Self-repairable, high-uniform conductive-bridge random access memory based on amorphous NbSe2
Bojing Lu , Dunan Hu , Ruqi Yang , Jigang Du , Lingxiang Hu , Siqin Li , Fengzhi Wang , Jingyun Huang , Pingwei Liu , Fei Zhuge , Yu-Jia Zeng , Zhizhen Ye , Jianguo Lu
SmartMat ›› 2024, Vol. 5 ›› Issue (3) : e1240
Self-repairable, high-uniform conductive-bridge random access memory based on amorphous NbSe2
Conductive-bridge random access memory (CBRAM) emerges as a promising candidate for next-generation memory and storage device. However, CBRAMs are prone to degenerate and fail during electrochemical metallization processes. To address this issue, herein we propose a self-repairability strategy for CBRAMs. Amorphous NbSe2 was designed as the resistive switching layer, with Cu and Au as the top and bottom electrodes, respectively. The NbSe2 CBRAMs demonstrate exceptional cycle-to-cycle and device-to-device uniformity, with forming-free and compliance current-free resistive switching characteristics, low-operation voltage, and competitive endurance and retention performance. Most importantly, the self-repairable behavior is discovered for the first time in CBRAM. The device after failure can recover its performance to the initially normal state by operating with a slightly large reset voltage. The existence of Cu conductive filament and excellent controllability of Cu migration in the NbSe2 switching layer has been revealed by a designed broken-down point approach, which is responsible for the self-repairable behavior of NbSe2 CBRAMs. Our self-repairable and high-uniform amorphous NbSe2 CBRAM may open the door to the development of memory and storage devices in the future.
conductive-bridge random access memory / conductive filament / high uniformity / NbSe 2 / self-repairable
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |