Transition metal carbide-based photocatalysts for artificial photosynthesis
Khai J. Wong, Joel J. Foo, Tan J. Siang, Wee-Jun Ong
Transition metal carbide-based photocatalysts for artificial photosynthesis
Transition metal carbides, including both MXene and non-MXene metal carbides, have enjoyed a soaring reputation in recent years. Benefitting from their intriguing physical and chemical characteristics, they shine in multifarious research fields and currently, they have emerged as promising nanomaterials for photocatalysis in energy and environmental science. Herein, based on the recent theoretical research and experimental studies, a systematic and comprehensive review of the expeditious advances of metal carbides and their nano-architectures in the flourishing arena of photocatalysis is presented. The fundamental mechanism involved in photocatalysis with metal carbides serving as semiconductors or cocatalysts is thoroughly discussed. Besides, we highlight the main synthetic strategies of MXene and non-MXene metal carbides and unravel the structural properties of the as-obtained metal carbides via different fabrication routes to establish and elucidate their intriguing role in ameliorating photocatalytic activity. Moreover, the state-of-the-art advancements of metal carbides in diverse photocatalytic applications, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, and carbon dioxide reduction reaction, are summarized. In particular, insights into the structure–activity relationship of metal carbide in photocatalysis are elucidated. Finally, this review concludes with the ongoing challenges and perspectives on the future directions of metal carbides in the realm of photocatalysis.
cocatalysts / metal carbides / MXene / non-MXene / photocatalysis / photocatalysts
[1] |
Zuo G, Wang Y, Teo WL, et al. Enhanced photocatalytic water oxidation by hierarchical 2D-Bi2MoO6@2D-MXene Schottky junction nanohybrid. Chem Eng J. 2021;403:126328.
|
[2] |
Ma B, Zhang S, Wang W, et al. A novel earth-abundant W-WC heterojunction as efficient co-catalyst for enhanced photocatalytic H2 evolution. ChemCatChem. 2020;12(4):1148-1155.
|
[3] |
Looney B. BP Statistical Review of World Energy 2021: a Dramatic Impact on Energy Markets. Accessed April 4, 2022.
|
[4] |
Centi G. Smart catalytic materials for energy transition. SmartMat. 2020;1(1):e1005.
|
[5] |
Kang S, Sun T, Ma Y, et al. Artificial photosynthesis bringing new vigor into plastic wastes. SmartMat. 2023;4:e1202.
|
[6] |
Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy. 2019;44(29):15072-15086.
|
[7] |
Perera F. Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health. 2018;15(1):16.
|
[8] |
Anderson TR, Hawkins E, Jones PD. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models. Endeavour. 2016;40(3):178-187.
|
[9] |
Leiu YX, Ling GZS, Mohamed AR, Wang S, Ong W-J. Atomic-level tailoring ZnxCd1-xS photocatalysts: a paradigm for bridging structure-performance relationship toward solar chemical production. Mater Today Energy. 2023;34:101281.
|
[10] |
Ren Y, Foo JJ, Zeng D, Ong W-J. ZnIn2S4-based nanostructures in artificial photosynthesis: insights into photocatalytic reduction toward sustainable energy production. Small Struct. 2022;3(11):2200017.
|
[11] |
Oh VB-Y, Ng S-F, Ong W-J. Shining light on ZnIn2S4 photocatalysts: promotional effects of surface and heterostructure engineering toward artificial photosynthesis. EcoMat. 2022;4(5):e12204.
|
[12] |
Lin X, Ng S-F, Ong W-J. Coordinating single-atom catalysts on two-dimensional nanomaterials: a paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev. 2022;471:214743.
|
[13] |
Zeng J, Li Z, Jiang H, Wang X. Progress on photocatalytic semiconductor hybrids for bacterial inactivation. Mater Horizons. 2021;8(11):2964-3008.
|
[14] |
Yang X, Ye Y, Sun J, Li Z, Ping J, Sun X. Recent advances in g-C3N4-based photocatalysts for pollutant degradation and bacterial disinfection: design strategies, mechanisms, and applications. Small. 2022;18(9):2105089.
|
[15] |
Chen T, Liu L, Hu C, Huang H. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chin J Catal. 2021;42(9):1413-1438.
|
[16] |
Kumar R, Raizada P, Verma N, et al. Recent advances on water disinfection using bismuth-based modified photocatalysts: strategies and challenges. J Clean Prod. 2021;297:126617.
|
[17] |
Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248-4253.
|
[18] |
Ouyang Z, Yang Y, Zhang C, et al. Recent advances in photocatalytic degradation of plastics and plastic-derived chemicals. J Mater Chem A. 2021;9(23):13402-13441.
|
[19] |
Nabi I, Bacha A-U-R, Ahmad F, Zhang L. Application of titanium dioxide for the photocatalytic degradation of macro- and micro-plastics: a review. J Environ Chem Eng. 2021;9(5):105964.
|
[20] |
Low J, Zhang L, Tong T, Shen B, Yu J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catalysis. 2018;361:255-266.
|
[21] |
Zhang D, Li Y, Li Y, Zhan S. Towards single-atom photocatalysts for future carbon-neutral application. SmartMat. 2022;3(3):417-446.
|
[22] |
Zhang W, He H, Li H, et al. Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv Energy Mater. 2021;11(15):2003303.
|
[23] |
Rawool SA, Yadav KK, Polshettiwar V. Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals. Chem Sci. 2021;12(12):4267-4299.
|
[24] |
Jiang L, Zhou S, Yang J, et al. Near-infrared light-responsive TiO2 for efficient solar energy utilization. Adv Funct Mater. 2022;32(12):2108977.
|
[25] |
Ng S-F, Foo JJ, Ong W-J. Solar-powered chemistry: engineering low-dimensional carbon nitride-based nanostructures for selective CO2 conversion to C1-C2 products. InfoMat. 2022;4(1):e12279.
|
[26] |
Yu X, Ng S-F, Putri LK, Tan L-L, Mohamed AR, Ong W-J. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small. 2021;17(48):2006851.
|
[27] |
Ong W-J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front Mater. 2017;4:11.
|
[28] |
Nasir JA, Rehman Z, Shah SNA, Khan A, Butler IS, Catlow CRA. Recent developments and perspectives in CdS-based photocatalysts for water splitting. J Mater Chem A. 2020;8(40):20752-20780.
|
[29] |
Yang K, Yang Z, Zhang C, et al. Recent advances in CdS-based photocatalysts for CO2 photocatalytic conversion. Chem Eng J. 2021;418:129344.
|
[30] |
Foo JJ, Ng S-F, Ong W-J. Dimensional heterojunction design: the rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Res. 2022;16:4310-4364.
|
[31] |
Wang S, Wang L, Huang W. Bismuth-based photocatalysts for solar energy conversion. J Mater Chem A. 2020;8(46):24307-24352.
|
[32] |
Fujishima A, Zhang X, Tryk D. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63(12):515-582.
|
[33] |
Fu J, Yu J, Jiang C, Cheng B. g-C3N4-based heterostructured photocatalysts. Adv Energy Mater. 2018;8(3):1701503.
|
[34] |
Cheng L, Xiang Q, Liao Y, Zhang H. CdS-based photocatalysts. Energy Environ Sci. 2018;11(6):1362-1391.
|
[35] |
Wu N. Plasmonic metal–semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale. 2018;10(6):2679-2696.
|
[36] |
Ulmer U, Dingle T, Duchesne PN, et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat Commun. 2019;10(1):3169.
|
[37] |
Cai J, Wu X, Li S, Zheng F. Controllable location of Au nanoparticles as cocatalyst onto TiO2@CeO2 nanocomposite hollow spheres for enhancing photocatalytic activity. Appl Catal B. 2017;201:12-21.
|
[38] |
Yu J, Wang K, Xiao W, Cheng B. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts. Phys Chem Chem Phys. 2014;16(23):11492-11501.
|
[39] |
Ran J, Gao G, Li F-T, Ma T-Y, Du A, Qiao S-Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun. 2017;8(1):13907.
|
[40] |
Pan Y-X, Peng J-B, Xin S, et al. Enhanced visible-light-driven photocatalytic H2 evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo2C@C nanospheres. ACS Sustain Chem Eng. 2017;5(6):5449-5456.
|
[41] |
Zhao Z, Wu J, Zheng Y-Z, Li N, Li X, Tao X. Ni3C-decorated MAPbI3 as visible-light photocatalyst for H2 evolution from HI splitting. ACS Catal. 2019;9(9):8144-8152.
|
[42] |
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992-1005.
|
[43] |
Zhuang Y, Liu Y, Meng X. Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly. Appl Surf Sci. 2019;496:143647.
|
[44] |
Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv Mater. 2021;33(39):2103393.
|
[45] |
Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des. 2017;114:161-166.
|
[46] |
Liu F, Zhou A, Chen J, et al. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl Surf Sci. 2017;416:781-789.
|
[47] |
Liu F, Zhou J, Wang S, et al. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J Electrochem Soc. 2017;164(4):A709-A713.
|
[48] |
Meyer S, Nikiforov AV, Petrushina IM, et al. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int J Hydrogen Energy. 2015;40(7):2905-2911.
|
[49] |
Zhou X, Luo J, Jin B, et al. Sustainable synthesis of low-cost nitrogen-doped-carbon coated Co3W3C@g-C3N4 composite photocatalyst for efficient hydrogen evolution. Chem Eng J. 2021;426:131208.
|
[50] |
Deysher G, Shuck CE, Hantanasirisakul K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano. 2019;14(1):204-217.
|
[51] |
Mühlbauer G, Kremser G, Bock A, Weidow J, Schubert W-D. Transition of W2C to WC during carburization of tungsten metal powder. Int J Refract Met Hard Mater. 2018;72:141-148.
|
[52] |
Wu HB, Xia BY, Yu L, Yu X-Y, Lou XW. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun. 2015;6(1):6512.
|
[53] |
Zhang C, Wang Z, Tu R, et al. Growth of self-aligned single-crystal vanadium carbide nanosheets with a controllable thickness on a unique staked metal substrate. Appl Surf Sci. 2020;499:143998.
|
[54] |
Xu C, Wang L, Liu Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat Mater. 2015;14(11):1135-1141.
|
[55] |
Wang Y, Guo T, Tian Z, Bibi K, Zhang Y-Z, Alshareef HN. MXenes for energy harvesting. Adv Mater. 2022;34(21):2108560.
|
[56] |
Pan L, Mei H, Liu H, et al. High-efficiency carrier separation heterostructure improve the photocatalytic hydrogen production of sulfide. J Alloys Compd. 2020;817:153242.
|
[57] |
Zhang J, Wu M, He B, Wang R, Wang H, Gong Y. Facile synthesis of rod-like g-C3N4 by decorating Mo2C co-catalyst for enhanced visible-light photocatalytic activity. Appl Surf Sci. 2019;470:565-572.
|
[58] |
He K, Xie J, Yang Z, et al. Earth-abundant WC nanoparticles as an active noble-metal-free co-catalyst for the highly boosted photocatalytic H2 production over g-C3N4 nanosheets under visible light. Catal Sci Technol. 2017;7(5):1193-1202.
|
[59] |
Tian L, Min S, Wang F, Zhang Z. Enhanced photocatalytic hydrogen evolution on TiO2 employing vanadium carbide as an efficient and stable cocatalyst. Int J Hydrogen Energy. 2020;45(3):1878-1889.
|
[60] |
Tian L, Min S, Lei Y, Chen S, Wang F. Vanadium carbide: an efficient, robust, and versatile cocatalyst for photocatalytic hydrogen evolution under visible light. Chem Commun. 2019;55(48):6870-6873.
|
[61] |
Guo Z, Zhou J, Zhu L, Sun Z. MXene: a promising photocatalyst for water splitting. J Mater Chem A. 2016;4(29):11446-11452.
|
[62] |
Xiong K, Wang P, Yang G, et al. Functional group effects on the photoelectronic properties of MXene (Sc2CT2, T = O, F, OH) and their possible photocatalytic activities. Sci Rep. 2017;7(1):15095.
|
[63] |
Irfan RM, Tahir MH, Iqbal S, et al. Co3C as a promising cocatalyst for superior photocatalytic H2 production based on swift electron transfer processes. J Mater Chem C. 2021;9(9):3145-3154.
|
[64] |
Zhang Y, Sa B, Zhou J, Sun Z. Two-dimensional (Zr0.5Hf0.5)2CO2: a promising visible light water-splitting photocatalyst with efficiently carrier separation. Comput Mater Sci. 2021;186:110013.
|
[65] |
Su T, Hood ZD, Naguib M, et al. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale. 2019;11(17):8138-8149.
|
[66] |
Xiong Y, Chen Y, Yang N, Jin C, Sun Q. WC1−x-coupled 3D porous defective g-C3N4 for efficient photocatalytic overall water splitting. Solar RRL. 2019;3(5):1800341.
|
[67] |
Gao F, Zhao Y, Zhang L, et al. Well-dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H2 evolution. J Mater Chem A. 2018;6(39):18979-18986.
|
[68] |
Zhang X, Zhang Z, Li J, Zhao X, Wu D, Zhou Z. Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. J Mater Chem A. 2017;5(25):12899-12903.
|
[69] |
Wang H, Tang Q, Wu Z. Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain Chem Eng. 2021;9(25):8425-8434.
|
[70] |
Qin T, Wang Z, Wang Y, Besenbacher F, Otyepka M, Dong M. Recent progress in emerging two-dimensional transition metal carbides. Nano Micro Lett. 2021;13(1):183.
|
[71] |
Wei Y, Zhang P, Soomro RA, Zhu Q, Xu B. Advances in the synthesis of 2D MXenes. Adv Mater. 2021;33(39):2103148.
|
[72] |
Peng J, Chen X, Ong W-J, Zhao X, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem. 2019;5(1):18-50.
|
[73] |
Lei W, Zhou T, Pang X, Xue S, Xu Q. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: progress and prospects. J Mater Sci Technol. 2022;114:143-164.
|
[74] |
Li K, Zhang S, Li Y, Fan J, Lv K. MXenes as noble-metal-alternative co-catalysts in photocatalysis. Chin J Catal. 2021;42(1):3-14.
|
[75] |
Zhang K, Li D, Cao H, et al. Insights into different dimensional MXenes for photocatalysis. Chem Eng J. 2021;424:130340.
|
[76] |
Hong L, Guo R, Yuan Y, et al. Recent progress of two-dimensional MXenes in photocatalytic applications: a review. Mater Today Energy. 2020;18:100521.
|
[77] |
Tang R, Xiong S, Gong D, et al. Ti3C2 2D MXene: recent progress and perspectives in photocatalysis. ACS Appl Mater Interfaces. 2020;12(51):56663-56680.
|
[78] |
Schneider J, Matsuoka M, Takeuchi M, et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev. 2014;114(19):9919-9986.
|
[79] |
Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed. 2013;52(29):7372-7408.
|
[80] |
Lim XB, Ong W-J. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. Nanoscale Horiz. 2021;6(8):588-633.
|
[81] |
Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M. Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today. 2018;21(10):1042-1063.
|
[82] |
Maeda K, Wakayama H, Washio Y, et al. Visible-light-induced photocatalytic activity of stacked MXene sheets of Y2CF2. J Phys Chem C. 2020;124(27):14640-14645.
|
[83] |
Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater. 2018;30(52):1804779.
|
[84] |
Cui X-H, Li X-H, Jin X-J, Yan H-T, Zhang R-Z, Cui H-L. Biaxial strain tunable quantum capacitance and photocatalytic properties of Hf2CO2 monolayer. Appl Surf Sci. 2023;616:156579.
|
[85] |
Guo S, Lin H, Hu J, Su Z, Zhang Y. Computational study of novel semiconducting Sc2CT2 (T = F, Cl, Br) MXenes for visible-light photocatalytic water splitting. Materials. 2021;14(16):4739.
|
[86] |
Ibrahim IAM, Abdel-Azeim S, El-Nahas AM, et al. In silico band-gap engineering of Cr2C MXenes as efficient photocatalysts for water-splitting reactions. J Phys Chem C. 2022;126(35):14886-14896.
|
[87] |
Khorasani Baghini Z, Mostafaei A, Abbasnejad M. Y2CF2 and Lu2CF2 MXenes under applied strain: electronic, optical, and photocatalytic properties. J Alloys Compd. 2022;922:166198.
|
[88] |
Sunita
|
[89] |
Omugbe E, Osafile OE, Nenuwe ON, Enaibe EA. Energy band gaps and novel thermoelectric properties of two-dimensional functionalized Yttrium carbides (MXenes). Phys B: Condens Matter. 2022;639:413922.
|
[90] |
Xue K, Yan L, Ge Y, et al. Two-dimensional tetragonal and hexagonal lattices of transition metal carbides MC (M = Ti, Zr, Hf): observation of two nodal loops and strong light-harvesting ability. Appl Phys Lett. 2022;120(24):243101.
|
[91] |
Wang Y, Tao Y, Zhang Q, et al. The structural, elastic, electronic, and optical properties of Janus Zr2COT (T = S, Se, and Te) MXenes. Solid State Commun. 2022;354:114893.
|
[92] |
Wang Z, Lin Z, Shen S, Zhong W, Cao S. Advances in designing heterojunction photocatalytic materials. Chin J Catal. 2021;42(5):710-730.
|
[93] |
Liu X, Kang W, Qi L, et al. Two-dimensional g-C3N4/Ti2CO2 heterostructure as a direct Z-scheme photocatalyst for water splitting: a hybrid density functional theory investigation. Phys E. 2021;134:114872.
|
[94] |
He Y, Zhang M, Shi J, Cen Y, Wu M. Improvement of visible-light photocatalytic efficiency in a novel InSe/Zr2CO2 heterostructure for overall water splitting. J Phys Chem C. 2019;123(20):12781-12790.
|
[95] |
Zhu XT, Xu Y, Cao Y, et al. Investigation of the electronic structure of two-dimensional GaN/Zr2CO2 hetero-junction: type-II band alignment with tunable bandgap. Appl Surf Sci. 2021;542:148505.
|
[96] |
Zhu B, Zhang F, Qiu J, et al. A novel Hf2CO2/WS2 van der Waals heterostructure as a potential candidate for overall water splitting photocatalyst. Mater Sci Semicond Process. 2021;133:105947.
|
[97] |
Zhang M, Si R, Wu X, et al. Two-dimensional Hf2CO2/GaN van der Waals heterostructure for overall water splitting: a density functional theory study. J Mater Sci: Mater Electron. 2021;32(14):19368-19379.
|
[98] |
Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater. 2017;29(20):1601694.
|
[99] |
Vinoth S, Ong W-J, Pandikumar A. Sulfur-doped graphitic carbon nitride incorporated bismuth oxychloride/cobalt based type-II heterojunction as a highly stable material for photoelectrochemical water splitting. J Colloid Interface Sci. 2021;591:85-95.
|
[100] |
Xu X, Ge X, Liu X, et al. Two-dimensional M2CO2/MoS2 (M = Ti, Zr and Hf) van der Waals heterostructures for overall water splitting: a density functional theory study. Ceram Int. 2020;46(9):13377-13384.
|
[101] |
Li X-H, Wang B-J, Wang G-D, Ke S-H. Blue phosphorene/Sc2CX2 (X = O, F) van der Waals heterostructures as suitable candidates for water-splitting photocatalysts and solar cells. Sustain Energy Fuels. 2020;4(10):5277-5283.
|
[102] |
Guo H, Zhu B, Zhang F, et al. Type-II AsP/Sc2CO2 van der Waals heterostructure: an excellent photocatalyst for overall water splitting. Int J Hydrogen Energy. 2021;46(65):32882-32892.
|
[103] |
Xu X, Wu X, Tian Z, Zhang M, Li L, Zhang J. Modulating the electronic structures and potential applications of Zr2CO2/MSe2 (M = Mo, W) heterostructures by different stacking modes: a density functional theory calculation. Appl Surf Sci. 2022;599:154014.
|
[104] |
Hao J, Wu J, Wang C, Zhu F, Yan X, Gu Y. Mo2CF2/WS2: two-dimensional van der waals heterostructure for overall water splitting photocatalyst from five-step screening. J Phys Chem Lett. 2023;14(6):1363-1370.
|
[105] |
Xu Q, Zhang L, Cheng B, Fan J, Yu J. S-scheme heterojunction photocatalyst. Chem. 2020;6(7):1543-1559.
|
[106] |
Fu C-F, Li X, Yang J. A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron–hole recombination and photocorrosion. Chem Sci. 2021;12(8):2863-2869.
|
[107] |
Li B, Wang W, Zhao J, et al. All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J Mater Chem A. 2021;9(16):10270-10276.
|
[108] |
Zhang W, Mohamed AR, Ong W-J. Z-Scheme photocatalytic systems for carbon dioxide reduction: where are we now? Angew Chem Int Ed. 2020;59(51):22894-22915.
|
[109] |
Low J, Yu J, Jiang C. Design and fabrication of direct Z-scheme photocatalysts. Interface Sci Technol. 2020;31:193-229.
|
[110] |
Kumar R, Singh AK. Chemical hardness-driven interpretable machine learning approach for rapid search of photocatalysts. npj Comput Mater. 2021;7(1):197.
|
[111] |
Shen R, Lu X, Zheng Q, et al. Tracking S-scheme charge transfer pathways in Mo2C/CdS H2-evolution photocatalysts. Solar RRL. 2021;5(7):2100177.
|
[112] |
Shen J, Shen J, Zhang W, et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceram Int. 2019;45(18):24146-24153.
|
[113] |
Sun Y, Jin D, Sun Y, et al. g-C3N4/Ti3C2Tx (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J Mater Chem A. 2018;6(19):9124-9131.
|
[114] |
Zhang L, Zhang J, Yu H, Yu J. Emerging S-scheme photocatalyst. Adv Mater. 2022;34(11):2107668.
|
[115] |
He F, Zhu B, Cheng B, Yu J, Ho W, Macyk W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl Catal B. 2020;272:119006.
|
[116] |
Huang K, Li C, Meng X. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci. 2020;580:669-680.
|
[117] |
Zhou J, Li L, Gao XJ, Wang H. Clusterphene: a new two-dimensional structure from cluster self-assembly. Nano Res. 2022;15(7):5790-5791.
|
[118] |
Sui X, Chen H, Wang H, et al. Unique Mo2C–CdS–Co@C heterojunction integrated with redox cocatalysts and multiple active sites for efficient photocatalytic H2 generation. Int J Hydrogen Energy. 2022;47(27):13386-13398.
|
[119] |
Ma S, Deng Y, Xie J, et al. Noble-metal-free Ni3C cocatalysts decorated CdS nanosheets for high-efficiency visible-light-driven photocatalytic H2 evolution. Appl Catal B. 2018;227:218-228.
|
[120] |
Ma X, Li W, Ren C, et al. A novel noble-metal-free binary and ternary In2S3 photocatalyst with WC and “W-Mo auxiliary pairs” for highly-efficient visible-light hydrogen evolution. J Alloys Compd. 2021;875:160058.
|
[121] |
Du X, Zhao T, Xiu Z, et al. BiVO4@ZnIn2S4/Ti3C2 MXene quantum dots assembly all-solid-state direct Z-Scheme photocatalysts for efficient visible-light-driven overall water splitting. Appl Mater Today. 2020;20:100719.
|
[122] |
Zhang T, Yu J, Huang J, Lan S, Lou Y, Chen J. MoC/MAPbI3 hybrid composites for efficient photocatalytic hydrogen evolution. Dalton Trans. 2021;50(31):10860-10866.
|
[123] |
Ma B, Wang X, Lin K, et al. A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution. Int J Hydrogen Energy. 2017;42(30):18977-18984.
|
[124] |
He K, Xie J, Liu Z-Q, et al. Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J Mater Chem A. 2018;6(27):13110-13122.
|
[125] |
Peng C, Xu W, Wei P, et al. Manipulating photocatalytic pathway and activity of ternary Cu2O/(001) TiO2@Ti3C2Tx catalysts for H2 evolution: effect of surface coverage. Int J Hydrogen Energy. 2019;44(57):29975-29985.
|
[126] |
Wang H, Sun Y, Wu Y, et al. Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl Catal B. 2019;245:290-301.
|
[127] |
Zuo G, Wang Y, Teo WL, et al. Ultrathin ZnIn2S4 nanosheets anchored on Ti3C2Tx MXene for photocatalytic H2 evolution. Angew Chem Int Ed. 2020;59(28):11287-11292.
|
[128] |
Shen H, Ouyang T, Guo J, Mu M, Yin X. A perspective LDHs/Ti3C2O2 design by DFT calculation for photocatalytic reduction of CO2 to C2 organics. Appl Surf Sci. 2023;609:155445.
|
[129] |
Shen R, He K, Zhang A, et al. In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl Catal B. 2021;291:120104.
|
[130] |
Liu J, Hodes G, Yan J, Liu S. Metal-doped Mo2C (metal = Fe, Co, Ni, Cu) as catalysts on TiO2 for photocatalytic hydrogen evolution in neutral solution. Chin J Catal. 2021;42(1):205-216.
|
[131] |
Wang H, Peng R, Hood ZD, Naguib M, Adhikari SP, Wu Z. Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem. 2016;9(12):1490-1497.
|
[132] |
Tian L, Min S, Wang F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl Catal B. 2019;259:118029.
|
[133] |
Ren C, Li W, Gu S, et al. ZnSe nanoparticles with bulk WC as cocatalyst: a novel and noble-metal-free heterojunction photocatalyst for enhancing photocatalytic hydrogen evolution under visible light irradiation. Appl Mater Today. 2020;20:100731.
|
[134] |
Zheng Y, Wang E, Zhou J, Sun Z. A theoretical study of 0D Ti2CO2/2D g-C3N4 Schottky-junction for photocatalytic hydrogen evolution. Appl Surf Sci. 2023;616:156562.
|
[135] |
Makola LC, Moeno S, Ouma CNM, Sharma A, Vo D-VN, Dlamini LN. Facile fabrication of a metal-free 2D–2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes. J Alloys Compd. 2022;916:165459.
|
[136] |
Ye M, Wang X, Liu E, Ye J, Wang D. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem. 2018;11(10):1606-1611.
|
[137] |
Wang W, Hood ZD, Zhang X, et al. Construction of 2D BiVO4−CdS−Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem. 2020;12(13):3496-3503.
|
[138] |
Liu J, Wang P, Fan J, Yu H. Carbon-coated cubic-phase molybdenum carbide nanoparticle for enhanced photocatalytic H2-evolution performance of TiO2. J Energy Chem. 2020;51:253-261.
|
[139] |
Wang P, Pan J, Yu Q, et al. The enhanced photocatalytic hydrogen production of the non-noble metal co-catalyst Mo2C/CdS hollow core-shell composite with CdMoO4 transition layer. Appl Surf Sci. 2020;508:145203.
|
[140] |
Yue X, Yi S, Wang R, Zhang Z, Qiu S. A novel architecture of dandelion-like Mo2C/TiO2 heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting. J Mater Chem A. 2017;5(21):10591-10598.
|
[141] |
Pan Y-X, Zhuang H-Q, Ma H, Cheng J, Song J. Tungsten carbide hollow spheres flexible for charge separation and transfer for enhanced visible-light-driven photocatalysis. Chem Eng Sci. 2019;194:71-77.
|
[142] |
Li J, Wang Z, Chen H, et al. A surface-alkalinized Ti3C2 MXene as an efficient cocatalyst for enhanced photocatalytic CO2 reduction over ZnO. Catal Sci Technol. 2021;11(14):4953-4961.
|
[143] |
Bie C, Yu H, Cheng B, Ho W, Fan J, Yu J. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv Mater. 2021;33(9):2003521.
|
[144] |
Bie C, Zhu B, Xu F, Zhang L, Yu J. In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO2 reduction. Adv Mater. 2019;31(42):1902868.
|
[145] |
Shao M, Chen H, Hao S, et al. N-doped vanadium carbide combined with Pt as a multifunctional cocatalyst to boost photocatalytic hydrogen production. Appl Surf Sci. 2022;577:151857.
|
[146] |
Zheng Y, Dong J, Huang C, et al. Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution. Appl Catal B. 2020;260:118220.
|
[147] |
Gong S, Niu Y, Teng X, et al. Visible light-driven, selective CO2 reduction in water by In-doped Mo2C based on defect engineering. Appl Catal B. 2022;310:121333.
|
[148] |
Zhou J, Wang F, Wang H, Hu S, Zhou W, Liu H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023;16(2):2085-2093.
|
[149] |
Tao Q, Dahlqvist M, Lu J, et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat Commun. 2017;8(1):14949.
|
[150] |
Meshkian R, Dahlqvist M, Lu J, et al. W-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv Mater. 2018;30(21):1706409.
|
[151] |
Zhou B, Yin H, Dong C, et al. Biodegradable and excretable 2D W1.33C i-MXene with vacancy ordering for theory-oriented cancer nanotheranostics in near-infrared biowindow. Adv Sci. 2021;8(24):2101043.
|
[152] |
Meshkian R, Lind H, Halim J, et al. Theoretical analysis, synthesis, and characterization of 2D W1.33C (MXene) with ordered vacancies. ACS Appl Nano Mater. 2019;2(10):6209-6219.
|
[153] |
Halim J, Palisaitis J, Lu J, et al. Synthesis of two-dimensional Nb1.33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3)2AlC MAX phase. ACS Appl Nano Mater. 2018;1(6):2455-2460.
|
[154] |
Tang Y, Yang C, Xu X, et al. MXene nanoarchitectonics: defect-engineered 2D MXenes towards enhanced electrochemical water splitting. Adv Energy Mater. 2022;12(12):2103867.
|
[155] |
Fang Y, Cao Y, Tan B, Chen Q. Oxygen and titanium vacancies in a BiOBr/MXene-Ti3C2 composite for boosting photocatalytic N2 fixation. ACS Appl Mater Interfaces. 2021;13(36):42624-42634.
|
[156] |
Peng C, Xie X, Xu W, et al. Engineering highly active Ag/Nb2O5@Nb2CTx (MXene) photocatalysts via steering charge kinetics strategy. Chem Eng J. 2021;421:128766.
|
[157] |
Ma X, Ren C, Li H, et al. A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light. J Colloid Interface Sci. 2021;582(Pt B):488-495.
|
[158] |
Mansingh S, Kandi D, Das KK, Parida K. A mechanistic approach on oxygen vacancy-engineered CeO2 nanosheets concocts over an oyster shell manifesting robust photocatalytic activity toward water oxidation. ACS Omega. 2020;5(17):9789-9805.
|
[159] |
Tan X-Q, Mo W, Lin X, Loh JY, Mohamed AR, Ong W-J. Retrospective insights into recent MXene-based catalysts for CO2 electro/photoreduction: how far have we gone? Nanoscale. 2023;15(14):6536-6562.
|
[160] |
Li Y, Chen X, Sun Y, et al. Chlorosome-like molecular aggregation of chlorophyll derivative on Ti3C2Tx MXene nanosheets for efficient noble metal-free photocatalytic hydrogen evolution. Adv Mater Interfaces. 2020;7(8):1902080.
|
[161] |
Malaki M, Varma RS. Mechanotribological aspects of MXene-reinforced nanocomposites. Adv Mater. 2020;32(38):2003154.
|
[162] |
Zhang W, Peng J, Hua W, et al. Architecting amorphous vanadium oxide/MXene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries. Adv Energy Mater. 2021;11(22):2100757.
|
[163] |
Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):16098.
|
[164] |
Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516(7529):78-81.
|
[165] |
Li M, Lu J, Luo K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019;141(11):4730-4737.
|
[166] |
Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew Chem Int Ed. 2018;57(21):6115-6119.
|
[167] |
Xuan J, Wang Z, Chen Y, et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem. 2016;128(47):14789-14794.
|
[168] |
Pang SY, Io WF, Wong LW, Zhao J, Hao J. Efficient energy conversion and storage based on robust fluoride-free self-assembled 1D niobium carbide in 3D nanowire network. Adv Sci. 2020;7(10):1903680.
|
[169] |
Shi H, Zhang P, Liu Z, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew Chem Int Ed. 2021;60(16):8689-8693.
|
[170] |
Jiang L, Zhou D, Yang J, et al. 2D single- and few-layered MXenes: synthesis, applications and perspectives. J Mater Chem A. 2022;10(26):13651-13672.
|
[171] |
Shuck CE, Sarycheva A, Anayee M, et al. Scalable synthesis of Ti3C2Tx MXene. Adv Eng Mater. 2020;22(3):1901241.
|
[172] |
Sindhu AS, Shinde NB, Harish S, Navaneethan M, Eswaran SK. Recoverable and reusable visible-light photocatalytic performance of CVD-grown atomically thin MoS2 films. Chemosphere. 2022;287(Pt 4):132347.
|
[173] |
Mazzanti S, Manfredi G, Barker AJ, Antonietti M, Savateev A, Giusto P. Carbon nitride thin films as all-in-one technology for photocatalysis. ACS Catal. 2021;11(17):11109-11116.
|
[174] |
Zhang Z, Gedeon H, Cheng Z, et al. Layer-stacking, defects, and robust superconductivity on the Mo-terminated surface of ultrathin Mo2C flakes grown by CVD. Nano Lett. 2019;19(5):3327-3335.
|
[175] |
Geng D, Zhao X, Chen Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv Mater. 2017;29(35):1700072.
|
[176] |
Chen Z-Y, Shi M-Q, Ma C-A, Chu Y-Q, Zhu A-J. Simple, green self-construction approach for large-scale synthesis of hollow, needle-like tungsten carbide. Powder Technol. 2013;235:467-474.
|
[177] |
Zhu K, Jin Y, Du F, et al. Synthesis of Ti2CTx MXene as electrode materials for symmetric supercapacitor with capable volumetric capacitance. J Energy Chem. 2018;31:11-18.
|
[178] |
Liu Y, Zhang X, Dong S, Ye Z, Wei Y. Synthesis and tribological property of Ti3C2Tx nanosheets. J Mater Sci. 2017;52(4):2200-2209.
|
[179] |
Ying Y, Liu Y, Wang X, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water. ACS Appl Mater Interfaces. 2015;7(3):1795-1803.
|
[180] |
Alhabeb M, Maleski K, Mathis TS, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew Chem. 2018;130(19):5542-5546.
|
[181] |
Naguib M, Halim J, Lu J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc. 2013;135(43):15966-15969.
|
[182] |
VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano. 2017;11(11):11135-11144.
|
[183] |
Wang X, Lin S, Tong H, et al. Two-dimensional V4C3 MXene as high-performance electrode materials for supercapacitors. Electrochim Acta. 2019;307:414-421.
|
[184] |
Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322-1331.
|
[185] |
Halim J, Kota S, Lukatskaya MR, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv Funct Mater. 2016;26(18):3118-3127.
|
[186] |
Anasori B, Xie Y, Beidaghi M, et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano. 2015;9(10):9507-9516.
|
[187] |
Meshkian R, Tao Q, Dahlqvist M, Lu J, Hultman L, Rosen J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017;125:476-480.
|
[188] |
Yang J, Naguib M, Ghidiu M, et al. Two-dimensional Nb-based M4C3 solid solutions (MXenes). J Am Ceram Soc. 2016;99(2):660-666.
|
[189] |
Cai P, He Q, Wang L, et al. Two-dimensional Nb-based M4C3Tx MXenes and their sodium storage performances. Ceram Int. 2019;45(5):5761-5767.
|
[190] |
Zhou J, Zha X, Zhou X, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano. 2017;11(4):3841-3850.
|
[191] |
Zhou J, Zha X, Chen FY, et al. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew Chem Int Ed. 2016;55(16):5008-5013.
|
[192] |
Kajiyama S, Szabova L, Iinuma H, et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Adv Energy Mater. 2017;7(9):1601873.
|
[193] |
Wang X, Garnero C, Rochard G, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem A. 2017;5(41):22012-22023.
|
[194] |
Sang X, Xie Y, Lin M-W, et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 2016;10(10):9193-9200.
|
[195] |
Maleski K, Mochalin VN, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater. 2017;29(4):1632-1640.
|
[196] |
Wu J, Wang Y, Zhang Y, et al. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage. J Energy Chem. 2020;47:203-209.
|
[197] |
Guan Y, Jiang S, Cong Y, et al. A hydrofluoric acid-free synthesis of 2D vanadium carbide (V2C) MXene for supercapacitor electrodes. 2D Mater. 2020;7(2):025010.
|
[198] |
Xiao J, Wen J, Zhao J, Ma X, Gao H, Zhang X. A safe etching route to synthesize highly crystalline Nb2CTx MXene for high-performance asymmetric supercapacitor applications. Electrochim Acta. 2020;337:135803.
|
[199] |
Li Y, Shao H, Lin Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894-899.
|
[200] |
Li M, Li X, Qin G, et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano. 2021;15(1):1077-1085.
|
[201] |
Dong H, Xiao P, Jin N, Wang B, Liu Y, Lin Z. Molten salt derived Nb2CTx MXene anode for Li-ion batteries. ChemElectroChem. 2021;8(5):957-962.
|
[202] |
Li G, Tan L, Zhang Y, Wu B, Li L. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir. 2017;33(36):9000-9006.
|
[203] |
Xie X, Xue Y, Li L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale. 2014;6(19):11035-11040.
|
[204] |
Sun W, Shah SA, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017;5(41):21663-21668.
|
[205] |
Pang S-Y, Wong Y-T, Yuan S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc. 2019;141(24):9610-9616.
|
[206] |
Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem. 2018;130(47):15717-15721.
|
[207] |
Jawaid A, Hassan A, Neher G, et al. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano. 2021;15(2):2771-2777.
|
[208] |
Wang Z, Kochat V, Pandey P, et al. Metal immiscibility route to synthesis of ultrathin carbides, borides, and nitrides. Adv Mater. 2017;29(29):1700364.
|
[209] |
Kim K-W, Kim B, Lee S, et al. Growth of NbC thin film using CH4 as a carbon source and reducing agent. Coatings. 2018;8(11):379.
|
[210] |
Wang K-F, Sun G-D, Wu Y-D, Zhang G-H. Fabrication of ultrafine and high-purity tungsten carbide powders via a carbothermic reduction–carburization process. J Alloys Compd. 2019;784:362-369.
|
[211] |
Miroshnichenko MN, Kolosov VN. Production of tungsten carbide powder by the reaction of tungsten with ethanol. J Phys: Conf Ser. 2021;1942(1):012009.
|
[212] |
Gupta A, Mittal M, Singh MK, Suib SL, Pandey OP. Low-temperature synthesis of NbC/C nano-composites as visible light photoactive catalyst. Sci Rep. 2018;8(1):13597.
|
[213] |
Srivastava P, Mishra A, Mizuseki H, Lee K-R, Singh AK. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces. 2016;8(36):24256-24264.
|
[214] |
Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29(18):7633-7644.
|
[215] |
Halim J, Lukatskaya MR, Cook KM, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26(7):2374-2381.
|
[216] |
Rasheed PA, Pandey RP, Gomez T, Naguib M, Mahmoud KA. Large interlayer spacing Nb4C3Tx (MXene) promotes the ultrasensitive electrochemical detection of Pb2+ on glassy carbon electrodes. RSC Adv. 2020;10(41):24697-24704.
|
[217] |
Feng A, Yu Y, Jiang F, et al. Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int. 2017;43(8):6322-6328.
|
[218] |
Qin Y, Zha X-H, Bai X, et al. Structural, mechanical and electronic properties of two-dimensional chlorine-terminated transition metal carbides and nitrides. J Phys Condens Matter. 2020;32(13):135302.
|
[219] |
Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020;369(6506):979-983.
|
[220] |
Hantanasirisakul K, Zhao M-Q, Urbankowski P, et al. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv Electron Mater. 2016;2(6):1600050.
|
[221] |
He M, Shi H, Wang P, Sun X, Gao B. Porous molybdenum carbide nanostructures synthesized on carbon cloth by CVD for efficient hydrogen production. Chem A Eur J. 2019;25(70):16106-16113.
|
[222] |
Wolden CA, Pickerell A, Gawai T, Parks S, Hensley J, Way JD. Synthesis of β-Mo2C thin films. ACS Appl Mater Interfaces. 2011;3(2):517-521.
|
[223] |
Zhang Y, Zang J, Han C, et al. Molybdenum oxide and molybdenum carbide coated carbon black as an electrocatalyst for hydrogen evolution reaction in acidic media. Int J Hydrogen Energy. 2017;42(44):26985-26994.
|
[224] |
Yan Q, Lu Y, To F, Li Y, Yu F. Synthesis of tungsten carbide nanoparticles in biochar matrix as a catalyst for dry reforming of methane to syngas. Catal Sci Technol. 2015;5(6):3270-3280.
|
[225] |
Yi S-S, Yan J-M, Wulan B-R, Jiang Q. Efficient visible-light-driven hydrogen generation from water splitting catalyzed by highly stable CdS@Mo2C–C core–shell nanorods. J Mater Chem A. 2017;5(30):15862-15868.
|
[226] |
Li Z, Wang S, Wu J, Zhou W. Recent progress in defective TiO2 photocatalysts for energy and environmental applications. Renew Sustain Energy Rev. 2022;156:111980.
|
[227] |
Mishra A, Mehta A, Basu S, Shetti NP, Reddy KR, Aminabhavi TM. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review. Carbon. 2019;149:693-721.
|
[228] |
Ong W-J, Putri LK, Tan L-L, Chai S-P, Yong S-T. Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl Catal B. 2016;180:530-543.
|
[229] |
Tan X-Q, Ng S-F, Mohamed AR, Ong W-J. Point-to-face contact heterojunctions: interfacial design of 0D nanomaterials on 2D g-C3N4 towards photocatalytic energy applications. Carbon Energy. 2022;4(5):665-730.
|
[230] |
Chong DS, Foo JJ, Tan X-Q, et al. Evolutionary face-to-face 2D/2D bismuth-based heterojunction: the quest for sustainable photocatalytic applications. Appl Mater Today. 2022;29:101636.
|
[231] |
Ling C, Shi L, Ouyang Y, Chen Q, Wang J. Transition metal-promoted V2CO2 (MXenes): a new and highly active catalyst for hydrogen evolution reaction. Adv Sci. 2016;3(11):1600180.
|
[232] |
Su T, Hood ZD, Naguib M, et al. Monolayer Ti3C2Tx as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl Energy Mater. 2019;2(7):4640-4651.
|
[233] |
Ding M, Xiao R, Zhao C, et al. Evidencing interfacial charge transfer in 2D CdS/2D MXene schottky heterojunctions toward high-efficiency photocatalytic hydrogen production. Solar RRL. 2021;5(2):2000414.
|
[234] |
Ruan D, Fujitsuka M, Majima T. Exfoliated Mo2C nanosheets hybridized on CdS with fast electron transfer for efficient photocatalytic H2 production under visible light irradiation. Appl Catal B. 2020;264:118541.
|
[235] |
Zeng G, Cao Y, Wu Y, et al. Cd0.5Zn0.5S/Ti3C2 MXene as a Schottky catalyst for highly efficient photocatalytic hydrogen evolution in seawater. Appl Mater Today. 2021;22:100926.
|
[236] |
Kumaravel V, Mathew S, Bartlett J, Pillai SC. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B. 2019;244:1021-1064.
|
[237] |
Su T, Peng R, Hood ZD, et al. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem. 2018;11(4):688-699.
|
[238] |
Wang H, Chen L, Sun Y, et al. Ti3C2 Mxene modified SnNb2O6 nanosheets Schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution. Sep Purif Technol. 2021;265:118516.
|
[239] |
Wang L, Li Y, Wu C, Li X, Shao G, Zhang P. Tracking charge transfer pathways in SrTiO3/CoP/Mo2C nanofibers for enhanced photocatalytic solar fuel production. Chin J Catal. 2022;43(2):507-518.
|
[240] |
Shao M, Shao Y, Chai J, et al. Synergistic effect of 2D-Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. J Mater Chem A. 2017;5(32):16748-16756.
|
[241] |
Chen K, Zhang S, Peng W, Qian X, Huang J. Modification of g-C3N4 quantum dots by Ni–Ni3C@C nanoparticles for hydrogen production. J Phys Chem Solids. 2019;133:100-107.
|
[242] |
Ling GZS, Ng S-F, Ong W-J. Tailor-engineered 2D cocatalysts: harnessing electron–hole redox center of 2D g-C3N4 photocatalysts toward solar-to-chemical conversion and environmental purification. Adv Funct Mater. 2022;32(29):2111875.
|
[243] |
Ling GZS, Oh VB-Y, Haw CY, Tan L-L, Ong W-J. g-C3N4 photocatalysts: utilizing electron-hole pairs for boosted redox capability in water splitting. Energy Mater Adv. 2023;4:1-27.
|
[244] |
Li Y, Ding L, Guo Y, Liang Z, Cui H, Tian J. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfaces. 2019;11(44):41440-41447.
|
[245] |
An X, Wang W, Wang J, Duan H, Shi J, Yu X. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys Chem Chem Phys. 2018;20(16):11405-11411.
|
[246] |
Huang K, Li C, Zhang X, Wang L, Wang W, Meng X. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy Environ. 2023;8(1):233-245.
|
[247] |
Chowdhury P, Malekshoar G, Ray A. Dye-sensitized photocatalytic water splitting and sacrificial hydrogen generation: current status and future prospects. Inorganics. 2017;5(2):34.
|
[248] |
Sun Y, Sun Y, Meng X, et al. Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution. Catal Sci Technol. 2019;9(2):310-315.
|
[249] |
Li T, Wang X, Jin Z. MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution. Mol Catal. 2021;513:111829.
|
[250] |
Jin Z, Wang H, Ma Q. High electron conductivity of Ni/Ni3C nanoparticles anchored on C-rich graphitic carbon nitride for obviously improving hydrogen generation. Ind Eng Chem Res. 2020;59(19):8974-8983.
|
[251] |
Zhang W, Li W, Li Y, Peng S, Xu Z. One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution. Catal Today. 2019;335:326-332.
|
[252] |
Yan T, Wang Y, Cao Y, Liu H, Jin Z. MoC quantum dots embedded in ultra-thin carbon film coupled with 3D porous g-C3N4 for enhanced visible-light-driven hydrogen evolution. Appl Catal A. 2022;630:118457.
|
[253] |
Zhang W, Zou Y, Mei X, Li Y, Peng S, Xu J. Facile synthesis of Co2(OH)3Cl/cobalt carbide/reduced graphene oxide composites for enhanced dye-sensitized photocatalytic H2 evolution. Sustain Energy Fuels. 2020;4(12):6181-6187.
|
[254] |
Li T, Yan T, Jin Z. Design and preparation of a ternary MoC-QDs/C/Mo-S heterojunction for enhanced eosin Y-sensitized photocatalytic hydrogen evolution. New J Chem. 2021;45(27):11905-11917.
|
[255] |
Chen Y-H, Qi M-Y, Li Y-H, et al. Activating two-dimensional Ti3C2Tx-MXene with single-atom cobalt for efficient CO2 photoreduction. Cell Rep Phys Sci. 2021;2(3):100371.
|
[256] |
Tayyab M, Liu Y, Min S, et al. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires. Chin J Catal. 2022;43(4):1165-1175.
|
[257] |
Li F, Wang Y, Du J, Zhu Y, Xu C, Sun L. Simultaneous oxidation of alcohols and hydrogen evolution in a hybrid system under visible light irradiation. Appl Catal B. 2018;225:258-263.
|
[258] |
Kampouri S, Stylianou KC. Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal. 2019;9(5):4247-4270.
|
[259] |
Xia B, Zhang Y, Shi B, Ran J, Davey K, Qiao S-Z. Photocatalysts for hydrogen evolution coupled with production of value-added chemicals. Small Methods. 2020;4(7):2000063.
|
[260] |
Li J-Y, Li Y-H, Zhang F, Tang Z-R, Xu Y-J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl Catal B. 2020;269:118783.
|
[261] |
Tao J, Wang M, Liu G, et al. Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction. J Adv Ceram. 2022;11(7):1117-1130.
|
[262] |
Druffel DL, Lanetti MG, Sundberg JD, et al. Synthesis and electronic structure of a 3D crystalline stack of MXene-like sheets. Chem Mater. 2019;31(23):9788-9796.
|
[263] |
Li Y, Yang S, Liang Z, Xue Y, Cui H, Tian J. 1T-MoS2 nanopatch/Ti3C2 MXene/TiO2 nanosheet hybrids for efficient photocatalytic hydrogen evolution. Mater Chem Front. 2019;3(12):2673-2680.
|
[264] |
Dong H, Zhang X, Zuo Y, et al. 2D Ti3C2 as electron harvester anchors on 2D g-C3N4 to create boundary edge active sites for boosting photocatalytic performance. Appl Catal A. 2020;590:117367.
|
[265] |
Li Z, Zhang H, Wang L, et al. 2D/2D BiOBr/Ti3C2 heterojunction with dual applications in both water detoxification and water splitting. J Photochem Photobiol A. 2020;386:112099.
|
[266] |
Yao Z, Sun H, Sui H, Liu X. 2D/2D heterojunction of R-scheme Ti3C2 MXene/MoS2 nanosheets for enhanced photocatalytic performance. Nanoscale Res Lett. 2020;15(1):78.
|
[267] |
Li Y, Yin Z, Ji G, et al. 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl Catal B. 2019;246:12-20.
|
[268] |
Liu D, Li C, Ge J, et al. 3D interconnected g-C3N4 hybridized with 2D Ti3C2 MXene nanosheets for enhancing visible light photocatalytic hydrogen evolution and dye contaminant elimination. Appl Surf Sci. 2022;579:152180.
|
[269] |
Dang Y, Feng L, Hu W, Wang W, Zhang Q, Ma B. A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution. Int J Hydrogen Energy. 2021;46(79):39251-39261.
|
[270] |
Dong J, Shi Y, Huang C, Wu Q, Zeng T, Yao W. A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl Catal B. 2019;243:27-35.
|
[271] |
Liu Y, Zhang H, Jiang Y. A new noble-metal-free co-catalyst V8C7 on g-C3N4 with enhanced photocatalytic H2 evolution activity. Appl Catal A. 2021;625:118341.
|
[272] |
Li Y, Liu Y, Sun X, et al. Aggregate-forming semi-synthetic chlorophyll derivatives/Ti3C2T MXene hybrids for photocatalytic hydrogen evolution. Dyes Pigm. 2021;194:109583.
|
[273] |
Zhang J, Liu M, Wang Y, Shi F. Au/MoS2/Ti3C2 composite catalyst for efficient photocatalytic hydrogen evolution. CrystEngComm. 2020;22(21):3683-3691.
|
[274] |
Tahir M. Binary Ni2P/Ti3C2 multilayer cocatalyst anchored TiO2 nanocomposite with etchant/oxidation grown TiO2 NPs for enhancing photocatalytic H2 production. Energy Fuels. 2021;35(17):14197-14211.
|
[275] |
Cheng L, Chen Q, Li J, Liu H. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst. Appl Catal B. 2020;267:118379.
|
[276] |
Yang Z, Li M, Chen S, et al. Cocatalyst engineering with robust tunable carbon-encapsulated Mo-rich Mo/Mo2C heterostructure nanoparticle for efficient photocatalytic hydrogen evolution. Adv Funct Mater. 2023;33(14):2212746.
|
[277] |
Pan Y, Zhou T, Han J, et al. CdS quantum dots and tungsten carbide supported on anatase–rutile composite TiO2 for highly efficient visible-light-driven photocatalytic H2 evolution from water. Catal Sci Technol. 2016;6(7):2206-2213.
|
[278] |
Li Y, Liu Y, Zheng T, Sasaki S, Tamiaki H, Wang X-F. Chlorophyll derivative sensitized monolayer Ti3C2Tx MXene nanosheets for photocatalytic hydrogen evolution. J Photochem Photobiol A. 2022;427:113792.
|
[279] |
Li Y, Zheng T, Liu Y, et al. Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: dependence of performance on the central coordinating metals. Int J Hydrogen Energy. 2022;47(6):3824-3833.
|
[280] |
Li Y, Sun Y, Zheng T, et al. Chlorophyll-based organic heterojunction on Ti3C2Tx MXene nanosheets for efficient hydrogen production. Chem A Eur J. 2021;27(16):5277-5282.
|
[281] |
Li J, Li J, Wu C, et al. Crystalline carbon nitride anchored on MXene as an ordered Schottky heterojunction photocatalyst for enhanced visible-light hydrogen evolution. Carbon. 2021;179:387-399.
|
[282] |
Huang Z, Chen H, He X, et al. Constructing a WC/NCN Schottky junction for rapid electron transfer and enrichment for highly efficient photocatalytic hydrogen evolution. ACS Appl Mater Interfaces. 2021;13(39):46598-46607.
|
[283] |
Shen R, Ding Y, Li S, et al. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin J Catal. 2021;42(1):25-36.
|
[284] |
Yao Z, Sun H, Sui H, Liu X. Construction of BPQDs/Ti3C2@TiO2 composites with favorable charge transfer channels for enhanced photocatalytic activity under visible light irradiation. Nanomaterials. 2020;10(3):452.
|
[285] |
Lin P, Shen J, Yu X, Liu Q, Li D, Tang H. Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution. Ceram Int. 2019;45(18):24656-24663.
|
[286] |
Song Y, Xia K, Gong Y, et al. Controllable synthesized heterostructure photocatalyst Mo2C@C/2D g-C3N4: enhanced catalytic performance for hydrogen production. Dalton Trans. 2018;47(41):14706-14712.
|
[287] |
Zhao X, Chen J, Zhao C, et al. Construction ZnIn2S4/Ti3C2 of 2D/2D heterostructures with enhanced visible light photocatalytic activity: a combined experimental and first-principles DFT study. Appl Surf Sci. 2021;570:151183.
|
[288] |
Huang W, Li Z, Wu C, Zhang H, Sun J, Li Q. Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production. J Mater Sci Technol. 2022;120:89-98.
|
[289] |
Kang J, Byun S, Kim S, et al. Design of three-dimensional hollow-sphere architecture of Ti3C2Tx MXene with graphitic carbon nitride nanoshells for efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater. 2020;3(9):9226-9233.
|
[290] |
Ai Z, Shao Y, Chang B, Huang B, Wu Y, Hao X. Effective orientation control of photogenerated carrier separation via rational design of a Ti3C2(TiO2)@CdS/MoS2 photocatalytic system. Appl Catal B. 2019;242:202-208.
|
[291] |
Li Z, Huang W, Liu J, Lv K, Li Q. Embedding CdS@Au into ultrathin Ti3–xC2Ty to build dual Schottky barriers for photocatalytic H2 production. ACS Catal. 2021;11(14):8510-8520.
|
[292] |
Tian P, He X, Zhao L, et al. Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes. Int J Hydrogen Energy. 2019;44(2):788-800.
|
[293] |
Shi L, Wu C, Wang Y, et al. Rational design of coordination bond connected metal-organic frameworks/MXene hybrids for efficient solar water splitting. Adv Funct Mater. 2022;32(30):2202571.
|
[294] |
Ma X, Li W, Ren C, et al. Fabrication of novel noble-metal-free ZnIn2S4/WC Schottky junction heterojunction photocatalyst: efficient charge separation, increased active sites and low hydrogen production overpotential for boosting visible-light H2 evolution. J Alloys Compd. 2022;901:163709.
|
[295] |
Yin J, Zhan F, Jiao T, et al. Facile preparation of self-assembled MXene@Au@CdS nanocomposite with enhanced photocatalytic hydrogen production activity. Sci China Mater. 2020;63(11):2228-2238.
|
[296] |
Xi Q, Yue X, Feng J, et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution. J Solid State Chem. 2020;289:121470.
|
[297] |
Xie Y, Rahman MM, Kareem S, et al. Facile synthesis of CuS/MXene nanocomposites for efficient photocatalytic hydrogen generation. CrystEngComm. 2020;22(11):2060-2066.
|
[298] |
Irfan RM, Tahir MH, Nadeem M, et al. Fe3C/CdS as noble-metal-free composite photocatalyst for highly enhanced photocatalytic H2 production under visible light. Appl Catal A. 2020;603:117768.
|
[299] |
Liu Z, Zhou Y, Yang L, Yang R. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production. Adv Powder Technol. 2021;32(12):4857-4861.
|
[300] |
Liu J, Wang P, Fan J, Yu H, Yu J. Hetero-phase MoC-Mo2C nanoparticles for enhanced photocatalytic H2-production activity of TiO2. Nano Res. 2021;14(4):1095-1102.
|
[301] |
Zhang M, Qin J, Rajendran S, Zhang X, Liu R. Heterostructured d-Ti3C2/TiO2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic hydrogen production activity. ChemSusChem. 2018;11(24):4226-4236.
|
[302] |
Peng C, Wei P, Li X, et al. High-efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy. 2018;53:97-107.
|
[303] |
Qin X, Cao R, Gong W, et al. Hydrothermal growth of ZnCdS/TiO2 nanoparticles on the surface of the Ti3C2 MXene sheet to enhance photocatalytic performance under visible light. J Solid State Chem. 2022;306:122750.
|
[304] |
Lin K, Feng L, Li D, Zhang J, Wang W, Ma B. Improved photocatalytic hydrogen evolution on (Ru/WC)/CdS via modulating the transferring paths of photo-excited electrons. Appl Catal B. 2021;286:119880.
|
[305] |
Huang J, Tao J, Liu G, Lu L, Tang H, Qiao G. In situ construction of 1D CdS/2D Nb2CTx MXene Schottky heterojunction for enhanced photocatalytic hydrogen production activity. Appl Surf Sci. 2022;573:151491.
|
[306] |
Tie L, Yang S, Yu C, et al. In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci. 2019;545:63-70.
|
[307] |
Xiao R, Zhao C, Zou Z, et al. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B. 2020;268:118382.
|
[308] |
Li J, Zhao L, Wang S, Li J, Wang G, Wang J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl Surf Sci. 2020;515:145922.
|
[309] |
Kai C-M, Kong C, Zhang F-J, Li D-C, Wang Y-R, Oh W-C. In situ growth of CdS spherical nanoparticles/Ti3C2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution. J Korean Ceram Soc. 2022;59:302-311.
|
[310] |
Liu J, Wang P, Fan J, Yu H, Yu J. In situ synthesis of Mo2C nanoparticles on graphene nanosheets for enhanced photocatalytic H2-production activity of TiO2. ACS Sustain Chem Eng. 2021;9(10):3828-3837.
|
[311] |
Yang F, Liu D, Li Y, Cheng L, Ye J. Lithium incorporation assisted synthesis of ultra-small Mo2C nanodots as efficient photocatalytic H2 evolution cocatalysts. Chem Eng J. 2020;399:125794.
|
[312] |
Guo Q, Liang F, Gao X-Y, et al. Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal. 2018;8(7):5890-5895.
|
[313] |
Ma B, Xu H, Lin K, et al. Mo2C as non-noble metal co-catalyst in Mo2C/CdS composite for enhanced photocatalytic H2 evolution under visible light irradiation. ChemSusChem. 2016;9(8):820-824.
|
[314] |
Jin S, Shi Z, Jing H, et al. Mo2C-MXene/CdS heterostructures as visible-light photocatalysts with an ultrahigh hydrogen production rate. ACS Appl Energy Mater. 2021;4(11):12754-12766.
|
[315] |
Zhang J, Xing C, Shi F. MoS2/Ti3C2 heterostructure for efficient visible-light photocatalytic hydrogen generation. Int J Hydrogen Energy. 2020;45(11):6291-6301.
|
[316] |
Lei Y, Wu X, Li S, Huang J, Ng KH, Lai Y. Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. J Clean Prod. 2021;322:129018.
|
[317] |
Li D, Zhou C, Liang X, et al. Noble-metal-free Mo2C co-catalsyt modified perovskite oxide nanosheet photocatalysts with enhanced hydrogen evolution performance. Colloids Surf A. 2021;615:126252.
|
[318] |
Zhang H, Luo Z, Liu Y, Jiang Y. Noble-metal-free Ni3C as co-catalyst on LaNiO3 with enhanced photocatalytic activity. Appl Catal B. 2020;277:119166.
|
[319] |
Lei Y, Ng KH, Zhang Y, et al. One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chem Eng J. 2022;434:134689.
|
[320] |
Xu W, Li X, Peng C, et al. One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Appl Catal B. 2022;303:120910.
|
[321] |
Li Y, Ding L, Yin S, et al. Photocatalytic H2 evolution on TiO2 assembled with Ti3C2 MXene and metallic 1T-WS2 as co-catalysts. Nano Micro Lett. 2020;12(1):6.
|
[322] |
Pajares A, Wang Y, Kronenberg MJ, Ramírez de la Piscina P, Homs N. Photocatalytic H2 production from ethanol aqueous solution using TiO2 with tungsten carbide nanoparticles as co-catalyst. Int J Hydrogen Energy. 2020;45(40):20558-20567.
|
[323] |
Yang Y, Zhang D, Xiang Q. Plasma-modified Ti3C2Tx/CdS hybrids with oxygen-containing groups for high-efficiency photocatalytic hydrogen production. Nanoscale. 2019;11(40):18797-18805.
|
[324] |
Liu X, Wang B, Heng Q, et al. Promoted charge separation on 3D interconnected Ti3C2/MoS2/CdS composite for enhanced photocatalytic H2 production. Int J Hydrogen Energy. 2022;47(13):8284-8293.
|
[325] |
Yang W, Ma G, Fu Y, et al. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022;429:132381.
|
[326] |
Peng C, Zhou T, Wei P, et al. Regulation of the rutile/anatase TiO2 phase junction in-situ grown on –OH terminated Ti3C2Tx (MXene) towards remarkably enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022;439:135685.
|
[327] |
Li H, Lv X, Li R, Tao X, Zheng Y. Stable and efficient Ti3C2 MXene/MAPbI3-HI system for visible-light-driven photocatalytic HI splitting. J Power Sources. 2022;522:231006.
|
[328] |
Su T, Men C, Chen L, et al. Sulfur vacancy and Ti3C2Tx cocatalyst synergistically boosting interfacial charge transfer in 2D/2D Ti3C2Tx/ZnIn2S4 heterostructure for enhanced photocatalytic hydrogen evolution. Adv Sci. 2022;9(4):2103715.
|
[329] |
Zhong T, Yu Z, Jiang R, et al. Surface-activated Ti3C2Tx MXene cocatalyst assembled with CdZnS-formed 0D/2D CdZnS/Ti3C2-A40 Schottky heterojunction for enhanced photocatalytic hydrogen evolution. Solar RRL. 2022;6(2):2100863.
|
[330] |
Chen R, Wang P, Chen J, Wang C, Ao Y. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl Surf Sci. 2019;473:11-19.
|
[331] |
Li Y, Ding L, Liang Z, Xue Y, Cui H, Tian J. Synergetic effect of defects rich MoS2 and Ti3C2 MXene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Chem Eng J. 2020;383:123178.
|
[332] |
Xu F, Zhang D, Liao Y, et al. Synthesis and photocatalytic H2-production activity of plasma-treated Ti3C2Tx MXene modified graphitic carbon nitride. J Am Ceram Soc. 2020;103(2):849-858.
|
[333] |
Li H, Sun B, Gao T, Li H, Ren Y, Zhou G. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production. Chin J Catal. 2022;43(2):461-471.
|
[334] |
Tian P, He X, Zhao L, et al. Ti3C2 nanosheets modified Zr-MOFs with Schottky junction for boosting photocatalytic HER performance. Sol Energy. 2019;188:750-759.
|
[335] |
Sun X, Li Y, Wang X-F, et al. Ti3C2Tx MXene nanosheets hybridized with bacteriochlorin–carotenoid conjugates for photocatalytic hydrogen evolution. New J Chem. 2022;46(5):2166-2177.
|
[336] |
Dong G, Zhang Y, Wang Y, et al. Ti3C2 quantum dots modified 3D/2D TiO2/g-C3N4 S-scheme heterostructures for highly efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater. 2021;4(12):14342-14351.
|
[337] |
Chen X, Guo Y, Bian R, et al. Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production. J Colloid Interface Sci. 2022;613:644-651.
|
[338] |
Li Y, Zhang D, Feng X, Liao Y, Wen Q, Xiang Q. Truncated octahedral bipyramidal TiO2/MXene Ti3C2 hybrids with enhanced photocatalytic H2 production activity. Nanoscale Adv. 2019;1(5):1812-1818.
|
[339] |
Xie F, Xi Q, Li H, et al. Two-dimensional/two-dimensional heterojunction-induced accelerated charge transfer for photocatalytic hydrogen evolution over Bi5O7Br/Ti3C2: electronic directional transport. J Colloid Interface Sci. 2022;617:53-64.
|
[340] |
Tong R, Sun Z, Wang X, Wang S, Pan H. Ultrafine WC1–x nanocrystals: an efficient cocatalyst for the significant enhancement of photocatalytic hydrogen evolution on g-C3N4. J Phys Chem C. 2019;123(43):26136-26144.
|
[341] |
Yue X, Yi S, Wang R, Zhang Z, Qiu S. Well-controlled SrTiO3@Mo2C core-shell nanofiber photocatalyst: boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy. 2018;47:463-473.
|
[342] |
Shao M, Chen W, Ding S, et al. WXy/g-C3N4 (WXy = W2C, WS2, or W2N) composites for highly efficient photocatalytic water splitting. ChemSusChem. 2019;12(14):3355-3362.
|
[343] |
Luo Z, Zhao X, Zhang H, Jiang Y. Zn0.3Cd0.7S nanorods loaded with noble-metal-free Ni3C co-catalyst enhancing photocatalytic hydrogen evolution. Appl Catal A. 2019;582:117115.
|
[344] |
Wang Y, Mino L, Pellegrino F, Homs N, Ramírez de la Piscina P. Engineered MoxC/TiO2 interfaces for efficient noble metal-free photocatalytic hydrogen production. Appl Catal B. 2022;318:121783.
|
[345] |
Wang Y, Liu C, Kong C, Zhang F. Defect MoS2 and Ti3C2 nanosheets co-assisted CdS to enhance visible-light driven photocatalytic hydrogen production. Colloids Surf A. 2022;652:129746.
|
[346] |
Biswal L, Nayak S, Parida K. Rationally designed Ti3C2/N, S-TiO2/g-C3N4 ternary heterostructure with spatial charge separation for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci. 2022;621:254-266.
|
[347] |
Guo Y, Zhang D, Wang M, et al. Synergistic modulation on atomic-level 2D/2D Ti3C2/Svac-ZnIn2S4 heterojunction for photocatalytic H2 production. Colloids Surf A. 2022;648:129229.
|
[348] |
Peng C, Zhou T, Wei P, et al. Steering interfacial charge kinetics: synergizing cocatalyst roles of Ti3C2Mx (MXene) and NCDs for superior photocatalytic performance over TiO2. Appl Surf Sci. 2022;599:154001.
|
[349] |
Huang J, Wang M, Zhang X, et al. Anchoring of 2D CdS on Nb2CTx MXene nanosheets for boosting photocatalytic H2 evolution. J Alloys Compd. 2022;923:166256.
|
[350] |
Liu W, Zhang D, Wang R, Zhang Z, Qiu S. 2D/2D interface engineering promotes charge separation of Mo2C/g-C3N4 nanojunction photocatalysts for efficient photocatalytic hydrogen evolution. ACS Appl Mater Interfaces. 2022;14(28):31782-31791.
|
[351] |
Du M, Li L, Ji S, et al. In situ growth of 2D ZnIn2S4 nanosheets on sulfur-doped porous Ti3C2Tx MXene 3D multi-functional architectures for photocatalytic H2 evolution. J Mater Chem C. 2022;10(29):10636-10644.
|
[352] |
Zhou X, Tian Y, Luo J, et al. MoC quantum dots@N-doped-carbon for low-cost and efficient hydrogen evolution reaction: from electrocatalysis to photocatalysis. Adv Funct Mater. 2022;32(27):2201518.
|
[353] |
Du J, Shen Y, Yang F, et al. In situ construction of an α-MoC/g-C3N4 Mott–Schottky heterojunction with high-speed electron transfer channel for efficient photocatalytic H2 evolution. Inorg Chem Front. 2023;10(3):832-840.
|
[354] |
Liu J, Wang P, Gao L, Wang X, Yu H. In situ sulfuration synthesis of heterostructure MoS2-Mo2C@C for boosting the photocatalytic H2 production activity of TiO2. J Mater Chem C. 2022;10(8):3121-3128.
|
[355] |
Wei T, Zhang T, Jin Z, Li F, Xu L. Fabrication of nanocomposite MoC-Mo2C@C/Cd0.5Zn0.5S: promoted electron migration and improved photocatalytic hydrogen evolution. Dalton Trans. 2022;51(30):11397-11403.
|
[356] |
Tan M, Yu C, Yao J, et al. The 2D van der Waals heterojunction MoC@NG@CN for enhanced photocatalytic hydrogen production. J Mater Chem A. 2023;11(10):5350-5358.
|
[357] |
Wei P, Chen Y, Zhou T, et al. Manipulation of charge-transfer kinetics via Ti3C2Tx(T = −O) quantum dot and N-doped carbon dot coloading on CdS for photocatalytic hydrogen production. ACS Catal. 2023;13(1):587-600.
|
[358] |
Miao B, Zhang Y, Chen Q, et al. Highly enhanced photocatalytic hydrogen production performance of heterostructured Ti3C2/TiO2/rGO composites. Langmuir. 2022;38(50):15579-15591.
|
[359] |
Yi W-J, Du X, Zhang M, et al. Rational distribution of Ru nanodots on 2D Ti3−xC2Ty/g-C3N4 heterostructures for boosted photocatalytic H2 evolution. Nano Res. 2023;16:6652-6660.
|
[360] |
Liu C, Xiao W, Yu G, et al. Interfacial engineering of Ti3C2 MXene/CdIn2S4 Schottky heterojunctions for boosting visible-light H2 evolution and Cr(VI) reduction. J Colloid Interface Sci. 2023;640:851-863.
|
[361] |
Wu C, Huang W, Liu H, Lv K, Li Q. Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Appl Catal B. 2023;330:122653.
|
[362] |
Zhang S, Du S, Wang Y, et al. Metal-organic coordination polymers-derived ultra-small MoC nanodot/N-doped carbon combined with CdS: a hollow Z-type catalyst for stable and efficient H2 production/CO2 reduction. Appl Surf Sci. 2023;608:155176.
|
[363] |
Li J, Peng H, Luo B, Cao J, Ma L, Jing D. The enhanced photocatalytic and photothermal effects of Ti3C2 MXene quantum dot/macroscopic porous graphitic carbon nitride heterojunction for hydrogen production. J Colloid Interface Sci. 2023;641:309-318.
|
[364] |
Nagoor Meeran M, Haridharan N, Shkir M, Algarni H, Reddy Minnam Reddy V. Rationally designed 1D CdS/TiO2@Ti3C2 multi-components nanocomposites for enhanced visible light photocatalytic hydrogen production. Chem Phys Lett. 2022;809:140150.
|
[365] |
Xu C, Li D, Liu H, et al. Construction of 1D/0D CdS nanorods/Ti3C2 QDs Schottky heterojunctions for efficient photocatalysis. J Environ Chem Eng. 2023;11(1):109191.
|
[366] |
Almusattar W, Tahir M, Madi M, Tahir B. Fabricating Ti3C2 MXene cocatalyst supported NiAl-LDH/g-C3N4 ternary nanocomposite for stimulating solar photocatalytic H2 production. J Environ Chem Eng. 2022;10(4):108010.
|
[367] |
Wang B, Sun Y, Fan X, et al. In situ growth of 1T-WS2 on ultrathin Ti3C2Tx as a hybrid cocatalyst for enhancing the photocatalytic activity of CdS. Appl Surf Sci. 2023;615:156305.
|
[368] |
Lei Y, Ng KH, Zhu Y, et al. Mo-activated VC as effective cocatalyst for an enhanced photocatalytic hydrogen evolution activity of CdS. Chem Eng J. 2023;452(Pt 3):139325.
|
[369] |
Zhang X, Tian F, Gao M, Yang W, Yu Y. L-cysteine capped Mo2C/Zn0.67Cd0.33S heterojunction with intimate covalent bonds enables efficient and stable H2-releasing photocatalysis. Chem Eng J. 2022;428:132628.
|
[370] |
Gu H, Zhang H, Wang X, et al. Robust construction of CdSe nanorods@Ti3C2 MXene nanosheet for superior photocatalytic H2 evolution. Appl Catal B. 2023;328:122537.
|
[371] |
Zhou H, Tian J, Wang R, et al. Lewis acid molten salts prepared Ti3C2Cl2 MXenes assembling with g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. Ceram Int. 2023;49(8):13042-13049.
|
[372] |
Yuan X, Zhang Y, Zhang Y, et al. Cyano-bridged Schottky junction of CN-TiC for enhanced photocatalytic H2 evolution and tetracycline degradation. Appl Surf Sci. 2022;583:152515.
|
[373] |
Qiao X-Q, Wang Z, Li C, et al. A new, efficient and durable MoO2/Mo2C-C cocatalyst with the optimized composition and electronic structure via in-situ carburization for photocatalytic H2 evolution. Chem Eng J. 2023;455:140791.
|
[374] |
Liu Y, Wang Z, Yao L, Shi L. Ti3C2/Mn0.5Cd0.5S composite photocatalyst for enhanced H2 generation. Mater Chem Phys. 2023;297:127410.
|
[375] |
Chen L, Qiang T, Qiu B, Yu M, Ren L. Monolayered Ti3C2O/(001) TiO2 photocatalyst with Schottky junction and active facets for hydrogen production. Int J Hydrogen Energy. 2022;47(69):29741-29752.
|
[376] |
Wang Z, Zhang Y, Chen Y, et al. Surface -O terminated urchin-like TiO2/Ti3C2Ox (MXene) as high performance photocatalyst: Interfacial engineering and mechanism insight. Appl Surf Sci. 2023;615:156343.
|
[377] |
Zhao C, Yang X, Han C, Xu J. Sacrificial agent-free photocatalytic oxygen evolution from water splitting over Ag3PO4/MXene hybrids. Solar RRL. 2020;4(8):1900434.
|
[378] |
Li Y, Deng X, Tian J, Liang Z, Cui H. Ti3C2 MXene-derived Ti3C2/TiO2 nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl Mater Today. 2018;13:217-227.
|
[379] |
Li Y, Liu Y, Xing D, et al. 2D/2D heterostructure of ultrathin BiVO4/Ti3C2 nanosheets for photocatalytic overall water splitting. Appl Catal B. 2021;285:119855.
|
[380] |
Ai Z, Zhang K, Xu L, et al. In situ configuration of dual S-scheme BP/(Ti3C2Tx@TiO2) heterojunction for broadband spectrum solar-driven photocatalytic H2 evolution in pure water. J Colloid Interface Sci. 2022;610:13-23.
|
[381] |
Liu X, Zhang J, Xu J, et al. Hydroxyl-modified Nb4C3Tx MXene@ZnIn2S4 sandwich structure for photocatalytic overall water splitting. J Colloid Interface Sci. 2023;633:992-1001.
|
[382] |
Fu C-F, Li X, Luo Q, Yang J. Two-dimensional multilayer M2CO2 (M = Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study. J Mater Chem A. 2017;5(47):24972-24980.
|
[383] |
Takanabe K. Photocatalytic water splitting: quantitative approaches toward photocatalyst by design. ACS Catal. 2017;7(11):8006-8022.
|
[384] |
Fajrina N, Tahir M. A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy. 2019;44(2):540-577.
|
[385] |
Zhang X, Zhao X, Wu D, Jing Y, Zhou Z. High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons. Nanoscale. 2015;7(38):16020-16025.
|
[386] |
Putri LK, Ong W-J, Chang WS, Chai S-P. Enhancement in the photocatalytic activity of carbon nitride through hybridization with light-sensitive AgCl for carbon dioxide reduction to methane. Catal Sci Technol. 2016;6(3):744-754.
|
[387] |
Ong W-J, Putri LK, Mohamed AR. Rational design of carbon-based 2D nanostructures for enhanced photocatalytic CO2 reduction: a dimensionality perspective. Chem A Eur J. 2020;26(44):9710-9748.
|
[388] |
Cao S, Shen B, Tong T, Fu J, Yu J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater. 2018;28(21):1800136.
|
[389] |
Ong W-J, Shak KPY. 2D/2D heterostructured photocatalysts: an emerging platform for artificial photosynthesis. Solar RRL. 2020;4(8):2000132.
|
[390] |
Yang C, Tan Q, Li Q, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: dual effects of urea. Appl Catal B. 2020;268:118738.
|
[391] |
Zhang Y, Chen W, Zhou M, Miao G, Liu Y. Efficient photocatalytic CO2 reduction by the construction of Ti3C2/CsPbBr3 QD composites. ACS Appl Energy Mater. 2021;4(9):9154-9165.
|
[392] |
Wang H. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022;15(4):2834-2854.
|
[393] |
Wu Y, Li X, Yang Q, et al. MXene-modulated dual-heterojunction generation on a metal-organic framework (MOF) via surface constitution reconstruction for enhanced photocatalytic activity. Chem Eng J. 2020;390:124519.
|
[394] |
Zeng Z, Yan Y, Chen J, Zan P, Tian Q, Chen P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater. 2019;29(2):1806500.
|
[395] |
Ding Y, Nie X, Dong H, Rujisamphan N, Li Y. Size-dependent electronic, optical and photocatalytic properties of Ti3C2O2 quantum dots studied by first-principles calculations. Phys E. 2020;124:114328.
|
[396] |
Vu N-N, Kaliaguine S, Do T-O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight-driven photocatalytic reduction of CO2 into fuels. Adv Funct Mater. 2019;29(31):1901825.
|
[397] |
Albero J, Peng Y, García H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020;10(10):5734-5749.
|
[398] |
Que M, Cai W, Zhao Y, et al. 2D/2D Schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction. J Colloid Interface Sci. 2022;610:538-545.
|
[399] |
Tahir M, Tahir B. 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem Eng J. 2020;400:125868.
|
[400] |
Hong L, Guo R, Yuan Y, et al. 2D Ti3C2 decorated Z-scheme BiOIO3/g-C3N4 heterojunction for the enhanced photocatalytic CO2 reduction activity under visible light. Colloids Surf A. 2022;639:128358.
|
[401] |
Li L, Yang Y, Yang L, Wang X, Zhou Y, Zou Z. 3D hydrangea-like InVO4/Ti3C2Tx hierarchical heterosystem collaborating with 2D/2D interface interaction for enhanced photocatalytic CO2 reduction. ChemNanoMat. 2021;7(7):815-823.
|
[402] |
Que M, Zhao Y, Yang Y, et al. Anchoring of formamidinium lead bromide quantum dots on Ti3C2 nanosheets for efficient photocatalytic reduction of CO2. ACS Appl Mater Interfaces. 2021;13(5):6180-6187.
|
[403] |
Pan A, Ma X, Huang S, et al. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction. J Phys Chem Lett. 2019;10(21):6590-6597.
|
[404] |
Zhang J, Shi J, Tao S, Wu L, Lu J. Cu2O/Ti3C2MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. Appl Surf Sci. 2021;542:148685.
|
[405] |
Tang Q, Sun Z, Deng S, Wang H, Wu Z. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J Colloid Interface Sci. 2020;564:406-417.
|
[406] |
Albo J, García G. Enhanced visible-light photoreduction of CO2 to methanol over Mo2C/TiO2 surfaces in an optofluidic microreactor. React Chem Eng. 2021;6(2):304-312.
|
[407] |
Saeed A, Chen W, Shah AH, Zhang Y, Mehmood I, Liu Y. Enhancement of photocatalytic CO2 reduction for novel Cd0.2Zn0.8S@Ti3C2 (MXenes) nanocomposites. J CO2 Util. 2021;47:101501.
|
[408] |
Zhang S, Xiong W, Long J, et al. High-throughput lateral and basal interface in CeO2@Ti3C2Tx: reverse and synergistic migration of carrier for enhanced photocatalytic CO2 reduction. J Colloid Interface Sci. 2022;615:716-724.
|
[409] |
Tahir M, Tahir B. In-situ growth of TiO2 imbedded Ti3C2TA nanosheets to construct PCN/Ti3C2TA MXenes 2D/3D heterojunction for efficient solar-driven photocatalytic CO2 reduction towards CO and CH4 production. J Colloid Interface Sci. 2021;591:20-37.
|
[410] |
Li X, Bai Y, Shi X, et al. Mesoporous g-C3N4/MXene (Ti3C2Tx) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction. Appl Surf Sci. 2021;546:149111.
|
[411] |
Men Y-L, You Y, Pan Y-X, et al. Selective CO evolution from photoreduction of CO2 on a metal-carbide-based composite catalyst. J Am Chem Soc. 2018;140(40):13071-13077.
|
[412] |
Hu J, Ding J, Zhong Q. Ultrathin 2D Ti3C2 MXene co-catalyst anchored on porous g-C3N4 for enhanced photocatalytic CO2 reduction under visible-light irradiation. J Colloid Interface Sci. 2021;582:647-657.
|
[413] |
Chen W, Han B, Xie Y, Liang S, Deng H, Lin Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem Eng J. 2020;391:123519.
|
[414] |
Zhao S, Pan D, Liang Q, et al. Ultrathin NiAl-layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core–shell heterostructures for enhanced photocatalytic CO2 reduction. J Phys Chem C. 2021;125(19):10207-10218.
|
[415] |
Wang K, Li X, Wang N, et al. Z-scheme core–shell meso-TiO2@ZnIn2S4/Ti3C2 MXene enhances visible light-driven CO2-to-CH4 selectivity. Ind Eng Chem Res. 2021;60(24):8720-8732.
|
[416] |
Wang K, Wang Q, Zhang K, Wang G, Wang H. Selective solar-driven CO2 reduction mediated by 2D/2D Bi2O2SiO3/MXene nanosheets heterojunction. J Mater Sci Technol. 2022;124:202-208.
|
[417] |
Zhang Z, Wang B, Zhao H-B, et al. Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Appl Catal B. 2022;312:121358.
|
[418] |
Du Z, Cai H, Guo Z, et al. Synergistic photocatalytic of CO2-to-CO conversion by 2D/1D Ti3C2Tx/p-BN heterojunction with interfacial chemical bonding. J Alloys Compd. 2022;920:165933.
|
[419] |
Xiao Y, Men C, Chu B, et al. Spontaneous reduction of copper on Ti3C2Tx as fast electron transport channels and active sites for enhanced photocatalytic CO2 reduction. Chem Eng J. 2022;446(Pt 1):137028.
|
[420] |
Peng H, Deng X, Li G, et al. Oxygen vacancy and Van der Waals heterojunction modulated interfacial chemical bond over Mo2C/Bi4O5Br2 for boosting photocatalytic CO2 reduction. Appl Catal B. 2022;318:121866.
|
[421] |
Li J, Wang Y, Wang Y, et al. MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction. Nano Mater Sci. 2023;5(2):237-245.
|
[422] |
Madi M, Tahir M, Zakaria ZY. 2D/2D V2C mediated porous g-C3N4 heterojunction with the role of monolayer/multilayer MAX/MXene structures for stimulating photocatalytic CO2 reduction to fuels. J CO2 Util. 2022;65:102238.
|
[423] |
Wang Z, Guo Y, Zhang Q, Li Z, Zhao Y, Wang H. Alkanolamine intercalation assisted liquid phase exfoliation of titanium carbide MXene nanosheets for highly efficient photocatalytic CO2 reduction. J Mol Liq. 2022;367:120578.
|
[424] |
Kim J, Yoon Y, Kim SK, et al. Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv Funct Mater. 2021;31(13):2008722.
|
[425] |
Song H, Wang Y, Ling Z, et al. Enhanced photocatalytic degradation of perfluorooctanoic acid by Ti3C2 MXene-derived heterojunction photocatalyst: application of intercalation strategy in DESs. Sci Total Environ. 2020;746:141009.
|
[426] |
Palisaitis J, Persson I, Halim J, Rosen J, Persson POÅ. On the structural stability of MXene and the role of transition metal adatoms. Nanoscale. 2018;10(23):10850-10855.
|
[427] |
Habib T, Zhao X, Shah SA, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Mater Appl. 2019;3(1):8.
|
[428] |
Thakur R, VahidMohammadi A, Moncada J, et al. Insights into the thermal and chemical stability of multilayered V2CTx MXene. Nanoscale. 2019;11(22):10716-10726.
|
[429] |
Chae Y, Kim SJ, Cho S-Y, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale. 2019;11(17):8387-8393.
|
[430] |
Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2(12):1600255.
|
[431] |
Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A. 2014;2(35):14334-14338.
|
[432] |
Zhao X, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1(2):513-526.
|
[433] |
Wu C-W, Unnikrishnan B, Chen IWP, Harroun SG, Chang H-T, Huang C-C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 2020;25:563-571.
|
[434] |
Wu X, Wang Z, Yu M, Xiu L, Qiu J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater. 2017;29(24):1607017.
|
[435] |
Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MW. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Ed. 2019;58(36):12655-12660.
|
[436] |
Mathis TS, Maleski K, Goad A, et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano. 2021;15(4):6420-6429.
|
[437] |
Zhan C, Sun W, Xie Y, Jiang D, Kent PRC. Computational discovery and design of MXenes for energy applications: status, successes, and opportunities. ACS Appl Mater Interfaces. 2019;11(28):24885-24905.
|
[438] |
Khazaei M, Mishra A, Venkataramanan NS, Singh AK, Yunoki S. Recent advances in MXenes: from fundamentals to applications. Curr Opin Solid State Mater Sci. 2019;23(3):164-178.
|
[439] |
Rajan AC, Mishra A, Satsangi S, et al. Machine-learning-assisted accurate band gap predictions of functionalized MXene. Chem Mater. 2018;30(12):4031-4038.
|
[440] |
Mishra A, Satsangi S, Rajan AC, Mizuseki H, Lee K-R, Singh AK. Accelerated data-driven accurate positioning of the band edges of MXenes. J Phys Chem Lett. 2019;10(4):780-785.
|
[441] |
Frey NC, Akinwande D, Jariwala D, Shenoy VB. Machine learning-enabled design of point defects in 2D materials for quantum and neuromorphic information processing. ACS Nano. 2020;14(10):13406-13417.
|
[442] |
Khaledialidusti R, Khazaei M, Khazaei S, Ohno K. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale. 2021;13(15):7294-7307.
|
[443] |
Frey NC, Wang J, Vega Bellido GI, Anasori B, Gogotsi Y, Shenoy VB. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano. 2019;13(3):3031-3041.
|
[444] |
He M, Zhang L. Machine learning and symbolic regression investigation on stability of MXene materials. Comput Mater Sci. 2021;196:110578.
|
[445] |
Loh JYY, Sharma G, Kherani NP, Ozin GA. Post-illumination photoconductivity enables extension of photo-catalysis after sunset. Adv Energy Mater. 2021;11(41):2101566.
|
[446] |
Ling GZS, Foo JJ, Tan X-Q, Ong W-J. Transition into net-zero carbon community from fossil fuels: life cycle assessment of light-driven CO2 conversion to methanol using graphitic carbon nitride. ACS Sustain Chem Eng. 2023;11(14):5547-5558.
|
[447] |
Ai L, Ng S-F, Ong W-J. A prospective life cycle assessment of electrochemical CO2 reduction to selective formic acid and ethylene. ChemSusChem. 2022;15(19):e202200857.
|
[448] |
Mo W, Tan X-Q, Ong W-J. Prospective life cycle assessment bridging biochemical, thermochemical, and electrochemical CO2 reduction toward sustainable ethanol synthesis. ACS Sustain Chem Eng. 2023;11(14):5782-5799.
|
[449] |
Oh VB-Y, Ng S-F, Ong W-J. Is photocatalytic hydrogen production sustainable?—assessing the potential environmental enhancement of photocatalytic technology against steam methane reforming and electrocatalysis. J Clean Prod. 2022;379(2):134673.
|
[450] |
Lin X, Foo JJ, Ong W-J. Unveiling environmental impacts of methanol production via electrocatalysis against conventional and thermochemical routes by life cycle assessment. Sustain Mater Technol. 2023;37:e00663.
|
/
〈 | 〉 |