3D trigonal FAPbI3-based multilevel resistive switching nonvolatile memory for artificial neural synapse

Li Tao, Bowen Jiang, Sijie Ma, Yan Zhang, Yuanqiang Huang, Yueyi Pan, Weijun Kong, Jun Zhang, Guokun Ma, Houzhao Wan, Yong Ding, Paul J. Dyson, Mohammad Khaja Nazeeruddin, Hao Wang

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (3) : e1233. DOI: 10.1002/smm2.1233
RESEARCH ARTICLE

3D trigonal FAPbI3-based multilevel resistive switching nonvolatile memory for artificial neural synapse

Author information +
History +

Abstract

Hybrid perovskites have attracted enormous attention in the next generation resistive switching (RS) memristor for the artificial synapses, owing to their ambipolar charge transport, long diffusion length, and tunable visible bandgap. However, the variable switch, limited reproducibility, and poor endurance are the obstacles to the practical application of the perovskite memristors. Herein, we reported a multilevel RS nonvolatile memory based on a 3D trigonal HC(NH2)2PbI3 (α-FAPbI3) perovskite layer modified by 1-cyanobutyl-3-methylimidazolium chloride ([CNBmim]Cl) and sandwiched between ITO and Au electrodes (Au/[CNBmim]Cl/α-FAPbI3/SnO2/ITO). In contrast to the bare memristor with failure switching from low resistance state (LRS) to high resistance state (HRS), the memristor device based on the α-FAPbI3 modified with [CNBmim]Cl (Target device) shows the retention time over 104 s with On/Off ratio (>102) and endurance up to 550 cycles. The stable RS cycle benefits from the accelerated electrons de-trapping from the reduced defects and fast charge separation in the interface of α-FAPbI3/electrode, leading to the rupture of conductive filaments and transition of LRS to HRS. As a two-terminal analog synaptic device, the target device can realize random handwritten digit recognition with an impressive accuracy of 89.3% on the condition of low learning phases (500 training cycles).

Keywords

3D trigonal HC(NH2)2PbI3 / artificial synapses / hybrid perovskite / image recognition / low power consumption / memristor

Cite this article

Download citation ▾
Li Tao, Bowen Jiang, Sijie Ma, Yan Zhang, Yuanqiang Huang, Yueyi Pan, Weijun Kong, Jun Zhang, Guokun Ma, Houzhao Wan, Yong Ding, Paul J. Dyson, Mohammad Khaja Nazeeruddin, Hao Wang. 3D trigonal FAPbI3-based multilevel resistive switching nonvolatile memory for artificial neural synapse. SmartMat, 2024, 5(3): e1233 https://doi.org/10.1002/smm2.1233

References

[1]
Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature. 2019;575(7784):607-617.
[2]
Ali S, Khan S, Khan A, Bermak A. Memristor fabrication through printing technologies: a review. IEEE Access. 2021;9:95970-95985.
[3]
Yang X, Taylor B, Wu A, Chen Y, Chua LO. Research progress on memristor: from synapses to computing systems. IEEE Trans Circuits Syst I: Reg Papers. 2022;69(5):1845-1857.
[4]
Kumar S, Wang X, Strachan JP, Yang Y, Lu WD. Dynamical memristors for higher-complexity neuromorphic computing. Nat Rev Mater. 2022;7(7):575-591.
[5]
Yang TY, Gregori G, Pellet N, Grätzel M, Maier J. The significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew Chem. 2015;127(27):8016-8021.
[6]
Haruyama J, Sodeyama K, Han L, Tateyama Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J Am Chem Soc. 2015;137(32):10048-10051.
[7]
Choi J, Park S, Lee J, et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv Mater. 2016;28(31):6562-6567.
[8]
Yoo EJ, Lyu M, Yun JH, Kang CJ, Choi YJ, Wang L. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3−xClx perovskite for resistive random access memory devices. Adv Mater. 2015;27(40):6170-6175.
[9]
Xu W, Cho H, Kim YH, et al. Organometal halide perovskite artificial synapses. Adv Mater. 2016;28(28):5916-5922.
[10]
Zhu X, Lu WD. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano. 2018;12(2):1242-1249.
[11]
Ham S, Choi S, Cho H, Na SI, Wang G. Photonic organolead halide perovskite artificial synapse capable of accelerated learning at low power inspired by dopamine-facilitated synaptic activity. Adv Funct Mater. 2019;29(5):1806646.
[12]
Guan X, Hu W, Haque MA, et al. Light-responsive ion-redistribution-induced resistive switching in hybrid perovskite Schottky junctions. Adv Funct Mater. 2018;28(3):1704665.
[13]
Walsh A, Stranks SD. Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 2018;3(8):1983-1990.
[14]
Zhou F, Liu Y, Shen X, Wang M, Yuan F, Chai Y. Low-voltage, optoelectronic CH3NH3PbI3−xClx memory with integrated sensing and logic operations. Adv Funct Mater. 2018;28(15):1800080.
[15]
Ma H, Wang W, Xu H, et al. Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. ACS Appl Mater Interfaces. 2018;10(25):21755-21763.
[16]
McGovern L, Futscher MH, Muscarella LA, Ehrler B. Understanding the stability of MAPbBr3 versus MAPbI3: suppression of methylammonium migration and reduction of halide migration. J Phys Chem Lett. 2020;11(17):7127-7132.
[17]
Zhang X, Shen JX, Turiansky ME, Van de Walle CG. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat Mater. 2021;20(7):971-976.
[18]
Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature. 2021;592(7854):381-385.
[19]
Yang JM, Kim SG, Seo JY, et al. 1D hexagonal HC(NH2)2PbI3 for multilevel resistive switching nonvolatile memory. Adv Electron Mater. 2018;4(9):1800190.
[20]
Luo J, Zhao Z, Huang X, et al. Phase-dependent memristive behaviors in FAPbI3-based memristors. Mater Today Commun. 2022;33:104186.
[21]
Yao D, Zhang C, Pham ND, et al. Hindered formation of photoinactive δ-FAPbI3 phase and hysteresis-free mixed-cation planar heterojunction perovskite solar cells with enhanced efficiency via potassium incorporation. J Phys Chem Lett. 2018;9(8):2113-2120.
[22]
Zhang J, Jiang X, Liu X, Guo X, Li C. Maximizing merits of undesirable δ-FAPbI3 by constructing yellow/black heterophase bilayer for efficient and stable perovskite photovoltaics. Adv Funct Mater. 2022;32(44):2204642.
[23]
Shang M, Lian G, Lv S, et al. “Visible” phase separation of MAPbI3/δ-FAPbI3 films for high-performance and stable photodetectors. Adv Mater Interfaces. 2021;8(12):2100266.
[24]
Gélvez-Rueda MC, Renaud N, Grozema FC. Temperature dependent charge carrier dynamics in formamidinium lead iodide perovskite. J Phys Chem C. 2017;121(42):23392-23397.
[25]
Zhao X, Xu H, Wang Z, Lin Y, Liu Y. Memristors with organic-inorganic halide perovskites. InfoMat. 2019;1(2):183-210.
[26]
Niu T, Chao L, Dong X, Fu L, Chen Y. Phase-pure α-FAPbI3 for perovskite solar cells. J Phys Chem Lett. 2022;13(7):1845-1854.
[27]
Murugadoss G, Thangamuthu R, Rajesh Kumar M. Formamidinium lead iodide perovskite: structure, shape and optical tuning via hydrothermal method. Mater Lett. 2018;231:16-19.
[28]
Jiang J, Jin Z, Gao F, Sun J, Wang Q, Liu SF. CsPbCl3-driven low-trap-density perovskite grain growth for >20% solar cell efficiency. Adv Sci. 2018;5(7):1800474.
[29]
Yang J, Liu C, Cai C, et al. High-performance perovskite solar cells with excellent humidity and thermo-stability via fluorinated perylenediimide. Adv Energy Mater. 2019;9(18):1900198.
[30]
Yu T, Zhao Z, Jiang H, et al. A low-power memristor based on 2H–MoTe2 nanosheets with synaptic plasticity and arithmetic functions. Mater Today Nano. 2022;19:100233.
[31]
Lim E, Ismail R. Conduction mechanism of valence change resistive switching memory: a survey. Electronics. 2015;4(3):586-613.
[32]
Wang Q, He D. Time-decay memristive behavior and diffusive dynamics in one forget process operated by a 3D vertical Pt/Ta2O5−x/W device. Sci Rep. 2017;7(1):822.
[33]
Liu L, Xiong W, Liu Y, et al. Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv Electron Mater. 2020;6(2):1901012.
[34]
Yang B, Brown CC, Huang J, et al. Enhancing ion migration in grain boundaries of hybrid organic–inorganic perovskites by chlorine. Adv Funct Mater. 2017;27(26):1700749.
[35]
Cai H, Ma G, He Y, Liu C, Wang H. A remarkable performance of CH3NH3PbI3 perovskite memory based on passivated method. Org Electron. 2018;58:301-305.
[36]
Yin WJ, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett. 2014;104(6):063903.
[37]
Lu XF, Zhang Y, Wang N, et al. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett. 2021;21(20):8800-8807.
[38]
Wang R, Shi T, Zhang X, et al. Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization. Nat Commun. 2022;13(1):2289.
[39]
Azpiroz JM, Mosconi E, Bisquert J, De Angelis F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ Sci. 2015;8(7):2118-2127.
[40]
Zhu X, Lee J, Lu WD. Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects. Adv Mater. 2017;29(29):1700527.
[41]
Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006;313(5790):1093-1097.
[42]
Choi JH, Sim SE, Kim J, et al. Interregional synaptic maps among engram cells underlie memory formation. Science. 2018;360(6387):430-435.
[43]
Peng Z, Wu F, Jiang L, et al. HfO2-based memristor as an artificial synapse for neuromorphic computing with tri-layer HfO2/BiFeO3/HfO2 design. Adv Funct Mater. 2021;31(48):2107131.
[44]
Zucker RS, Regehr WG. Short-term synaptic plasticity. Annu Rev Physiol. 2002;64(1):355-405.
[45]
Hussain T, Abbas H, Youn C, et al. Cellulose nanocrystal based bio-memristor as a green artificial synaptic device for neuromorphic computing applications. Adv Mater Technol. 2022;7(2):2100744.
[46]
Atluri PP, Regehr WG. Determinants of the time course of facilitation at the granule cell to purkinje cell synapse. J Neurosci. 1996;16(18):5661-5671.
[47]
Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol. 1994;4(3):389-399.
[48]
Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci-switz. 2013;7:2.
[49]
Panwar N, Rajendran B, Ganguly U. Arbitrary spike time dependent plasticity (STDP) in memristor by analog waveform engineering. IEEE Electron Device Lett. 2017;38(6):740-743.
[50]
Gaiarsa JL, Caillard O, Ben-Ari Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 2002;25(11):564-570.
[51]
Rubin DC, Wenzel AE. One hundred years of forgetting: a quantitative description of retention. Psychol Rev. 1996;103(4):734-760.
[52]
Mahendran A, Vedaldi A. Visualizing deep convolutional neural networks using natural pre-images. Int J Comput Vis. 2016;120(3):233-255.
[53]
Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET). IEEE; 2017:1-6.
[54]
Schmidhuber J. Deep learning in neural networks: an overview. Neural Net. 2015;61:85-117.
[55]
Zhan H, Lyu S, Lu Y. Handwritten digit string recognition using convolutional neural network. In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE; 2018:3729-3734.
[56]
Giusti A, Ciresan DC, Masci J, Gambardella LM, Schmidhuber J. Fast image scanning with deep max-pooling convolutional neural networks. In: 2013 IEEE International Conference on Image Processing. IEEE; 2013:4034-4038.

RIGHTS & PERMISSIONS

2023 2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/