Long-term warming alters soil carbon composition without reducing total carbon in an alpine meadow

Ying Chen , Mengguang Han , Qi Shen , Xinquan Zhao , Huiying Liu , Biao Zhu

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (3) : 260402

PDF (1915KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (3) : 260402 DOI: 10.1007/s42832-026-0402-y
RESEARCH ARTICLE

Long-term warming alters soil carbon composition without reducing total carbon in an alpine meadow

Author information +
History +
PDF (1915KB)

Abstract

The soils of alpine meadows on the Tibetan Plateau act as significant carbon reservoirs and are particularly vulnerable to warming. Nevertheless, the long-term (≥20 years) warming impact on SOC composition and deep soil dynamics in alpine meadows remains unclear. This study explored the effects of two decades of warming using open-top chambers on various aspects of alpine meadow ecosystems, including plant community composition and biomass, soil physicochemical characteristics, microbial communities, and SOC content in both bulk soil and its fractions. Prolonged warming had no impact on plant-derived C inputs, as indicated by both unchanged above- and below-ground biomass, but it reduced the light fraction carbon (LF-C) in the surface soil layer (0−10 cm) by 25%, with no notable changes observed in bulk SOC or heavy fraction carbon (HF-C) in the surface soil as well as deeper soil layers (10−50 cm). Additionally, long-term warming caused a notable rise in fungal-derived residues and an increase in aromatic carbon, while concurrently decreasing alkyl carbon in the surface soils. These findings imply that prolonged warming acce-lerates the breakdown of more readily decomposable organic matter, shifting the SOC pool towards a more chemically resistant state, even though there was no net change in bulk SOC.

Graphical abstract

Keywords

long-term warming / plant community / SOC physical fractions / microbial community / alpine meadow / Tibetan Plateau

Highlight

● 20-year OTC warming in an alpine meadow did not alter plant-derived C inputs.

● Warming tended to decrease surface light fraction C but elevated fungal residues.

● Warming increased net nitrogen mineralization rates across the 0−50 cm soil profile.

● Warming drove the SOC pool towards a more chemically resistant state.

Cite this article

Download citation ▾
Ying Chen, Mengguang Han, Qi Shen, Xinquan Zhao, Huiying Liu, Biao Zhu. Long-term warming alters soil carbon composition without reducing total carbon in an alpine meadow. Soil Ecology Letters, 2026, 8(3): 260402 DOI:10.1007/s42832-026-0402-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramoff, R., Xu, X.F., Hartman, M., O'Brien, S., Feng, W.T., Davidson, E., Finzi, A., Moorhead, D., Schimel, J., Torn, M., Mayes, M.A., 2018. The Millennial model: in search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry137, 51–71.

[2]

Ågren, G.I., Wetterstedt, J.Å.M., Billberger, M.F.K., 2012. Nutrient limitation on terrestrial plant growth-modeling the interaction between nitrogen and phosphorus. New Phytologist194, 953–960.

[3]

Averill, C., Waring, B., 2018. Nitrogen limitation of decomposition and decay: how can it occur. Global Change Biology24, 1417–1427.

[4]

Benbi, D.K., Boparai, A.K., Brar, K., 2014. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter. Soil Biology and Biochemistry70, 183–192.

[5]

Bradford, M.A., Wieder, W.R., Bonan, G.B., Fierer, N., Raymond, P.A., Crowther, T.W., 2016. Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change6, 751–758.

[6]

Bragazza, L., Parisod, J., Buttler, A., Bardgett, R.D., 2013. Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands. Nature Climate Change3, 273–277.

[7]

Cao, Y.S., Fu, S.L., Zou, X.M., Cao, H.L., Shao, Y.H., Zhou, L.X., 2010. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. European Journal of Soil Biology46, 128–135.

[8]

Chang, R.Y., Liu, S.G., Chen, L.Y., Li, N., Bing, H.J., Wang, T., Chen, X.P., Li, Y., Wang, G.X., 2021. Soil organic carbon becomes newer under warming at a permafrost site on the Tibetan Plateau. Soil Biology and Biochemistry152, 108074.

[9]

Chen, D.L., Xu, B.Q., Yao, T.D., Guo, Z.T., Cui, P., Chen, F.H., Zhang, R.H., Zhang, X.Z., Zhang, Y.L., 2015. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chinese Science Bulletin60, 3025–3035.

[10]

Chen, H., Zhao, X.R., Lin, Q.M., Li, G.T., Kong, W.D., 2019. Using a combination of PLFA and DNA-based sequencing analyses to detect shifts in the soil microbial community composition after a simulated spring precipitation in a semi-arid grassland in China. Science of the Total Environment657, 1237–1245.

[11]

Chen, L.Y., Liang, J.Y., Qin, S.Q., Liu, L., Fang, K., Xu, Y.P., Ding, J.Z., Li, F., Luo, Y.Q., Yang, Y.H., 2016. Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications7, 13046.

[12]

Chen, Y., Feng, J.G., Yuan, X., Zhu, B., 2020. Effects of warming on carbon and nitrogen cycling in alpine grassland ecosystems on the Tibetan Plateau: a meta-analysis. Geoderma370, 114363.

[13]

Chen, Y., Han, M.G., Yuan, X., Cao, G.M., Zhu, B., 2021a. Seasonal changes in soil properties, microbial biomass and enzyme activities across the soil profile in two alpine ecosystems. Soil Ecology Letters3, 383–394.

[14]

Chen, Y., Han, M.G., Yuan, X., Hou, Y.H., Qin, W.K., Zhou, H.K., Zhao, X.Q., Klein, J.A., Zhu, B., 2022. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai–Tibetan Plateau. Global Change Biology28, 1618–1629.

[15]

Chen, Y., Han, M.G., Yuan, X., Zhou, H.K., Zhao, X.Q., Schimel, J.P., Zhu, B., 2023. Long-term warming reduces surface soil organic carbon by reducing mineral-associated carbon rather than “free” particulate carbon. Soil Biology and Biochemistry177, 108905.

[16]

Chen, Y., Liu, X., Hou, Y.H., Zhou, S.R., Zhu, B., 2021b. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil458, 93–103.

[17]

Chen, Y., Qin, W.K., Zhang, Q.F., Wang, X.D., Feng, J.G., Han, M.G., Hou, Y.H., Zhao, H.Y., Zhang, Z.H., He, J.S., Torn, M.S., Zhu, B., 2024. Whole-soil warming leads to substantial soil carbon emission in an alpine grassland. Nature Communications15, 4489.

[18]

Cheng, L., Zhang, N.F., Yuan, M.T., Xiao, J., Qin, Y.J., Deng, Y., Tu, Q.C., Xue, K., Van Nostrand, J.D., Wu, L.Y., He, Z.L., Zhou, X.H., Leigh, M.B., Konstantinidis, K.T., Schuur, E.A.G., Luo, Y.Q., Tiedje, J.M., Zhou, J.Z., 2017. Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal11, 1825–1835.

[19]

Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., Machmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T., Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kröel-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M., Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L., Schmidt, I.K., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M., Bradford, M.A., 2016. Quantifying global soil carbon losses in response to warming. Nature540, 104–108.

[20]

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature440, 165–173.

[21]

De Valpine, P., Harte, J., 2001. Plant responses to experimental warming in a montane meadow. Ecology82, 637–648.

[22]

Deslippe, J.R., Hartmann, M., Simard, S.W., Mohn, W.W., 2012. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiology Ecology82, 303–315.

[23]

Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Bjorkman, A.D., Callaghan, T.V., Collier, L.S., Cooper, E.J., Cornelissen, J.H.C., Day, T.A., Fosaa, A.M., Gould, W.A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D.S., Hofgaard, A., Jarrad, F., Jónsdóttir, I.S., Keuper, F., Klanderud, K., Klein, J.A., Koh, S., Kudo, G., Lang, S.I., Loewen, V., May, J.L., Mercado, J., Michelsen, A., Molau, U., Myers-Smith, I.H., Oberbauer, S.F., Pieper, S., Post, E., Rixen, C., Robinson, C.H., Schmidt, N.M., Shaver, G.R., Stenström, A., Tolvanen, A., Totland, Ø., Troxler, T., Wahren, C.H., Webber, P.J., Welker, J.M., Wookey, P.A., 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters15, 164–175.

[24]

Frey, S.D., Drijber, R., Smith, H., Melillo, J., 2008. Microbial biomass, functional capacity, and community structure after 12 years of soil warming. Soil Biology and Biochemistry40, 2904–2907.

[25]

Frostegård, Å., Tunlid, A., Bååth, E., 2011. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry43, 1621–1625.

[26]

Hassink, J., Whitmore, A.P., Kubát, J., 1997. Size and density fractionation of soil organic matter and the physical capacity of soils to protect organic matter. European Journal of Agronomy7, 189–199.

[27]

IPCC, 2013. Climate Change 2013: the Physical Science Basis. Cambridge: Cambridge University Press1535.

[28]

Jia, J., Cao, Z.J., Liu, C.Z., Zhang, Z.H., Lin, L., Wang, Y.Y., Haghipour, N., Wacker, L., Bao, H.Y., Dittmar, T., Simpson, M.J., Yang, H., Crowther, T.W., Eglinton, T.I., He, J.S., Feng, X.J., 2019. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Global Change Biology25, 4383–4393.

[29]

Jing, X., Chen, X., Tang, M., Ding, Z.J., Jiang, L., Li, P., Ma, S.H., Tian, D., Xu, L.C., Zhu, J.X., Ji, C.J., Shen, H.H., Zheng, C.Y., Fang, J.Y., Zhu, B., 2017. Nitrogen deposition has minor effect on soil extracellular enzyme activities in six Chinese forests. Science of the Total Environment607, 806–815.

[30]

Johnston, E.R., Hatt, J.K., He, Z.L., Wu, L.Y., Guo, X., Luo, Y.Q., Schuur, E.A.G., Tiedje, J.M., Zhou, J.Z., Konstantinidis, K.T., 2019. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proceedings of the National Academy of Sciences of the United States of America116, 15096–15105.

[31]

Kiba, T., Krapp, A., 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology57, 707–714.

[32]

Klein, J.A., Harte, J., Zhao, X.Q., 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters7, 1170–1179.

[33]

Li, F., Peng, Y.F., Chen, L.Y., Yang, G.B., Abbott, B.W., Zhang, D.Y., Fang, K., Wang, G.Q., Wang, J., Yu, J.C., Liu, L., Zhang, Q.W., Chen, K.L., Mohammat, A., Yang, Y.H., 2020. Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. Functional Ecology34, 911–922.

[34]

Li, Y.Z., Wang, X., Zhang, Y.R., Zhao, Y.F., Zhu, H.W., Duan, W.H., Li, L.J., Qian, L., Niu, Z.Y., 2025. Depth-dependent drivers of soil organic carbon thermal stability across Tibetan alpine grasslands. CATENA260, 109458.

[35]

Liang, C., Amelung, W., Lehmann, J., Kästner, M., 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology25, 3578–3590.

[36]

Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

[37]

Lim, H., Oren, R., Näsholm, T., Strömgren, M., Lundmark, T., Grip, H., Linder, S., 2019. Boreal forest biomass accumulation is not increased by two decades of soil warming. Nature Climate Change9, 49–52.

[38]

Lin, H.H., Zhao, H.J., Duan, X.W., Barcelo, D., Dong, Y.F., Zhong, R.H., Rong, L., Huang, C.J., Zheng, H., 2026. Accelerated warming and soil erosion drive topsoil carbon decline across the Tibetan Plateau: a 40-year resampling analysis. The Innovation Geoscience4, 100165.

[39]

Liu, H.Y., Mi, Z.R., Lin, L., Wang, Y.H., Zhang, Z.H., Zhang, F.W., Wang, H., Liu, L.L., Zhu, B., Cao, G.M., Zhao, X.Q., Sanders, N.J., Classen, A.T., Reich, P.B., He, J.S., 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America115, 4051–4056.

[40]

Luo, Y.Q., Melillo, J., Niu, S.L., Beier, C., Clark, J.S., Classen, A.T., Davidson, E., Dukes, J.S., Evans, R.D., Field, C.B., Czimczik, C.I., Keller, M., Kimball, B.A., Kueppers, L.M., Norby, R.J., Pelini, S.L., Pendall, E., Rastetter, E., Six, J., Smith, M., Tjoelker, M.G., Torn, M.S., 2011. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change. Global Change Biology17, 843–854.

[41]

Metcalfe, D.B., 2017. Microbial change in warming soils. Science358, 41–42.

[42]

Nagelmüller, S., Hiltbrunner, E., Körner, C., 2017. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB PLANTS9, plx054.

[43]

Nottingham, A.T., Meir, P., Velasquez, E., Turner, B.L., 2020. Soil carbon loss by experimental warming in a tropical forest. Nature584, 234–237.

[44]

Pec, G.J., van Diepen, L.T.A., Knorr, M., Grandy, A.S., Melillo, J.M., DeAngelis, K.M., Blanchard, J.L., Frey, S.D., 2021. Fungal community response to long-term soil warming with potential implications for soil carbon dynamics. Ecosphere12, e03460.

[45]

Peng, F., Xue, X., You, Q.G., Xu, M.H., Chen, X., Guo, J., Wang, T., 2016. Intensified plant N and C pool with more available nitrogen under experimental warming in an alpine meadow ecosystem. Ecology and Evolution6, 8546–8555.

[46]

Piao, S.L., Zhang, X.Z., Wang, T., Liang, E.Y., Wang, S.P., Zhu, J.T., Niu, B., 2019. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chinese Science Bulletin64, 2842–2855.

[47]

Pries, C.E.H., Castanha, C., Porras, R.C., Torn, M.S., 2017. The whole-soil carbon flux in response to warming. Science355, 1420–1423.

[48]

Pries, C.E.H., Ryals, R., Zhu, B., Min, K., Cooper, A., Goldsmith, S., Pett-Ridge, J., Torn, M., Berhe, A.A., 2023. The deep soil organic carbon response to global change. Annual Review of Ecology, Evolution, and Systematics54, 375–401.

[49]

Schmidt, M.W.I., Knicker, H., Hatcher, P.G., Kogel-Knabner, I., 1997. Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. European Journal of Soil Science48, 319–328.

[50]

Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E., 2011. Persistence of soil organic matter as an ecosystem property. Nature478, 49–56.

[51]

Schnecker, J., Borken, W., Schindlbacher, A., Wanek, W., 2016. Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming. Soil Biology and Biochemistry103, 300–307.

[52]

Shao, P.S., Liang, C., Lynch, L., Xie, H.T., Bao, X.L., 2019. Reforestation accelerates soil organic carbon accumulation: evidence from microbial biomarkers. Soil Biology and Biochemistry131, 182–190.

[53]

Sokol, N.W., Kuebbing, S.E., Karlsen-Ayala, E., Bradford, M.A., 2019. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist221, 233–246.

[54]

Su, H.X., Feng, J.C., Axmacher, J.C., Sang, W.G., 2015. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China. Scientific Reports5, 9115.

[55]

Sun, Y.X., Wu, J.P., Shao, Y.H., Zhou, L.X., Mai, B.X., Lin, Y.B., Fu, S.L., 2011. Responses of soil microbial communities to prescribed burning in two paired vegetation sites in southern China. Ecological Research26, 669–677.

[56]

Tunlid, A., Hoitink, H.A.J., Low, C., White, D.C., 1989. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Applied and Environmental Microbiology55, 1368–1374.

[57]

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

[58]

Wagai, R., Kishimoto-Mo, A.W., Yonemura, S., Shirato, Y., Hiradate, S., Yagasaki, Y., 2013. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biology19, 1114–1125.

[59]

Wang, C.T., Zhao, X.Q., Zi, H.B., Hu, L., Ade, L., Wang, G.X., Lerdau, M., 2017. The effect of simulated warming on root dynamics and soil microbial community in an alpine meadow of the Qinghai-Tibet Plateau. Applied Soil Ecology116, 30–41.

[60]

Wang, H., Zhou, H.M., He, J.S., Lu, C.Y., Huang, Y.X., Zhang, J.J., Liu, H.Y., Thakur, M.P., 2025. Divergent phenological responses of soil microorganisms and plants to climate warming. Nature Geoscience18, 753–760.

[61]

Wang, S.P., Duan, J.C., Xu, G.P., Wang, Y.F., Zhang, Z.H., Rui, Y.C., Luo, C.Y., Xu, B., Zhu, X.X., Chang, X.F., Cui, X.Y., Niu, H.S., Zhao, X.Q., Wang, W.Y., 2012. Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology93, 2365–2376.

[62]

Watzinger, A., 2015. Microbial phospholipid biomarkers and stable isotope methods help reveal soil functions. Soil Biology and Biochemistry86, 98–107.

[63]

Wu, J.P., Liu, Z.F., Sun, Y.X., Zhou, L.X., Lin, Y.B., Fu, S.L., 2013. Introduced Eucalyptus Urophylla plantations change the composition of the soil microbial community in subtropical China. Land Degradation & Development24, 400–406.

[64]

Xu, X., Sherry, R.A., Niu, S.L., Zhou, J.Z., Luo, Y.Q., 2012. Long-term experimental warming decreased labile soil organic carbon in a tallgrass prairie. Plant and Soil361, 307–315.

[65]

Yang, Y.H., Fang, J.Y., Tang, Y.H., Ji, C.J., Zheng, C.Y., He, J.S., Zhu, B., 2008. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology14, 1592–1599.

[66]

Yuan, X., Chen, Y., Qin, W.K., Xu, T.L., Mao, Y.H., Wang, Q., Chen, K.L., Zhu, B., 2021. Plant and microbial regulations of soil carbon dynamics under warming in two alpine swamp meadow ecosystems on the Tibetan Plateau. Science of the Total Environment790, 148072.

[67]

Zong, N., Geng, S.B., Duan, C., Shi, P.L., Chai, X., Zhang, X.Z., 2018. The effects of warming and nitrogen addition on ecosystem respiration in a Tibetan alpine meadow: the significance of winter warming. Ecology and Evolution8, 10113–10125.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1915KB)

Supplementary files

Supplementary materials

25

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/