Intelligent ion gels: Design, performance, and applications

Naiwei Gao, Caofeng Pan

PDF
SmartMat ›› 2024, Vol. 5 ›› Issue (1) : e1215. DOI: 10.1002/smm2.1215
REVIEW

Intelligent ion gels: Design, performance, and applications

Author information +
History +

Abstract

Intelligent ion gels, which possess highly tunable mechanical, electrical, and stimulus-responsive properties, have emerged as powerful candidates in the field of artificial intelligence, telemedicine, and health monitoring. To enrich the functionality of ion gels, it is critical to explore the link between the structure and function of ion gels. In this review, we provide an overview of the synthesis path and functional derivatives of ion gels. The conformational relationships of ion gels have been discussed, such as the effect of structure on electrical conductivity as well as sensing properties. From the perspective of stimulus response, the role of ion gels in areas such as bionic haptics, neural devices, artificial muscles, and intelligent displays has also been explored. It is possible that smart ion gels will open up a new horizon in the upcoming smart era, especially after the current challenges are resolved.

Keywords

chemical structure / intelligent electronics / ion gels / stimulus-responsive

Cite this article

Download citation ▾
Naiwei Gao, Caofeng Pan. Intelligent ion gels: Design, performance, and applications. SmartMat, 2024, 5(1): e1215 https://doi.org/10.1002/smm2.1215

References

[1]
Bernèche S, Roux B. Energetics of ion conduction through the K+ channel. Nature. 2001;414:73-77.
[2]
Dyre JC, Maass P, Roling B, Sidebottom DL. Fundamental questions relating to ion conduction in disordered solids. Rep Prog Phys. 2009;72:046501.
[3]
Sata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 2000;408:946-949.
[4]
Liu J, Zhang Z, Qiao S, Fu G, Wang S, Pan C. Lateral bipolar photoresistance effect in the CIGS heterojunction and its application in position sensitive detector and memory device. Sci Bull. 2020;65:477-485.
[5]
Ren J, Zhang W, Wang Y, et al. A graphene rheostat for highly durable and stretchable strain sensor. InfoMat. 2019;1:396-406.
[6]
Zhang Q, Zuo S, Chen P, Pan C. Piezotronics in two-dimensional materials. InfoMat. 2021;3:987-1007.
[7]
Delisle BP, Anson BD, Rajamani S, January CT. Biology of cardiac arrhythmias: ion channel protein trafficking. Circ Res. 2004;94:1418-1428.
[8]
Peng D, Liu X, Pan C. Epitaxial lift-off for controllable single-crystalline perovskites. Sci Bull. 2021;66:6-8.
[9]
Wang C, Ma R, Peng D, et al. Mechanoluminescent hybrids from a natural resource for energy-related applications. InfoMat. 2021;3:1272-1284.
[10]
Han X, Xu Z, Wu W, Liu X, Yan P, Pan C. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 2020;1:2000029.
[11]
Li J, Yuan Z, Han X, et al. Biologically inspired stretchable, multifunctional, and 3D electronic skin by strain visualization and triboelectric pressure sensing. Small Sci. 2022;2:2100083.
[12]
Liu X, Yang X, Gao G, et al. Enhancing photoresponsivity of self-aligned MoS2 field-effect transistors by piezo-phototronic effect from GaN nanowires. ACS Nano. 2016;10:7451-7457.
[13]
Zhou R, Hu G, Yu R, Pan C, Wang ZL. Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy. 2015;12:588-596.
[14]
Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science. 2010;327:1603-1607.
[15]
Chen M, Pan C, Zhang T, Li X, Liang R, Wang ZL. Tuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effects. ACS Nano. 2016;10:6074-6079.
[16]
Zhang F, Liu X, Pan C, Zhu J. Nano-porous anodic aluminium oxide membranes with 6–19 nm pore diameters formed by a low-potential anodizing process. Nanotechnology. 2007;18:345302.
[17]
Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater. 2013;25:5997-6038.
[18]
Wang C, Pan C, Wang Z. Electronic skin for closed-loop systems. ACS Nano. 2019;13:12287-12293.
[19]
Sun JY, Keplinger C, Whitesides GM, Suo Z. Ionic skin. Adv Mater. 2014;26:7608-7614.
[20]
Leger J, Berggren M, Carter S. Iontronics: Ionic Carriers in Organic Electronic Materials and Devices. CRC Press; 2016.
[21]
Lin P, Pan C, Wang ZL. Two-dimensional nanomaterials for novel piezotronics and piezophototronics. Materials Today Nano. 2018;4:17-31.
[22]
Ahmad M, Rafi-Ud-Din C, Pan C, Zhu J. Investigation of hydrogen storage capabilities of ZnO-based nanostructures. J Phys Chem C. 2010;114:2560-2565.
[23]
Wen X, Wu W, Pan C, Hu Y, Yang Q, Wang LZ. Development and progress in piezotronics. Nano Energy. 2015;14:276-295.
[24]
Li F, Xia Z, Pan C, et al. High Br content CsPb(ClyBr1–y)3 perovskite nanocrystals with strong Mn2+ emission through diverse cation/anion exchange engineering. ACS Appl Mater Interfaces. 2018;10:11739-11746.
[25]
Sun J, Wang Y, Guo S, et al. Lateral 2D WSe2 p–n homojunction formed by efficient charge-carrier-type modulation for high-performance optoelectronics. Adv Mater. 2020;32:1906499.
[26]
Dong L, Niu S, Pan C, Yu R, Zhang Y, Wang ZL. Piezo-phototronic effect of CdSe nanowires. Adv Mater. 2012;24:5470-5475.
[27]
Zhou X, Zhao F, Guo Y, Zhang Y, Yu G. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ Sci. 2018;11:1985-1992.
[28]
Lee KH, Kang MS, Zhang S, Gu Y, Lodge TP, Frisbie CD. “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv Mater. 2012;24:4457-4462.
[29]
Xu L, Huang Z, Deng Z, et al. A transparent, highly stretchable, solvent-resistant, recyclable multifunctional ionogel with underwater self-healing and adhesion for reliable strain sensors. Adv Mater. 2021;33:2105306.
[30]
Gao N, Wu X, He Y, Ma Q, Wang Y. Reconfigurable and recyclable circuits based on liquid passive components. Adv Electron Mater. 2020;6:1901388.
[31]
Xiao K, Wan C, Jiang L, Chen X, Antonietti M. Bioinspired ionic sensory systems: the successor of electronics. Adv Mater. 2020;32:2000218.
[32]
Amoli V, Kim JS, Kim SY, et al. Ionic tactile sensors for emerging human-interactive technologies: a review of recent progress. Adv Funct Mater. 2020;30:1904532.
[33]
Li R, Wang L, Kong D, Yin L. Recent progress on biodegradable materials and transient electronics. Bioactive Mater. 2018;3:322-333.
[34]
Wang H, Wang Z, Yang J, Xu C, Zhang Q, Peng Z. Ionic gels and their applications in stretchable electronics. Macromol Rapid Commun. 2018;39:1800246.
[35]
Kim YM, Moon HC. Ionoskins: nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics. Adv Funct Mater. 2020;30:1907290.
[36]
Zhang X, Cui C, Chen S, et al. Adhesive ionohydrogels based on ionic liquid/water binary solvents with freezing tolerance for flexible ionotronic devices. Chem Mater. 2022;34:1065-1077.
[37]
Shalu I, Chaurasia SK, Singh RK, Chandra S. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4]. J Phys Chem B. 2013;117:897-906.
[38]
Takeno H, Inoguchi H, Hsieh W-C. Mechanically robust ionic liquid gels composed of cellulose nanofiber and poly(vinyl alcohol). Mater Today Commun. 2022;31:103495.
[39]
Lu J, Yan F, Texter J. Advanced applications of ionic liquids in polymer science. Prog Polym Sci. 2009;34:431-448.
[40]
Klingshirn MA, Spear SK, Subramanian R, Holbrey JD, Huddleston JG, Rogers RD. Gelation of ionic liquids using a cross-linked poly(ethylene glycol) gel matrix. Chem Mater. 2004;16:3091-3097.
[41]
Rawat K, Aswal VK, Bohidar HB. DNA–gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions. J Phys Chem B. 2012;116:14805-14816.
[42]
Li T, Wang Y, Li S, Liu X, Sun J. Mechanically robust, elastic, and healable ionogels for highly sensitive ultra-durable ionic skins. Adv Mater. 2020;32:2002706.
[43]
Zhang X, Kar M, Mendes TC, Wu Y, MacFarlane DR. Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv Energy Mater. 2018;8:1702702.
[44]
Pandey GP, Rastogi AC, Westgate CR. Polyacrylonitrile and 1-ethyl-3-methylimidazolium thiocyanate based gel polymer electrolyte for solid-state supercapacitors with graphene electrodes. ECS Trans. 2013;50:145-151.
[45]
Qin H, Owyeung RE, Sonkusale SR, Panzer MJ. Highly stretchable and nonvolatile gelatin-supported deep eutectic solvent gel electrolyte-based ionic skins for strain and pressure sensing. J Mater Chem C. 2019;7:601-608.
[46]
Ankit, Tiwari N, Ho F, et al. High-k, ultrastretchable self-enclosed ionic liquid-elastomer composites for soft robotics and flexible electronics. ACS Appl Mater Interfaces. 2020;12:37561-37570.
[47]
Horowitz AI, Panzer MJ. Poly(dimethylsiloxane)-supported ionogels with a high ionic liquid loading. Angew Chem. 2014;126:9938-9941.
[48]
Jia H, He Y, Zhang X, Du W, Wang Y. Integrating ultra-thermal-sensitive fluids into elastomers for multifunctional flexible sensors. Adv Electron Mater. 2015;1:1500029.
[49]
Zhang J, Chen Z, Zhang Y, Dong S, Chen Y, Zhang S. Poly(ionic liquid)s containing alkoxy chains and bis(trifluoromethanesulfonyl)imide anions as highly adhesive materials. Adv Mater. 2021;33:2100962.
[50]
Kokubo H, Sano R, Murai K, Ishii S, Watanabe M. Ionic polymer actuators using poly(ionic liquid) electrolytes. Eur Polym J. 2018;106:266-272.
[51]
D'Angelo AJ, Panzer MJ. Design of stretchable and self-healing gel electrolytes via fully zwitterionic polymer networks in solvate ionic liquids for Li-based batteries. Chem Mater. 2019;31:2913-2922.
[52]
Ren Y, Guo J, Liu Z, et al. Ionic liquid–based click-ionogels. Sci Adv. 2019;5:eaax0648.
[53]
Mathieu K, Jérôme C, Debuigne A. Macroporous poly(ionic liquid)/ionic liquid gels via CO2-based emulsion-templating polymerization. Polym Chem. 2018;9:428-437.
[54]
Yuan C, Guo J, Yan F. Shape memory poly(ionic liquid) gels controlled by host–guest interaction with β-cyclodextrin. Polymer. 2014;55:3431-3435.
[55]
Sinawang G, Kobayashi Y, Zheng Y, Takashima Y, Harada A, Yamaguchi H. Preparation of supramolecular ionic liquid gels based on host–guest interactions and their swelling and ionic conductive properties. Macromolecules. 2019;52:2932-2938.
[56]
Staňo R, Košovan P, Tagliabue A, Holm C. Electrostatically cross-linked reversible gels—effects of pH and ionic strength. Macromolecules. 2021;54:4769-4781.
[57]
Rizzo C, Mandoli A, Marullo S, D'Anna F. Ionic liquid gels: supramolecular reaction media for the alcoholysis of anhydrides. J Org Chem. 2019;84:6356-6365.
[58]
Rizzo C, Marullo S, Campodonico PR, et al. Self-sustaining supramolecular ionic liquid gels for dye adsorption. ACS Sustain Chem Eng. 2018;6:12453-12462.
[59]
Zhao D, Zhu Y, Cheng W, et al. A dynamic gel with reversible and tunable topological networks and performances. Matter. 2020;2:390-403.
[60]
Liao H, Liao S, Tao X, Liu C, Wang Y. Intrinsically recyclable and self-healable conductive supramolecular polymers for customizable electronic sensors. J Mater Chem C. 2018;6:12992-12999.
[61]
Gao N, He Y, Tao X, Xu X-Q, Wu X, Wang Y. Crystal-confined freestanding ionic liquids for reconfigurable and repairable electronics. Nat Commun. 2019;10:547.
[62]
Oh K, Lee JY, Lee S-S, Park M, Kim D, Kim H. Highly stretchable dielectric nanocomposites based on single-walled carbon nanotube/ionic liquid gels. Compos Sci Technol. 2013;83:40-46.
[63]
Aprile C, Giacalone F, Gruttadauria M, et al. New ionic liquid-modified silica gels as recyclable materials for L-proline- or H–Pro–Pro–Asp–NH2-catalyzed aldol reaction. Green Chem. 2007;9:1328-1334.
[64]
Huang T, Tian N, Wu Q, Yan W. Keggin-type polyoxometalate-based ionic liquid gels. Soft Matter. 2015;11:4481-4486.
[65]
Nayeri M, Aronson MT, Bernin D, Chmelka BF, Martinelli A. Surface effects on the structure and mobility of the ionic liquid C6C1ImTFSI in silica gels. Soft Matter. 2014;10:5618-5627.
[66]
Yamada S, Toshiyoshi H. Temperature sensor with a water-dissolvable ionic gel for ionic skin. ACS Appl Mater Interfaces. 2020;12:36449-36457.
[67]
Kitazawa Y, Ueki T, McIntosh LD, et al. Hierarchical sol–gel transition induced by thermosensitive self-assembly of an ABC triblock polymer in an ionic liquid. Macromolecules. 2016;49:1414-1423.
[68]
Phillips DJ, Gibson MI. Towards being genuinely smart: ‘isothermally-responsive’ polymers as versatile, programmable scaffolds for biologically-adaptable materials. Polym Chem. 2015;6:1033-1043.
[69]
Tang Z, Lyu X, Xiao A, Shen Z, Fan X. High-performance double-network ion gels with fast thermal healing capability via dynamic covalent bonds. Chem Mater. 2018;30:7752-7759.
[70]
Yuan C, Guo J, Tan M, Guo M, Qiu L, Yan F. Multistimuli responsive and electroactive supramolecular gels based on ionic liquid Gemini guest. ACS Macro Lett. 2014;3:271-275.
[71]
Cheng H, Ouyang J. Soret effect of ionic liquid gels for thermoelectric conversion. J Phys Chem Lett. 2022;13:10830-10842.
[72]
Higa M, Yamakawa T. Design and preparation of a novel temperature-responsive ionic gel. J Phys Chem B. 2004;108:16703-16707.
[73]
Tang Z, Lyu X, Luo L, Shen Z, Fan X-H. White-light-emitting AIE/Eu3+-doped ion gel with multistimuli-responsive properties. ACS Appl Mater Interfaces. 2020;12:45420-45428.
[74]
Gao N, Wu X, Ma Y, Li X, Jia J, Wang Y. A sunflower-inspired sun-tracking system directed by an ionic liquid photodetector. Adv Opt Mater. 2022;11:2201871.
[75]
He Y, Xu X-Q, Lv S, Liao H, Wang Y. Dark ionic liquid for flexible optoelectronics. Langmuir. 2018;35:1192-1198.
[76]
Ersoez B, Bauersfeld M-L, Wöllenstein J. Ionogel—based composite material for CO2 sensing deposited on a chemiresistive transducer. Proceedings. 2017;1:314.
[77]
Tanaka T, Hamanaka Y, Kato T, Uchida K. Simultaneous detection of mixed-gas components by ionic-gel sensors with multiple electrodes. ACS Sens. 2022;7:716-721.
[78]
Yung KY, Schadock-Hewitt AJ, Hunter NP, Bright FV, Baker GA. ‘Liquid litmus’: chemosensory pH-responsive photonic ionic liquids. Chem Commun. 2011;47:4775-4777.
[79]
Guo J, Qiu L, Deng Z, Yan F. Plastic reusable pH indicator strips: preparation via anion-exchange of poly(ionic liquids) with anionic dyes. Polym Chem. 2013;4:1309-1312.
[80]
Liu M, Pi J, Wang X, et al. A sol-gel derived pH-responsive bovine serum albumin molecularly imprinted poly(ionic liquids) on the surface of multiwall carbon nanotubes. Anal Chim Acta. 2016;932:29-40.
[81]
Santiago S, Giménez-Gómez P, Muñoz-Berbel X, Hernando J, Guirado G. Solid multiresponsive materials based on nitrospiropyran-doped ionogels. ACS Appl Mater Interfaces. 2021;13:26461-26471.
[82]
Ping J, Wang Y, Wu J, Ying Y, Ji F. A novel pH sensing membrane based on an ionic liquid-polymer composite. Microchim Acta. 2012;176:229-234.
[83]
Liu Y, Bao R, Tao J, Li J, Dong M, Pan C. Recent progress in tactile sensors and their applications in intelligent systems. Sci Bull. 2020;65:70-88.
[84]
Chen Z, Gao N, Chu Y, He Y, Wang Y. Ionic network based on dynamic ionic liquids for electronic tattoo application. ACS Appl Mater Interfaces. 2021;13:33557-33565.
[85]
Zhao D, Martinelli A, Willfahrt A, et al. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat Commun. 2019;10:1093.
[86]
Isano Y, Fujita H, Murakami K, et al. Transparent and breathable ion gel-based sensors toward multimodal sensing ability. Adv Mater Technol. 2022;7:2200209.
[87]
Niu H, Li H, Gao S, et al. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater. 2022;34:2202622.
[88]
Qiu Z, Wan Y, Zhou W, et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf. Adv Funct Mater. 2018;28:1802343.
[89]
Li P, Xie L, Su M, et al. Skin-inspired large area iontronic pressure sensor with ultra-broad range and high sensitivity. Nano Energy. 2022;101:107571.
[90]
Khan U, Kim TH, Ryu H, Seung W, Kim SW. Graphene tribotronics for electronic skin and touch screen applications. Adv Mater. 2017;29:1603544.
[91]
Cho KG, An S, Cho DH, et al. Block copolymer-based supramolecular ionogels for accurate on-skin motion monitoring. Adv Funct Mater. 2021;31:2102386.
[92]
Fu X, Zhuang Z, Zhao Y, et al. Stretchable and self-powered temperature–pressure dual sensing ionic skins based on thermogalvanic hydrogels. ACS Appl Mater Interfaces. 2022;14:44792-44798.
[93]
Lu Y, Qu X, Wang S, et al. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022;15:4421-4430.
[94]
You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science. 2020;370:961-965.
[95]
Pu J, Zhang Y, Wada Y, et al. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl Phys Lett. 2013;103:023505.
[96]
Oh G, Kim J-S, Jeon JH, et al. Graphene/pentacene barristor with ion-gel gate dielectric: flexible ambipolar transistor with high mobility and on/off ratio. ACS Nano. 2015;9:7515-7522.
[97]
Ren Y, Yuan H, Wu X, et al. Direct imaging of nanoscale conductance evolution in ion-gel-gated oxide transistors. Nano Lett. 2015;15:4730-4736.
[98]
Hu H, Zhai F, Hu D, et al. Broadly tunable graphene plasmons using an ion-gel top gate with low control voltage. Nanoscale. 2015;7:19493-19500.
[99]
Choi Y, Kang J, Secor EB, et al. Capacitively coupled hybrid ion gel and carbon nanotube thin-film transistors for low voltage flexible logic circuits. Adv Funct Mater. 2018;28:1802610.
[100]
Kong L, Sun J, Qian C, Wang C, Yang J, Gao Y. Spatially-correlated neuron transistors with ion-gel gating for brain-inspired applications. Org Electron. 2017;44:25-31.
[101]
Lee J, Aida T. “Bucky gels” for tailoring electroactive materials and devices: the composites of carbon materials with ionic liquids. Chem Commun. 2011;47:6757-6762.
[102]
Liu Z, Li B, Liu YD, Liang Y. Integrated bending actuation and the self-sensing capability of poly(vinyl chloride) gels with ionic liquids. Adv Funct Mater. 2022;32:2204259.
[103]
Quy VHV, Kim K-W, Yeo J, et al. Tunable electrochromic behavior of biphenyl poly (viologen)-based ion gels in all-in-one devices. Org Electron. 2022;100:106395.
[104]
Oh H, Seo DG, Yun TY, Lee SB, Moon HC. Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability. Org Electron. 2017;51:490-495.
[105]
Moon HC, Lodge TP, Frisbie CD. Electrochemiluminescent displays based on ion gels: correlation between device performance and choice of electrolyte. J Mater Chem C. 2016;4:8448-8453.
[106]
Kushida S, Kebrich S, Smarsly E, Strunk K-P, Melzer C, Bunz UHF. Light-emitting electrochemical cells based on conjugated ion gels. ACS Appl Mater Interfaces. 2020;12:38483-38489.
[107]
Kim JW, Myoung JM. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning. Adv Funct Mater. 2019;29:1808911.

RIGHTS & PERMISSIONS

2023 2023 The Authors. SmartMat published by Tianjin University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/