Overcoming the voltage losses caused by the acceptor-based interlayer in laminated indoor OPVs

Gulzada Beket, Anton Zubayer, Qilun Zhang, Jochen Stahn, Fredrik Eriksson, Mats Fahlman, Thomas Österberg, Jonas Bergqvist, Feng Gao

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (3) : e1237. DOI: 10.1002/smm2.1237
RESEARCH ARTICLE

Overcoming the voltage losses caused by the acceptor-based interlayer in laminated indoor OPVs

Author information +
History +

Abstract

Harvesting indoor light to power electronic devices for the Internet of Things has become an application scenario for emerging photovoltaics, especially utilizing organic photovoltaics (OPVs). Combined liquid- and solid-state processing, such as printing and lamination used in industry for developing indoor OPVs, also provides a new opportunity to investigate the device structure, which is otherwise hardly possible based on the conventional approach due to solvent orthogonality. This study investigates the impact of fullerene-based acceptor interlayer on the performance of conjugated polymer–fullerene-based laminated OPVs for indoor applications. We observe open-circuit voltage (VOC) loss across the interface despite this arrangement being presumed to be ideal for optimal device performance. Incorporating insulating organic components such as polyethyleneimine (PEI) or polystyrene (PS) into fullerene interlayers decreases the work function of the cathode, leading to better energy level alignment with the active layer (AL) and reducing the VOC loss across the interface. Neutron reflectivity studies further uncover two different mechanisms behind the VOC increase upon the incorporation of these insulating organic components. The self-organized PEI layer could hinder the transfer of holes from the AL to the acceptor interlayer, while the gradient distribution of the PS-incorporated fullerene interlayer eliminates the thermalization losses. This work highlights the importance of structural dynamics near the extraction interfaces in OPVs and provides experimental demonstrations of interface investigation between solution-processed cathodic fullerene layer and bulk heterojunction AL.

Keywords

ideal morphology model / indoor organic photovoltaics / lamination / neutron reflectivity / solution processing

Cite this article

Download citation ▾
Gulzada Beket, Anton Zubayer, Qilun Zhang, Jochen Stahn, Fredrik Eriksson, Mats Fahlman, Thomas Österberg, Jonas Bergqvist, Feng Gao. Overcoming the voltage losses caused by the acceptor-based interlayer in laminated indoor OPVs. SmartMat, 2024, 5(3): e1237 https://doi.org/10.1002/smm2.1237

References

[1]
EspinosaN, Hösel M, AngmoD, KrebsFC. Solar cells with one-day energy payback for the factories of the future. Energy Environ Sci. 2012;5(1):5117-5132.
[2]
CuiY, WangY, BergqvistJ, et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat Energy. 2019;4(9):768-775.
[3]
HwangS, YasudaT. Indoor photovoltaic energy harvesting based on semiconducting π-conjugated polymers and oligomeric materials toward future IoT applications. Polym J. 2022;55(4):297-316.
[4]
PecuniaV, Occhipinti LG, HoyeRLZ. Emerging indoor photovoltaic technologies for sustainable Internet of Things. Adv Energy Mater. 2021;11(29):2100698.
[5]
LaiTH, TsangSW, MandersJR, Chen S, SoF. Properties of interlayer for organic photovoltaics. Mater Today. 2013;16(11):424-432.
[6]
ParkY, BergerJ, TangZ, et al. Flexible, light trapping substrates for organic photovoltaics. Appl Phys Lett. 2016;109(9):093301.
[7]
VandewalK, Tvingstedt K, GadisaA, InganäsO, MancaJV. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat Mater. 2009;8(11):904-909.
[8]
LiX, ZhangQ, YuJ, et al. Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nat Commun. 2022;13(1):2046.
[9]
BraunS, Salaneck WR, FahlmanM. Energy-level alignment at organic/metal and organic/organic interfaces. Adv Mater. 2009;21(14-15):1450-1472.
[10]
FahlmanM, Fabiano S, GueskineV, SimonD, Berggren M, CrispinX. Interfaces in organic electronics. Nat Rev Mater. 2019;4(10):627-650.
[11]
DiaoY, TeeBCK, GiriG, et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat Mater. 2013;12(7):665-671.
[12]
ReinspachJA, DiaoY, GiriG, et al. Tuning the morphology of solution-sheared P3HT:PCBM films. ACS Appl Mater Interfaces. 2016;8(3):1742-1751.
[13]
GiriG, Verploegen E, MannsfeldSCB, et al. Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature. 2011;480(7378):504-508.
[14]
WojtkiewiczJ, PilchM. Modelling of limitations of bulk heterojunction architecture in organic solar cells II: 3d model. 2020. arXiv:2009.08784.
[15]
WatkinsPK, WalkerAB, VerschoorGLB. Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. Nano Lett. 2005;5(9):1814-1818.
[16]
MengL, ShangY, LiQ, et al. Dynamic Monte Carlo simulation for highly efficient polymer blend photovoltaics. J Phys Chem B. 2010;114(1):36-41.
[17]
YuanJ, ZhangH, ZhangR, et al. Reducing voltage losses in the A-DA′ D-A acceptor-based organic solar cells. Chem. 2020;6(9):2147-2161.
[18]
CaiY, ZhangH, YeL, et al. Effect of the energy offset on the charge dynamics in nonfullerene organic solar cells. ACS Appl Mater Interfaces. 2020;12(39):43984-43991.
[19]
HeD, ZengM, ZhangZ, et al. Exciton diffusion and dissociation in organic and quantum-dot solar cells. SmartMat. 2023;4:e1176.
[20]
MelianasA, Pranculis V, SpoltoreD, et al. Charge transport in pure and mixed phases in organic solar cells. Adv Energy Mater. 2017;7(20):1700888.
[21]
TengstedtC, Osikowicz W, SalaneckWR, ParkerID, HsuCH, FahlmanM. Fermi-level pinning at conjugated polymer interfaces. Appl Phys Lett. 2006;88(5):1-3.
[22]
GreinerMT, Helander MG, TangWM, WangZB, QiuJ, LuZH. Universal energy-level alignment of molecules on metal oxides. Nat Mater. 2012;11(1):76-81.
[23]
BrusVV. Light dependent open-circuit voltage of organic bulk heterojunction solar cells in the presence of surface recombination. Org Electron. 2016;29:1-6.
[24]
AnderssonO, Kemerink M. Enhancing open-circuit voltage in gradient organic solar cells by rectifying thermalization losses. Solar RRL. 2020;4(12):2000400.
[25]
DingK, Forrest SR. Reducing energy losses at the organic-anode-buffer interface of organic photovoltaics. Phys Rev Appl. 2020;13(5):054046.
[26]
KotadiyaNB, LuH, MondalA, et al. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nat Mater. 2018;17(4):329-334.
[27]
PranavM, Benduhn J, NymanM, et al. Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells. ACS Appl Mater Interfaces. 2021;13(10):12603-12609.
[28]
ZhangD, FanB, YingL, et al. Recent progress in thick-film organic photovoltaic devices: materials, devices, and processing. SusMat. 2021;1(1):4-23.
[29]
BaiF, ZhangJ, ZengA, et al. A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor. Joule. 2021;5(5):1231-1245.
[30]
BergqvistJ, Österberg T, MelianasA, et al. Asymmetric photocurrent extraction in semitransparent laminated flexible organic solar cells. npj Flex Electron. 2018;2(1):4.
[31]
DongS, WanY, WangY, et al. Polyethylenimine as a dual functional additive for electron transporting layer in efficient solution processed planar heterojunction perovskite solar cells. RSC Adv. 2016;6(63):57793-57798.
[32]
BaiY, YuH, ZhuZ, et al. High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer. J Mater Chem A. 2015;3(17):9098-9102.
[33]
WarbyJ, ZuF, ZeiskeS, et al. Understanding performance limiting interfacial recombination in pin perovskite solar cells. Adv Energy Mater. 2022;12(12):2103567.
[34]
VandewalK, Benduhn J, NikolisVC. How to determine optical gaps and voltage losses in organic photovoltaic materials. Sustain Energy Fuels. 2018;2(3):538-544.
[35]
WangY, QianD, CuiY, et al. Optical gaps of organic solar cells as a reference for comparing voltage losses. Adv Energy Mater. 2018;8(28):1801352.
[36]
ZhouD, LiY, ZhangH, et al. N-type small molecule electron transport materials with D-A-D conjugated core for non-fullerene organic solar cells. Chem Eng J. 2023;452(part 2):139260.
[37]
ZhouD, YouW, YangF, et al. N-type self-doped hyperbranched conjugated polyelectrolyte as electron transport layer for efficient nonfullerene organic solar cells. ACS Appl Mater Interfaces. 2021;13(42):50187-50196.
[38]
PavlopoulouE, FleuryG, DeribewD, Cousin F, GeogheganM, HadziioannouG. Phase separation-driven stratification in conventional and inverted P3HT:PCBM organic solar cells. Org Electron. 2013;14(5):1249-1254.
[39]
WangT, Scarratt NW, YiH, et al. Vertical stratification and its impact on device performance in a polycarbazole based copolymer solar cells. J Mater Chem C. 2015;3(16):4007-4015.
[40]
TuladharSM, Poplavskyy D, ChoulisSA, DurrantJR, Bradley DDC, NelsonJ. Ambipolar charge transport in films of methanofullerene and poly(phenylenevinylene)/methanofullerene blends. Adv Funct Mater. 2005;15(7):1171-1182.
[41]
GadisaA, Tvingstedt K, VandewalK, ZhangF, MancaJV, InganäsO. Bipolar charge transport in fullerene molecules in a bilayer and blend of polyfluorene copolymer and fullerene. Adv Mater. 2010;22(9):1008-1011.
[42]
Rodríguez-MartínezX, Riera-GalindoS, CongJ, ÖsterbergT, Campoy-QuilesM, Inganäs O. Matching electron transport layers with a non-halogenated and low synthetic complexity polymer:fullerene blend for efficient outdoor and indoor organic photovoltaics. J Mater Chem A. 2022;10(19):10768-10779.
[43]
CuiY, HongL, ZhangT, et al. Accurate photovoltaic measurement of organic cells for indoor applications. Joule. 2021;5(5):1016-1023.

RIGHTS & PERMISSIONS

2023 2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/