Light-controlled switchable underwater adhesive

Song Yang, Yanfei Ma, Chenxi Qin, Zhizhi Zhang, Jianqing Yu, Xiaowei Pei, Bo Yu, Wenbo Sheng, Feng Zhou, Weimin Liu

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (2) : e1235. DOI: 10.1002/smm2.1235
RESEARCH ARTICLE

Light-controlled switchable underwater adhesive

Author information +
History +

Abstract

Despite extensive efforts in designing and preparing switchable underwater adhesives, it is not easy to regulate the underwater adhesion strength locally and remotely. Here, we design and synthesize photoreversible copolymer of poly[dopamine methacrylamide-co-methoxyethyl-acrylate-co-7-(2-methacryloyloxyethoxy)-4-methylcoumarin]. Due to the dynamic formation and breaking of chemical crosslinking networks within the smart adhesives, the material shows widely tunable adhesion strength from ∼150 to ∼450 kPa and long-range reversible maneuverability under orthogonal 254 and 365 nm ultraviolet light stimulation via the coumarin dimerization and cycloreversion. Moreover, the adhesive exhibits good circulation performance and stability in an acid–base environment. It also demonstrated that the bolt can be coated with the smart adhesive material for on-demand bonding. This design principle opens the door to the development of remotely controllable high-performance smart underwater adhesives.

Keywords

dynamic covalent bonds / photoresponsive / reversible adhesion / switchable adhesion / underwater adhesion

Cite this article

Download citation ▾
Song Yang, Yanfei Ma, Chenxi Qin, Zhizhi Zhang, Jianqing Yu, Xiaowei Pei, Bo Yu, Wenbo Sheng, Feng Zhou, Weimin Liu. Light-controlled switchable underwater adhesive. SmartMat, 2024, 5(2): e1235 https://doi.org/10.1002/smm2.1235

References

[1]
Dolez PI, Williams C, Goff A, Love BJ. Properties of photopolymerisable acrylic adhesives for underwater bonding. Underwater Technol. 2003;25(4):199-208.
[2]
Shin M, Park S-G, Oh B-C, et al. Complete prevention of blood loss with self-sealing haemostatic needles. Nat Mater. 2017;16(1):147-152.
[3]
Baik S, Kim DW, Park Y, Lee TJ, Ho Bhang S, Pang C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature. 2017;546(7658):396-400.
[4]
Xiao C, Shi P, Yan W, Chen L, Qian L, Kim SH. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Colloids Interfaces. 2019;3(3):55.
[5]
Wang Z, Guo L, Xiao H, Cong H, Wang S. A reversible underwater glue based on photo-and thermo-responsive dynamic covalent bonds. Mater Horiz. 2020;7(1):282-288.
[6]
Liu Z, Yan F. Switchable adhesion: on-demand bonding and debonding. Adv Sci. 2022;9(12):2200264.
[7]
Ma Y, Ma S, Wu Y, et al. Remote control over underwater dynamic attachment/detachment and locomotion. Adv Mater. 2018;30(30):1801595.
[8]
Zhang Z, Qin C, Feng H, et al. Design of large-span stick-slip freely switchable hydrogels via dynamic multiscale contact synergy. Nat Commun. 2022;13(1):6964.
[9]
Nie J, Sun Y, Cheng X. Plant protein–peptide supramolecular polymers with reliable tissue adhesion for surgical sealing. Adv Healthc Mater. 2023;12(20):2203301.
[10]
Liu X, Ma Z, Nie J, Fang J, Li W. Exploiting redox-complementary peptide/polyoxometalate coacervates for spontaneously curing into antimicrobial adhesives. Biomacromolecules. 2021;23(3):1009-1019.
[11]
Liu X, Xu J, Xie X, et al. Heteropoly acid-driven assembly of glutathione into redox-responsive underwater adhesive. Chem Commun. 2020;56(75):11034-11037.
[12]
Boesel LF, Greiner C, Arzt E, del Campo A. Gecko-inspired surfaces: a path to strong and reversible dry adhesives. Adv Mater. 2010;22(19):2125-2137.
[13]
Zhong C, Gurry T, Cheng AA, et al. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat Nanotechnol. 2014;9(10):858-866.
[14]
Akdogan Y, Wei W, Huang K-Y, et al. Intrinsic surface-drying properties of bio-adhesive proteins. Angew Chem Int Ed. 2014;53(42):11253-11256.
[15]
Xue L, Sanz B, Luo A, et al. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano. 2017;11(10):9711-9719.
[16]
Federle W, Barnes WJP, Baumgartner W, Drechsler P, Smith JM. Wet but not slippery: boundary friction in tree frog adhesive toe pads. J R Soc Interface. 2006;3(10):689-697.
[17]
Tramacere F, Appel E, Mazzolai B, Gorb SN. Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker. Beilstein J Nanotechnol. 2014;5(1):561-565.
[18]
Tramacere F, Beccai L, Kuba M, Gozzi A, Bifone A, Mazzolai B. The morphology and adhesion mechanism of Octopus vulgaris suckers. PLoS One. 2013;8(6):e65074.
[19]
Tramacere F, Pugno NM, Kuba MJ, Mazzolai B. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment. Interface Focus. 2015;5(1):20140050.
[20]
Waite JH. Mussel adhesion–essential footwork. J Exp Biol. 2017;220(4):517-530.
[21]
Lee BP, Messersmith PB, Israelachvili JN, Waite JH. Mussel-inspired adhesives and coatings. Annu Rev Mater Res. 2011;41(1):99-132.
[22]
Shafiq Z, Cui J, Pastor-Pérez L, et al. Bioinspired underwater bonding and debonding on demand. Angew Chem Int Ed. 2012;51(18):4332-4335.
[23]
Zhao Y, Wu Y, Wang L, et al. Bio-inspired reversible underwater adhesive. Nat Commun. 2017;8(1):2218.
[24]
Narkar AR, Barker B, Clisch M, Jiang J, Lee BP. pH responsive and oxidation resistant wet adhesive based on reversible catechol-boronate complexation. Chem Mater. 2016;28(15):5432-5439.
[25]
Drotlef DM, Blümler P, del Campo A. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv Mater. 2014;26(5):775-779.
[26]
Lee H, Um DS, Lee Y, Lim S, Kim H, Ko H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv Mater. 2016;28(34):7457-7465.
[27]
Rao P, Sun TL, Chen L, et al. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv Mater. 2018;30(32):1801884.
[28]
Xue L, Kovalev A, Eichler-Volf A, Steinhart M, Gorb SN. Humidity-enhanced wet adhesion on insect-inspired fibrillar adhesive pads. Nat Commun. 2015;6(1):6621.
[29]
Liu J, Tan CSY, Scherman OA. Dynamic interfacial adhesion through cucurbit[n]uril molecular recognition. Angew Chem Int Ed. 2018;57(29):8854-8858.
[30]
Nakamura T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. A metal-ion-responsive adhesive material via switching of molecular recognition properties. Nat Commun. 2014;5(1):4622.
[31]
Ahn Y, Jang Y, Selvapalam N, Yun G, Kim K. Supramolecular velcro for reversible underwater adhesion. Angew Chem Int Ed. 2013;52(11):3140-3144.
[32]
Gao Y, Wu K, Suo Z. Photodetachable adhesion. Adv Mater. 2019;31(6):1806948.
[33]
Kabb CP, O'Bryan CS, Deng CC, Angelini TE, Sumerlin BS. Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl Mater Interfaces. 2018;10(19):16793-16801.
[34]
Ma Y, Zhang B, Frenkel I, et al. Mussel-inspired underwater adhesives-from adhesion mechanisms to engineering applications: a critical review. Rev Adhes Adhes. 2021;9(2):167-188.
[35]
Nakamura Y, Imamura K, Ito K, et al. Contact time and temperature dependencies of tack in polyacrylic block copolymer pressure-sensitive adhesives measured by the probe tack test. J Adhes Sci Technol. 2012;26(1-3):231-249.

RIGHTS & PERMISSIONS

2023 2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/