Microbial turnover mediates nonlinear response of soil N2O and CH4 fluxes to diversity loss

Yuxin Yang , Lingrui Qu , Jing Yu , Xiaoyi Huang , Yue Liu , Fangying Qu , Jian Wang , Tingting Yang , Edith Bai , Chao Wang

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260398

PDF (2926KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260398 DOI: 10.1007/s42832-026-0398-3
RESEARCH ARTICLE

Microbial turnover mediates nonlinear response of soil N2O and CH4 fluxes to diversity loss

Author information +
History +
PDF (2926KB)

Abstract

Loss of soil microbial diversity is accelerating worldwide, yet how this loss alters soil greenhouse gas fluxes remains poorly understood. Here, we provide experimental evidence that diversity loss affects nitrous oxide (N2O) and methane (CH4) fluxes through nonlinear, trait-mediated pathways. Using soil microcosm dilution gradients established across three land-use types (forest, grassland, and cropland), we linked shifts in community diversity with key physiological traits: carbon use efficiency (CUE), nitrogen use efficiency (NUE), and turnover rate. Over a 118-day incubation, soil N2O flux exhibited a pronounced hump-shaped response: moderate diversity loss stimulated emissions, whereas severe loss suppressed them through the breakdown of functional redundancy. Strikingly, even moderate diversity loss reversed soils from CH4 sinks to net sources. Microbial turnover consistently emerged as the core driver of both N2O and CH4 fluxes, with additional contributions from the turnover interactions with CUE and NUE. Variance partitioning further showed that microbial physiological traits explained 62% of CH4 flux variation and 59% of N2O flux variation. Together, these findings highlight the pivotal role of microbial traits in mediating soil biodiversity-function relationships. They also emphasize the importance of incorporating trait-based processes into Earth system models to improve predictions of soil climate feedbacks.

Graphical abstract

Keywords

microbial diversity / microbial carbon use efficiency / nitrogen use efficiency / global change / greenhouse gases

Highlight

● Moderate diversity loss reverses soils from a net CH4 sink to a source.

● Moderate microbial diversity loss increases soil N2O emissions.

● Microbial turnover rate is the key physiological trait governing N2O and CH4 fluxes.

● Microbial traits are stronger predictors of GHG fluxes than microbial diversity.

Cite this article

Download citation ▾
Yuxin Yang, Lingrui Qu, Jing Yu, Xiaoyi Huang, Yue Liu, Fangying Qu, Jian Wang, Tingting Yang, Edith Bai, Chao Wang. Microbial turnover mediates nonlinear response of soil N2O and CH4 fluxes to diversity loss. Soil Ecology Letters, 2026, 8(2): 260398 DOI:10.1007/s42832-026-0398-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen, R.J., Zhao, X.Y., Randles, C.A., Kramer, R.J., Samset, B.H., Smith, C.J., 2023. Surface warming and wetting due to methane’s long-wave radiative effects muted by short-wave absorption. Nature Geoscience16, 314–320.

[2]

Allison, S.D., Martiny, J.B.H., 2008. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences of the United States of America105, 11512–11519.

[3]

Angst, G., Potapov, A., Joly, F.X., Angst, Š., Frouz, J., Ganault, P., Eisenhauer, N., 2024. Conceptualizing soil fauna effects on labile and stabilized soil organic matter. Nature Communications15, 5005.

[4]

Anthony, T.L., Silver, W.L., 2021. Hot moments drive extreme nitrous oxide and methane emissions from agricultural peatlands. Global Change Biology27, 5141–5153.

[5]

Bahram, M., Espenberg, M., Pärn, J., Lehtovirta-Morley, L., Anslan, S., Kasak, K., Kõljalg, U., Liira, J., Maddison, M., Moora, M., Niinemets, Ü., Öpik, M., Pärtel, M., Soosaar, K., Zobel, M., Hildebrand, F., Tedersoo, L., Mander, Ü., 2022. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications13, 1430.

[6]

Berns, A.E., Philipp, H., Narres, H.D., Burauel, P., Vereecken, H., Tappe, W., 2008. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science59, 540–550.

[7]

Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry17, 837–842.

[8]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[9]

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.

[10]

Chen, D.Y., Xia, S.W., Li, S.C., Ding, X.Y., Zhang, S.T., Chen, H., Wu, J.P., 2024. Moderate size diversity of tree roots has largest effect on the carbon loss in tropical soils. Functional Ecology38, 363–373.

[11]

Chen, Q.L., Ding, J., Li, C.Y., Yan, Z.Z., He, J.Z., Hu, H.W., 2020. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Science of the Total Environment734, 139479.

[12]

Conrad, R., 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports1, 285–292.

[13]

Dang, C., Morrissey, E.M., 2024. The size and diversity of microbes determine carbon use efficiency in soil. Environmental Microbiology26, e16633.

[14]

Dedysh, S.N., Beletsky, A.V., Ivanova, A.A., Kulichevskaya, I.S., Suzina, N.E., Philippov, D.A., Rakitin, A.L., Mardanov, A.V., Ravin, N.V., 2021. Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group in peatlands and genome analysis of the first cultivated representative. Environmental Microbiology23, 1510–1526.

[15]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[16]

Deng, L.T., Liu, W.Y., Chang, N., Sun, L., Zhang, J.Z., Bello, A., Egbeagu, U.U., Shi, S., Sun, Y., Xu, X.H., 2023. Disentangling the coupling relationships between functional denitrifiers and nitrogen transformation during cattle-manure and biochar composting: a novel perspective. Bioresource Technology367, 128235.

[17]

Domeignoz-Horta, L.A., Pold, G., Liu, X.J.A., Frey, S.D., Melillo, J.M., DeAngelis, K.M., 2020. Microbial diversity drives carbon use efficiency in a model soil. Nature Communications11, 3684.

[18]

Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S.B., Ly, B., Saw, J.H., Zhou, Z.M., Ren, Y., Wang, J.M., Mountain, B.W., Crowe, M.A., Weatherby, T.M., Bodelier, P.L.E., Liesack, W., Feng, L., Wang, L., Alam, M., 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature450, 879–882.

[19]

Estaki, M., Jiang, L.J., Bokulich, N.A., McDonald, D., González, A., Kosciolek, T., Martino, C., Zhu, Q.Y., Birmingham, A., Vázquez-Baeza, Y., Dillon, M.R., Bolyen, E., Caporaso, J.G., Knight, R., 2020. QIIME 2 Enables comprehensive end-to-end analysis of diverse microbiome data and comparative studies with publicly available data. Current Protocols in Bioinformatics70, e100.

[20]

Grant, L., Vanderkelen, I., Gudmundsson, L., Fischer, E., Seneviratne, S.I., Thiery, W., 2025. Global emergence of unprecedented lifetime exposure to climate extremes. Nature641, 374–379.

[21]

Hautier, Y., Isbell, F., Borer, E.T., Seabloom, E.W., Harpole, W.S., Lind, E.M., MacDougall, A.S., Stevens, C.J., Adler, P.B., Alberti, J., Bakker, J.D., Brudvig, L.A., Buckley, Y.M., Cadotte, M., Caldeira, M.C., Chaneton, E.J., Chu, C.J., Daleo, P., Dickman, C.R., Dwyer, J.M., Eskelinen, A., Fay, P.A., Firn, J., Hagenah, N., Hillebrand, H., Iribarne, O., Kirkman, K.P., Knops, J.M.H., La Pierre, K.J., McCulley, R.L., Morgan, J.W., Pärtel, M., Pascual, J., Price, J.N., Prober, S.M., Risch, A.C., Sankaran, M., Schuetz, M., Standish, R.J., Virtanen, R., Wardle, G.M., Yahdjian, L., Hector, A., 2018. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology & Evolution2, 50–56.

[22]

Ho, A., Lüke, C., Frenzel, P., 2010. Recovery of methanotrophs from disturbance: population dynamics, evenness and functioning. The ISME Journal5, 750–758.

[23]

Hu, W.G., Ran, J.Z., Dong, L.W., Du, Q.J., Ji, M.F., Yao, S.R., Sun, Y., Gong, C.M., Hou, Q.Q., Gong, H.Y., Chen, R.F., Lu, J.L., Xie, S.B., Wang, Z.Q., Huang, H., Li, X.W., Xiong, J.L., Xia, R., Wei, M.H., Zhao, D.M., Zhang, Y.H., Li, J.H., Yang, H.X., Wang, X.T., Deng, Y., Sun, Y., Li, H.L., Zhang, L., Chu, Q.P., Li, X.W., Aqeel, M., Manan, A., Akram, M.A., Liu, X.H., Li, R., Li, F., Hou, C., Liu, J.Q., He, J.S., An, L.Z., Bardgett, R.D., Schmid, B., Deng, J.M., 2021. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications12, 5350.

[24]

Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology16, 263–276.

[25]

Le Provost, G., Thiele, J., Westphal, C., Penone, C., Allan, E., Neyret, M., van der Plas, F., Ayasse, M., Bardgett, R.D., Birkhofer, K., Boch, S., Bonkowski, M., Buscot, F., Feldhaar, H., Gaulton, R., Goldmann, K., Gossner, M.M., Klaus, V.H., Kleinebecker, T., Krauss, J., Renner, S., Scherreiks, P., Sikorski, J., Baulechner, D., Blüthgen, N., Bolliger, R., Börschig, C., Busch, V., Chisté, M., Fiore-Donno, A.M., Fischer, M., Arndt, H., Hoelzel, N., John, K., Jung, K., Lange, M., Marzini, C., Overmann, J., Paŝalić, E., Perović, D.J., Prati, D., Schäfer, D., Schöning, I., Schrumpf, M., Sonnemann, I., Steffan-Dewenter, I., Tschapka, M., Türke, M., Vogt, J., Wehner, K., Weiner, C., Weisser, W., Wells, K., Werner, M., Wolters, V., Wubet, T., Wurst, S., Zaitsev, A.S., Manning, P., 2021. Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications12, 3918.

[26]

Liang, G.P., Stark, J., Waring, B.G., 2023. Mineral reactivity determines root effects on soil organic carbon. Nature Communications14, 4962.

[27]

Malik, A.A., Martiny, J.B.H., Brodie, E.L., Martiny, A.C., Treseder, K.K., Allison, S.D., 2019. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal14, 1–9.

[28]

Manea, A., Leishman, M.R., Geraghty, D.M., Perera, S.D., O’Hare, J.A., Gil-Fernández, M., Tabassum, S., Le Roux, J.J., 2024. The effects of sterilisation on abiotic soil properties and the challenge this poses to untangling the influence of abiotic and biotic soil variables on plant growth. Journal of Soil Science and Plant Nutrition24, 4929–4934.

[29]

Mao, Z.D., Zhao, Z.F., Da, J., Tao, Y., Li, H.B., Zhao, B.Y., Xing, P., Wu, Q.L., 2023. The selection of copiotrophs may complicate biodiversity-ecosystem functioning relationships in microbial dilution-to-extinction experiments. Environmental Microbiome18, 19.

[30]

Ning, D.L., Yuan, M.T., Wu, L.W., Zhang, Y., Guo, X., Zhou, X.S., Yang, Y.F., Arkin, A.P., Firestone, M.K., Zhou, J.Z., 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications11, 4717.

[31]

Nixon, S.L., Daly, R.A., Borton, M.A., Solden, L.M., Welch, S.A., Cole, D.R., Mouser, P.J., Wilkins, M.J., Wrighton, K.C., 2019. Genome-resolved metagenomics extends the environmental distribution of the Verrucomicrobia phylum to the deep terrestrial subsurface. mSphere4, e00613–19.

[32]

Nottingham, A.T., Scott, J.J., Saltonstall, K., Broders, K., Montero-Sanchez, M., Püspök, J., Bååth, E., Meir, P., 2022. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt. Nature Microbiology7, 1650–1660.

[33]

Ordonez, A., Hussain, U., Cambon, M.C., Golyshin, P.N., Downie, J., McDonald, J.E., 2025. Evaluating agar-plating and dilution-to-extinction isolation methods for generating oak-associated microbial culture collections. ISME Communications5, ycaf019.

[34]

Pessi, I.S., Viitamäki, S., Virkkala, A.M., Eronen-Rasimus, E., Delmont, T.O., Marushchak, M.E., Luoto, M., Hultman, J., 2022. In-depth characterization of denitrifier communities across different soil ecosystems in the tundra. Environmental Microbiome17, 30.

[35]

Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C.M., Sarr, A., Maron, P.A., 2013. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal7, 1609–1619.

[36]

Qiu, L.J., Gou, X., Kong, Y.M., Tu, F.Y., Peng, X., Xu, L., Zhou, S.X., Huang, C.D., Chen, Y.Q., Liu, L., Tu, L.H., 2023. Nitrogen addition stimulates N2O emissions via changes in denitrification community composition in a subtropical nitrogen-rich forest. Journal of Environmental Management348, 119274.

[37]

Qu, L.R., Wang, C., Bai, E., 2020. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency. Soil Biology and Biochemistry145, 107802.

[38]

R Development Core Team, 2025. R: A language and environment for statistical computing, R Version 4.5.0. R Foundation for Statistical Computing, Vienna, Austria.

[39]

Schnyder, E., Bodelier, P.L.E., Hartmann, M., Henneberger, R., Niklaus, P.A., 2023. Experimental erosion of microbial diversity decreases soil CH4 consumption rates. Ecology104, e4178.

[40]

Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., Chen, W., Fungal Barcoding Consortium, 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America109, 6241–6246.

[41]

Shan, J., Sanford, R.A., Chee-Sanford, J., Ooi, S.K., Löffler, F.E., Konstantinidis, K.T., Yang, W.H., 2021. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology27, 2669–2683.

[42]

Spohn, M., Pötsch, E.M., Eichorst, S.A., Woebken, D., Wanek, W., Richter, A., 2016. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland. Soil Biology and Biochemistry97, 168–175.

[43]

Trivedi, C., Delgado-Baquerizo, M., Hamonts, K., Lai, K.T., Reich, P.B., Singh, B.K., 2019. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biology and Biochemistry135, 267–274.

[44]

van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Complete nitrification by a single microorganism. Nature528, 555–559.

[45]

van Passel, M.W.J., Kant, R., Palva, A., Copeland, A., Lucas, S., Lapidus, A., del Rio, T.G., Pitluck, S., Goltsman, E., Clum, A., Sun, H., Schmutz, J., Larimer, F.W., Land, M.L., Hauser, L., Kyrpides, N., Mikhailova, N., Richardson, P.P., Janssen, P.H., de Vos, W.M., Smidt, H., 2011. Genome sequence of the Verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. Journal of Bacteriology193, 2367–2368.

[46]

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

[47]

Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

[48]

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications10, 4841.

[49]

Wanek, W., Mooshammer, M., Blöchl, A., Hanreich, A., Richter, A., 2010. Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique. Soil Biology and Biochemistry42, 1293–1302.

[50]

Wang, C., Huang, X.Y., Yu, J., Liu, Y., Qu, F.Y., Wang, J., Wang, X., Bai, E., 2026. Nonlinear effect of microbial diversity loss on soil carbon flux. Soil Biology and Biochemistry213, 110028.

[51]

Wang, X., Wang, Z.C., Chen, F., Zhang, Z.J., Fang, J.B., Xing, L.H., Zeng, J., Zhang, Q., Liu, H.Y., Liu, W.C., Ren, C.J., Yang, G.H., Zhong, Z.K., Zhang, W., Han, X.H., 2024. Deterministic assembly of grassland soil microbial communities driven by climate warming amplifies soil carbon loss. Science of the Total Environment923, 171418.

[52]

Wertz, J.T., Kim, E., Breznak, J.A., Schmidt, T.M., Rodrigues, J.L.M., 2012. Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Applied and Environmental Microbiology78, 1544–1555.

[53]

Wilson, R.M., Tfaily, M.M., Kolton, M., Johnston, E.R., Petro, C., Zalman, C.A., Hanson, P.J., Heyman, H.M., Kyle, J.E., Hoyt, D.W., Eder, E.K., Purvine, S.O., Kolka, R.K., Sebestyen, S.D., Griffiths, N.A., Schadt, C.W., Keller, J.K., Bridgham, S.D., Chanton, J.P., Kostka, J.E., 2021. Soil metabolome response to whole-ecosystem warming at the spruce and peatland responses under changing environments experiment. Proceedings of the National Academy of Sciences of the United States of America118, e2004192118.

[54]

Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos, P., Verstraete, W., Boon, N., 2009. Initial community evenness favours functionality under selective stress. Nature458, 623–626.

[55]

Yang, X.L., Cheng, J., Franks, A.E., Huang, X.W., Yang, Q., Cheng, Z.Y., Liu, Y.H., Ma, B., Xu, J.M., He, Y., 2023. Loss of microbial diversity weakens specific soil functions, but increases soil ecosystem stability. Soil Biology and Biochemistry177, 108916.

[56]

Zhang, S.S., Fang, Y.T., Xi, D., 2015. Adaptation of micro-diffusion method for the analysis of 15N natural abundance of ammonium in samples with small volume. Rapid Communications in Mass Spectrometry29, 1297–1306.

[57]

Zhou, Z.H., Wang, C.K., Luo, Y.Q., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications11, 3072.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2926KB)

Supplementary files

Supplementary materials

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/