Impacts of organic fertilizer substitution on soil microbiota: A meta-analysis

Meng Yuan , Wen Xing , Qiushi Ning , Shaohua Yang , Anni Guo , Qingsuo Wang , Yilai Lou

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260394

PDF (2799KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260394 DOI: 10.1007/s42832-026-0394-7
RESEARCH ARTICLE

Impacts of organic fertilizer substitution on soil microbiota: A meta-analysis

Author information +
History +
PDF (2799KB)

Abstract

The excessive use of chemical fertilizers in agriculture has led to a decline in soil biodiversity. Organic fertilizer substitution has been proposed as a sustainable alternative toward the mitigation of these adverse effects, yet its impacts on the diversity of soil microbiota across varying environmental contexts remain poorly quantified. Here, we conducted a meta-analysis of 82 published studies from large-scale agricultural ecosystems. We revealed that organic fertilizer substitution significantly increased the abundances of bacteria, fungi, and nematodes, while enhancing the alpha diversity of bacterial and fungal communities. Specifically, the positive impacts on microbial abundance and alpha diversity became stronger over prolonged experimental timelines. The most potent effects on nematode abundance, arbuscular mycorrhizal fungi (AMF) richness, as well as bacterial Shannon and fungal Chao1 indices were observed under moderate substitution proportions (20%–50%). The stimulatory effects on the abundance and alpha diversity of bacteria and fungi were more pronounced in warm and humid climates, whereas the AMF Shannon index increased in colder regions. Moreover, the nematode Shannon index responded more strongly in drylands than in paddy fields. Collectively, our findings demonstrated that organic fertilizer substitution effectively rebuilt the complexity of the soil micro-food web. Consequently, we recommend a moderate substitution proportion of 20%–50% to maximize biodiversity gains in agricultural soils.

Graphical abstract

Keywords

organic fertilizer substitution / soil micro-food web / microbiome / nematode community / biodiversity.

Highlight

● Organic fertilizer substitution enhances soil microbiota abundance broadly.

● Bacterial Shannon diversity and fungal rare species diversity respond most sensitively.

● Optimal effects occur at 20%–50% substitution proportions.

Cite this article

Download citation ▾
Meng Yuan, Wen Xing, Qiushi Ning, Shaohua Yang, Anni Guo, Qingsuo Wang, Yilai Lou. Impacts of organic fertilizer substitution on soil microbiota: A meta-analysis. Soil Ecology Letters, 2026, 8(2): 260394 DOI:10.1007/s42832-026-0394-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams, D. C., Gurevitch, J., Rosenberg, M. S., 1997. Resampling tests for meta-analysis of ecological data. Ecology78, 1277–1283.

[2]

Ahmed, M., Rauf, M., Mukhtar, Z., Saeed, N. A., 2017. Excessive use of nitrogenous fertilizers: an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research24, 26983–26987.

[3]

Aller, D., Archontoulis, S., Laird, D., 2025. Soil organic matter and biochar effects on soil water: measurements, pedotransfer functions and APSIM simulations. European Journal of Soil Science76, e70083.

[4]

Archer, E., Archer, M. E., 2016. Package ‘rfPermute’. R Project: Indianapolis, IN, USA.

[5]

Asakura, H., Nakagawa, K., Endo, K., Yamada, M., Ono, Y., Ono, Y., 2013. Influence of oxygen flow rate and compost addition on reduction of organic matter in aerated waste layer containing mainly incineration residue. Journal of Environmental Sciences25, 53–58.

[6]

Balkrishna, A., Chaudhary, P., Joshi, R., Arya, V., 2021. Organic farming: a promising approach for sustainable agriculture. In: Balkrishna, A., ed. Sustainable Agriculture for Food Security. New York: Apple Academic Press, 151–176.

[7]

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software67, 1–48.

[8]

Beddington, J., 2010. Global food and farming futures. Philosophical Transactions of the Royal Society B: Biological Sciences365, 2767.

[9]

Bongers, T., Bongers, M., 1998. Functional diversity of nematodes. Applied Soil Ecology10, 239–251.

[10]

Brockett, B. F. T., Prescott, C. E., Grayston, S. J., 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology and Biochemistry44, 9–20.

[11]

Chen, R. R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X. G., Blagodatskaya, E., Kuzyakov, Y., 2014. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Global Change Biology20, 2356–2367.

[12]

Chen, S. C., Jin, W. J., Liu, A. R., Zhang, S. J., Liu, D. L., Wang, F. H., Lin, X. M., He, C. X., 2013. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae160, 222–229.

[13]

Cutler, D. R., Edwards, T. C. Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J., 2007. Random forests for classification in ecology. Ecology88, 2783–2792.

[14]

Dai, P. G., Cong, P., Wang, P., Dong, J. X., Dong, Z. R., Song, W. J., 2021. Alleviating soil acidification and increasing the organic carbon pool by long-term organic fertilizer on tobacco planting soil. Agronomy11, 2135.

[15]

Deacon, L. J., Pryce-Miller, E. J., Frankland, J. C., Bainbridge, B. W., Moore, P. D., Robinson, C. H., 2006. Diversity and function of decomposer fungi from a grassland soil. Soil Biology and Biochemistry38, 7–20.

[16]

Ding, J. L., Jiang, X., Ma, M. C., Zhou, B. K., Guan, D. W., Zhao, B. S., Zhou, J., Cao, F. M., Li, L., Li, J., 2016. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Applied Soil Ecology105, 187–195.

[17]

Dunne, J. A., Williams, R. J., Martinez, N. D., 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters5, 558–567.

[18]

Fan, Y. Q., Gao, D., Zhang, L. J., Wang, Y. Y., Yan, Z. X., Guo, L. C., Huang, T. M., Qiao, Y. J., 2025. Enhancing soil quality and nematode diversity through sustainable tillage and organic fertilization in the Loess Plateau's semi-arid farmlands. Agriculture, Ecosystems & Environment383, 109542.

[19]

Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science327, 812–818.

[20]

Gómez-Rubio, V., 2017. ggplot2–elegant graphics for data analysis (2nd edition). Journal of Statistical Software77, 1–3.

[21]

Gravuer, K., Gennet, S., Throop, H. L., 2019. Organic amendment additions to rangelands: a meta-analysis of multiple ecosystem outcomes. Global Change Biology25, 1152–1170.

[22]

Hedges, L. V., Gurevitch, J., Curtis, P. S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology80, 1150–1156.

[23]

Ikoyi, I., Egeter, B., Chaves, C., Ahmed, M., Fowler, A., Schmalenberger, A., 2020. Responses of soil microbiota and nematodes to application of organic and inorganic fertilizers in grassland columns. Biology and Fertility of Soils56, 647–662.

[24]

Jiang, Y. J., Zhou, H., Chen, L. J., Yuan, Y., Fang, H., Luan, L., Chen, Y., Wang, X. Y., Liu, M. Q., Li, H. X., Peng, X. H., Sun, B., 2018. Nematodes and microorganisms interactively stimulate soil organic carbon turnover in the macroaggregates. Frontiers in Microbiology9, 2803.

[25]

Kardo, P., Cregger, M. A., Campany, C. E., Classen, A. T., 2010. Soil ecosystem functioning under climate change: plant species and community effects. Ecology91, 767–781.

[26]

Kennedy, A. C., Smith, K. J., 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil170, 75–86.

[27]

Khanjani, M. H., Sharifinia, M., 2020. Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture12, 1836–1850.

[28]

Li, C. X., Ma, S. C., Shao, Y., Ma, S. T., Zhang, L. L., 2018a. Effects of long-term organic fertilization on soil microbiologic characteristics, yield and sustainable production of winter wheat. Journal of Integrative Agriculture17, 210–219.

[29]

Li, D. D., Luo, P. Y., Han, X. R., Yang, J. F., Cai F. F., Liu, T. C., 2018b. Influence of long-term fertilization on structures of arbuscular mycorrhizal fungi community in a brown soil. Journal of Plant Nutrition and Fertilizers24, 651–660.

[30]

Li, J. T., Zhang, B., 2007. Paddy soil stability and mechanical properties as affected by long-term application of chemical fertilizer and animal manure in subtropical China. Pedosphere17, 568–579.

[31]

Li, M. H., Guo, H. J., Ren, T., Luo, G. W., Shen, Q. R., Lu, J. W., Guo, S. W., Ling, N., 2021. Crop rotation history constrains soil biodiversity and multifunctionality relationships. Agriculture, Ecosystems & Environment319, 107550.

[32]

Liang, W. J., Lou, Y. L., Li, Q., Zhong, S., Zhang, X. K., Wang, J. K., 2009. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry41, 883–890.

[33]

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News2–3, 18–22.

[34]

Liu, E. K., Yan, C. R., Mei, X. R., He, W. Q., Bing, S. H., Ding, L. P., Liu, Q., Liu, S., Fan, T. L., 2010. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma158, 173–180.

[35]

Liu, H. W., Zhang, X. K., Zhang, G. Z., Kou, X. C., Liang, W. J., 2022. Partial organic substitution weakens the negative effect of chemical fertilizer on soil micro-food webs. Journal of Integrative Agriculture21, 3037–3050.

[36]

Long, C., Liu, Z. W., Liu, R. L., Yin, L., Tan, F. X., Wang, Y. A., He, G. H., 2024. Soil microbial CO2 fixation rate disparities with different vegetation at a representative acidic red soil experimental station in China. Frontiers in Microbiology15, 1480484.

[37]

Lu, X. M., Chen, D. M., Xing, W., Li, Y., Chen, X. L., Lou, N., Ding, J. Y., Bai, Y. F., 2025. Contrasting impacts of nitrogen enrichment on soil nematode diversity in natural and managed ecosystems. Journal of Applied Ecology62, 1740–1751.

[38]

Melakeberhan, H., Bonito, G., Kravchenko, A. N., 2021. Application of nematode community analyses-based models towards identifying sustainable soil health management Outcomes: a review of the concepts. Soil Systems5, 32.

[39]

Neher, D. A., Powers, T. O., 2023. Nematodes. Encyclopedia of Soils in the Environment1, 105–111.

[40]

Nevarez, L., Vasseur, V., Le Madec, A., Le Bras, M. A., Coroller, L., Leguérinel, I., Barbier, G., 2009. Physiological traits of Penicillium glabrum strain LCP 08.5568, a filamentous fungus isolated from bottled aromatised mineral water. International Journal of Food Microbiology130, 166–171.

[41]

Niu, J. C., Saeed, Q., Wang, W. N., Zhang, R. Z., Liu, L., Lv, F. L., Xu, J. X., Han, Y., Zhang, P. X., Hu, C. L., Xu, H., Sun, B. H., Yang, X. Y., Zhang, S. L., 2024. Manure replacing synthetic fertilizer improves crop yield sustainability and reduces carbon footprint under winter wheat–summer maize cropping system. Journal of Environmental Management358, 120936.

[42]

Oka, Y., 2010. Mechanisms of nematode suppression by organic soil amendments—A review. Applied Soil Ecology44, 101–115.

[43]

Qiu, L. P., Zhang, Q., Zhu, H. S., Reich, P. B., Banerjee, S., van der Heijden, M. G. A., Sadowsky, M. J., Ishii, S., Jia, X. X., Shao, M. G., Liu, B. Y., Jiao, H., Li, H. Q., Wei, X. R., 2021. Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME Journal15, 2474–2489.

[44]

Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal4, 1340–1351.

[45]

Saleem, M., Hu, J., Jousset, A., 2019. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annual Review of Ecology, Evolution, and Systematics50, 145–168.

[46]

Savci, S., 2012. Investigation of effect of chemical fertilizers on environment. Apcbee Procedia1, 287–292.

[47]

Scharroba, A., Kramer, S., Kandeler, E., Ruess, L., 2016. Spatial and temporal variation of resource allocation in an arable soil drives community structure and biomass of nematodes and their role in the micro-food web. Pedobiologia59, 111–120.

[48]

Schlatter, D. C., Gamble, J. D., Castle, S., Rogers, J., Wilson, M., 2023. Abiotic and biotic drivers of soil fungal communities in response to dairy manure amendment. Applied and Environmental Microbiology,89, e0193122.

[49]

Schmitz, O. J., 2010. Resolving Ecosystem Complexity. Princeton: Princeton University Press.

[50]

Schmitz, O. J., Buchkowski, R. W., Burghardt, K. T., Donihue, C. M., 2015. Functional traits and trait-mediated interactions: connecting community-level interactions with ecosystem functioning. Advances in Ecological Research52, 319–343.

[51]

Seaton, F. M., George, P. B. L., Lebron, I., Jones, D. L., Creer, S., Robinson, D. A., 2020. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry144, 107766.

[52]

Shaji, H., Chandran, V., Mathew, L., 2021. Chapter 13 - Organic fertilizers as a route to controlled release of nutrients. In: Lewu, F. B., Volova, T., Thomas, S., Rakhimol, K. R., eds. Controlled Release Fertilizers for Sustainable Agriculture. London: Academic Press.

[53]

Shaw, E. A., Boot, C. M., Moore, J. C., Wall, D. H., Baron, J. S., 2019. Long-term nitrogen addition shifts the soil nematode community to bacterivore-dominated and reduces its ecological maturity in a subalpine forest. Soil Biology and Biochemistry130, 177–184.

[54]

Shi, G. X., Yao, B. Q., Liu, Y. J., Pan, J. B., Jiang, S. J., Wang, Y. B., Wang, Z. B., Feng, H. Y., Zhou, H. K., 2021. The effects of long-term warming on arbuscular mycorrhizal fungal communities depend on habitat type on the Qinghai-Tibet Plateau. Applied Soil Ecology167, 104030.

[55]

Singh, D. K., Pandey, P. C., Nanda, G., Gupta, S., 2019. Long-term effects of inorganic fertilizer and farmyard manure application on productivity, sustainability and profitability of rice-wheat system in Mollisols. Archives of Agronomy and Soil Science65, 139–151.

[56]

Song, W. F., Shu, A. P., Liu, J. A., Shi, W. C., Li, M. C., Zhang, W. X., Li, Z. Z., Liu, G. R., Yuan, F. S., Zhang, S. X., Liu, Z. B., Gao, Z., 2022. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere32, 637–648.

[57]

Sumner, M. E., Noble, A. D., 2003. Soil acidification: the world story. In: Rengel, Z., ed. Handbook of Soil Acidity. Boca Raton: CRC Press, 15–42.

[58]

Sun, S. Q., Weng, Y. T., Di, X. Y., Liu, Z. H., Yang, G., 2020. Screening of cellulose-degrading fungi in forest litter and fungal effects on litter decomposition. Bioresources15, 2937–2946.

[59]

Tian, W., Wang, L., Li, Y., Zhuang, K. M., Li, G., Zhang, J. B., Xiao, X. J., Xi, Y. G., 2015. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agriculture, Ecosystems & Environment213, 219–227.

[60]

Ullah, S., Raza, M. M., Abbas, T., Guan, X., Zhou, W., He, P., 2023. Responses of soil microbial communities and enzyme activities under nitrogen addition in fluvo-aquic and black soil of North China. Frontiers in Microbiology14, 1249471.

[61]

Wang, C., Liu, D. W., Bai, E., 2018a. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry120, 126–133.

[62]

Wang, G. H., Hu, X. J., Yu, Z. H., Chen, X. L., Liu, J. J., 2024. Effects of fertilization on soil microbial community diversity in Chinese arable black soils: research progress and prospects. Soils and Crops13, 127–139.

[63]

Wang, H. X., Xu, J. L., Liu, X. J., Zhang, D., Li, L. W., Li, W., Sheng, L. X., 2019. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil and Tillage Research195, 104382.

[64]

Wang, N., Chen, X. Y., Liu, M. Q., Li, D. M., Wang, M. W., Li, H. X., Hu, F., 2015. Effects of soil dosage on nematode separation efficiency from upland and paddy red soil. Soils47, 128–134.

[65]

Wang, Y., Zhu, Y. C., Zhang, S. X., Wang, Y. Q., 2018b. What could promote farmers to replace chemical fertilizers with organic fertilizers. Journal of Cleaner Production199, 882–890.

[66]

Wei, C. Z., Zheng, H. F., Li, Q., Lu, X. T., Yu, Q., Zhang, H. Y., Chen, Q. S., He, N. P., Kardol, P., Liang, W. J., Han, X. G., 2012. Nitrogen addition regulates soil nematode community composition through ammonium suppression. PLoS One7, e43384.

[67]

Weinstein, R. N., Montiel, P. O., Johnstone, K., 2000. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia92, 222–229.

[68]

Xia, L. L., Lam, S. K., Yan, X. Y., Chen, D. L., 2017. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance. Environmental Science & Technology51, 7450–7457.

[69]

Xing, W., Chen, X. L., Thakur, M. P., Kardol, P., Lu, X. M., Bai, Y. F., 2024. Trophic regulation of soil microbial biomass under nitrogen enrichment: a global meta-analysis. Functional Ecology38, 560–572.

[70]

Xu, Q. C., Ling, N., Chen, H., Duan, Y. H., Wang, S., Shen, Q. R., Vandenkoornhuyse, P., Kent, A. D., 2020. Long-term chemical-only fertilization induces a diversity decline and deep selection on the soil bacteria. Msystems5, e00337–20.

[71]

Yan, J., Zhang, Y. Z., Crawford, K. M., Chen, X. Y., Yu, S., Wu, J. H., 2021. Plant genotypic diversity effects on soil nematodes vary with trophic level. New Phytologist229, 575–584.

[72]

Yang, L. H., Sun, R. H., Li, J. G., Zhai, L. M., Cui, H. L., Fan, B. Q., Wang, H. Y., Liu, H. B., 2023. Combined organic-inorganic fertilization builds higher stability of soil and root microbial networks than exclusive mineral or organic fertilization. Soil Ecology Letters5, 220142.

[73]

Yeates, G. W., Bongers, T., 1999. Nematode diversity in agroecosystems. Agriculture, Ecosystems & Environment74, 113–135.

[74]

Yin, Y. H., Guo, S. F., Xu, Q. Y., Liu, J., Wang, H. Y., Zhuang, Y. H., Wang, Z., Hua, L. L., Liu, H. B., Zhai, L. M., 2025. Co-benefits for cropland yield, nitrogen emissions, and climate impact through multi-objective optimization agricultural manure solutions. Nature Communications16, 6415.

[75]

Zhang, T., Meng, T., Hou, Y., Huang, X. F., Oenema, O., 2022. Which policy is preferred by crop farmers when replacing synthetic fertilizers by manure? A choice experiment in China. Resources, Conservation and Recycling180, 106176.

[76]

Zhang, T., Yang, X., Guo, R., Guo, J. X., 2016. Response of AM fungi spore population to elevated temperature and nitrogen addition and their influence on the plant community composition and productivity. Scientific Reports6, 24749.

[77]

Zhang, X. K., Ferris, H., Mitchell, J., Liang, W. J., 2017. Ecosystem services of the soil food web after long-term application of agricultural management practices. Soil Biology and Biochemistry111, 36–43.

[78]

Zhong, R., Xie, W. G., Zhang, X. X., Nan, Z. B., 2020. Elymus sibiricus populations drive the community of root-associated arbuscular mycorrhizal fungi in a monoculture agroecosystem. Science China Life Sciences63, 453–456.

[79]

Zhou, Z. H., Wang, C. K., Luo, Y. Q., 2020. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications11, 3072.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2799KB)

Supplementary files

Supplementary materials

290

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/