liu, G. Huang, A. Mulay, H. J. Soukiasian, G. David, S. S. Weigt, J. A. Weigt, P. Chen, D. Jiang, P. W. Noble, B. R. Stripp, Am. J. Respir. Crit. Care Med. 2021, 203, 707.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Smart Medicine published by Wiley-VCH GmbH on behalf of Wenzhou Institute, University of Chinese Academy of Sciences.
PDF

Accesses

Citations

Detail

Sections
Recommended

/