Iontronic and electrochemical investigations of 2D tellurene in aqueous electrolytes
Zongxiao Wu, Junlei Qi, Wenbin Wang, Peng Yang, Chen Ma, Haoxin Huang, Kai Bao, Jingkun Wu, Chengxuan Ke, Ye Chen, Chaoliang Tan, D. V. Maheswar Repaka, Qiyuan He
Iontronic and electrochemical investigations of 2D tellurene in aqueous electrolytes
The remarkable successes of graphene have sparked increasing interest in elemental two-dimensional (2D) materials, also referred to as Xenes. Due to their chemical simplicity and appealing physiochemical properties, Xenes have shown particular potential for numerous (opto) electronic, iontronic, and energy applications. Among them, layered α-phase tellurene has demonstrated the most promise, thanks to the recent successes in the chemical synthesis of highly crystalline 2D tellurene. However, the general electronic and electrochemical properties of tellurene in electrolyte systems remain ambiguous, hindering their further development. In this work, we studied the electrostatic gating, electrocatalysis, and electrochemical stability of tellurene in electrolyte systems. Our results show that tellurene obtained from both hydrothermal and chemical vapor deposition methods, two mainstream synthetic approaches for Xenes, demonstrates thickness-dependent ambipolar transport with high hole mobility and stability in both aqueous electrolytes and ionic liquids. More importantly, the electrochemical properties of tellurene are investigated via the emerging on-chip electrochemistry. Pristine tellurene demonstrates hydrogen evolution reaction with low Tafel slopes and remarkable electrochemical stability in acidic electrolytes over a large potential window. Our study provides a comprehensive understanding of the iontronic and electrochemical properties of tellurene, paving the way for the broad adoption of Xenes in sensors, synaptic devices, and electrocatalysis.
field-effect transistor / hydrogen evolution reaction / ionic gating / on-chip electrocatalytic microdevice / tellurene
[1] |
Li L, Yu Y, Ye GJ, et al. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9(5):372-377.
|
[2] |
Gibaja C, Rodriguez-San-Miguel D, Ares P, et al. Few-layer antimonene by liquid-phase exfoliation. Angew Chem. 2016;128(46):14557-14561.
|
[3] |
Acerce M, Akdoğan EK, Chhowalla M. Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature. 2017;549(7672):370-373.
|
[4] |
Voiry D, Shin HS, Loh KP, Chhowalla M. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem. 2018;2(1):0105.
|
[5] |
Yang J, Mohmad AR, Wang Y, et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat Mater. 2019;18(12):1309-1314.
|
[6] |
Lin S, Lai WK, Li Y, Lu W, Bai G, Lau SP. Liquid-phase exfoliation of violet phosphorus for electronic applications. SmartMat. 2021;2(2):226-233.
|
[7] |
Wang Y, Sun S, Zhang J, Huang YL, Chen W. Recent progress in epitaxial growth of two-dimensional phosphorus. SmartMat. 2021;2(3):286-298.
|
[8] |
Wu W, Qiu G, Wang Y, Wang R, Ye P. Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem Soc Rev. 2018;47(19):7203-7212.
|
[9] |
He Q, Liu Y, Tan C, Zhai W, Nam G, Zhang H. Quest for p-type two-dimensional semiconductors. ACS Nano. 2019;13(11):12294-12300.
|
[10] |
Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron. 2018;1(4):228-236.
|
[11] |
Yang P, Zha J, Gao G, et al. Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nanomicro Lett. 2022;14(1):109.
|
[12] |
Yuan Z, Zhao Q, Xie C, et al. Gold-loaded tellurium nanobelts gas sensor for ppt-level NO2 detection at room temperature. Sens Actuators B: Chem. 2022;355:131300.
|
[13] |
Chen Z, Yang Q, Mo F, et al. Aqueous zinc-tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv Mater. 2020;32(42):2001469.
|
[14] |
Qiu B, Wang C, Wang J, et al. Metal-free tellurene cocatalyst with tunable bandgap for enhanced photocatalytic hydrogen production. Mater Today Energy. 2021;21:100720.
|
[15] |
Li T, Deng Y, Rong X, et al. Nanostructures and catalytic atoms engineering of tellurium-based materials and their roles in electrochemical energy conversion. SmartMat. 2023;4(1):e1142.
|
[16] |
Huang W, Zhang Y, You Q, et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small. 2019;15(23):1900902.
|
[17] |
Ren X, Wang Y, Xie Z, Xue F, Leighton C, Frisbie CD. Gate-tuned insulator-metal transition in electrolyte-gated transistors based on tellurene. Nano Lett. 2019;19(7):4738-4744.
|
[18] |
Guo H, Zheng K, Cui H, et al. Tellurene based biosensor for detecting DNA/RNA nucleobases and amino acids: a theoretical insight. Appl Surf Sci. 2020;532:147451.
|
[19] |
Peng X, Zhou Y, Nie K, et al. Promising near-infrared plasmonic biosensor employed for specific detection of SARS-CoV-2 and its spike glycoprotein. New J Phys. 2020;22(10):103046.
|
[20] |
Domaretskiy D, Philippi M, Gibertini M, Ubrig N, Gutiérrez-Lezama I, Morpurgo AF. Quenching the bandgap of two-dimensional semiconductors with a perpendicular electric field. Nat Nanotechnol. 2022;17(10):1078-1083.
|
[21] |
Philippi M, Gutiérrez-Lezama I, Ubrig N, Morpurgo AF. Lithium-ion conducting glass ceramics for electrostatic gating. Appl Phys Lett. 2018;113(3):033502.
|
[22] |
Gutiérrez-Lezama I, Ubrig N, Ponomarev E, Morpurgo AF. Ionic gate spectroscopy of 2D semiconductors. Nat Rev Phys. 2021;3(7):508-519.
|
[23] |
Yoon J, You B, Kim Y, et al. Environmentally stable and reconfigurable ultralow-power two-dimensional tellurene synaptic transistor for neuromorphic edge computing. ACS Appl Mater Interfaces. 2023;15:18463-18472.
|
[24] |
Zha J, Shi S, Chaturvedi A, et al. Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band. Adv Mater. 2023;35:2211598.
|
[25] |
Sun M, Zhang C, Chen D, et al. Ultrasensitive and stable all graphene field-effect transistor-based Hg2+ sensor constructed by using different covalently bonded RGO films assembled by different conjugate linking molecules. SmartMat. 2021;2(2):213-225.
|
[26] |
Zheng W, Li Y, Liu M, Lee LYS. Few-layer tellurium: cathodic exfoliation and doping for collaborative hydrogen evolution. Small. 2021;17(18):2007768.
|
[27] |
Ibraheem S, Li X, Shah SSA, et al. Tellurium triggered formation of Te/Fe-NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl Mater Interfaces. 2021;13(9):10972-10978.
|
[28] |
Jain R, Yuan Y, Singh Y, et al. Alloying of alkali metals with tellurene. Adv Energy Mater. 2021;11(7):2003248.
|
[29] |
Liu Y, Wu W, Goddard WA. Tellurium: fast electrical and atomic transport along the weak interaction direction. J Am Chem Soc. 2018;140(2):550-553.
|
[30] |
Traore M, Modolo R, Vittori O. Electrochemical behaviour of tellurium and silver telluride at rotating glassy carbon electrode. Electrochimica Acta. 1988;33(7):991-996.
|
[31] |
Wu T, Kim J, Myung NV. Electrochemical mechanism of tellurium reduction in alkaline medium. Front Chem. 2020;8:84.
|
[32] |
Sarala Y, Jayarama Reddy S. Electrochemical reduction of tellurium(IV). J Electroanal Chem Interfacial Electrochem. 1986;214(1):179-190.
|
[33] |
Ma Q, Yin P, Zhao M, et al. MOF-based hierarchical structures for solar-thermal clean water production. Adv Mater. 2019;31(17):1808249.
|
[34] |
Wang Y, Chhowalla M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat Rev Phys. 2022;4(2):101-112.
|
[35] |
Amani M, Tan C, Zhang G, et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano. 2018;12(7):7253-7263.
|
[36] |
Purdie DG, Pugno NM, Taniguchi T, Watanabe K, Ferrari AC, Lombardo A. Cleaning interfaces in layered materials heterostructures. Nat Commun. 2018;9(1):5387.
|
[37] |
Wang C, Xu C, Guo X, et al. Alloy-buffer-controlled van der Waals epitaxial growth of aligned tellurene. Nano Res. 2022;15(6):5712-5718.
|
[38] |
Zhang Q, Geng D, Hu W. Chemical vapor deposition for few-layer two-dimensional materials. SmartMat. 2023;4:e1177.
|
[39] |
Zhang X, Yu H, Tang W, et al. All-van-der-Waals barrier-free contacts for high-mobility transistors. Adv Mater. 2022;34:2109521.
|
[40] |
Peng M, Xie R, Wang Z, et al. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci Adv. 2021;7(16):eabf7358.
|
[41] |
Pang J, Bachmatiuk A, Yin Y, et al. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Adv Energy Mater. 2018;8(8):1702093.
|
[42] |
Perera MM, Lin M-W, Chuang H-J, et al. Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano. 2013;7(5):4449-4458.
|
[43] |
Yu Z, Ong Z-Y, Li S, et al. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv Funct Mater. 2017;27(19):1604093.
|
[44] |
Molazemhosseini A, Viola FA, Berger FJ, Zorn NF, Zaumseil J, Caironi M. A rapidly stabilizing water-gated field-effect transistor based on printed single-walled carbon nanotubes for biosensing applications. ACS Appl Electron Mater. 2021;3(7):3106-3113.
|
[45] |
Fan Q, Wang L, Xu D, et al. Solution-gated transistors of two-dimensional materials for chemical and biological sensors: status and challenges. Nanoscale. 2020;12(21):11364-11394.
|
[46] |
Li M, Han W, Jiang X, Jeong J, Samant MG, Parkin SSP. Suppression of ionic liquid gate-induced metallization of SrTiO3(001) by oxygen. Nano Lett. 2013;13(10):4675-4678.
|
[47] |
Chen Z, Yuan H, Xie Y, et al. Dual-gate modulation of carrier density and disorder in an oxide two-dimensional electron system. Nano Lett. 2016;16(10):6130-6136.
|
[48] |
Ono S, Miwa K, Seki S, Takeya J. A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl Phys Lett. 2009;94(6):63301.
|
[49] |
Fan Y, Jiang L, Yang J, Jiang Y, Liu F. The electrochemical behavior of tellurium on stainless steel substrate in alkaline solution and the illumination effects. J Electroanal Chem. 2016;771:17-22.
|
[50] |
Chu X, Li J, Xu H, Qian W. Introducing Te for boosting electrocatalytic reactions. Dalton Trans. 2023;52(2):245-259.
|
[51] |
Wang Y, Kim JC, Li Y, et al. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature. 2022;610(7930):61-66.
|
[52] |
Wang W, Qi J, Zhai L, et al. Preparation of 2D molybdenum phosphide via surface-confined atomic substitution. Adv Mater. 2022;34(35):2203220.
|
[53] |
Qi J, Wang W, Li Y, et al. On-chip investigation of electrocatalytic oxygen reduction reaction of 2D materials. Small. 2022;18(47):2204010.
|
[54] |
Pan Y, Wang X, Zhang W, et al. Boosting the performance of single-atom catalysts via external electric field polarization. Nat Commun. 2022;13(1):3063.
|
[55] |
Ping X, Liang D, Wu Y, et al. Activating a two-dimensional PtSe2 basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021;21(9):3857-3863.
|
[56] |
Ling N, Zheng S, Lee Y, et al. Active hydrogen evolution on the plasma-treated edges of WTe2. APL Mater. 2021;9(6):061108.
|
[57] |
Yang J, Wang Y, Lagos MJ, et al. Single atomic vacancy catalysis. ACS Nano. 2019;13(9):9958-9964.
|
[58] |
Lin Z, Wang J, Chen J, et al. Two-dimensional tellurene transistors with low contact resistance and self-aligned catalytic thinning process. Adv Electron Mater. 2022;8(10):2200380.
|
[59] |
Bouroushian M. Electrochemistry of the chalcogens. In: Bouroushian M, ed. Electrochemistry of Metal Chalcogenides. Springer Berlin Heidelberg; 2010:57-75.
|
[60] |
Halli P, Wilson BP, Hailemariam T, Latostenmaa P, Yliniemi K, Lundström M. Electrochemical recovery of tellurium from metallurgical industrial waste. J Appl Electrochem. 2020;50(1):1-14.
|
/
〈 | 〉 |