Interactive effects of nitrogen and root exudate addition on soil organic carbon fractions in wheat agroecosystems

Zhenhao Wei , Shu Zhu , Tiantao Jia , Jiwei Li , Lei Deng , Jiajia Li , Zhouping Shangguan

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260393

PDF (4180KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) :260393 DOI: 10.1007/s42832-026-0393-8
RESEARCH ARTICLE

Interactive effects of nitrogen and root exudate addition on soil organic carbon fractions in wheat agroecosystems

Author information +
History +
PDF (4180KB)

Abstract

Nitrogen (N) deposition alters the composition and release of plant root exudates, thereby influencing the dynamics of soil organic carbon (SOC). However, the effects of specific root exudate compounds on SOC fractions under different N levels remain unclear. In this study, we conducted an incubation experiment to investigate how oxalic acid, citric acid, D-tryptophan, D(+) maltose, and p-hydroxybenzoic acid interact with different N addition levels (0, 90, 180, and 270 kg N ha−1) in affecting SOC fractions. The results revealed that N addition altered SOC through changes in soil physicochemical properties and microbial activity, reduced soil microbial biomass C, and increased CO2 emissions. The addition of root exudates resulted in an average 2.5% reduction in SOC. The interaction with N addition significantly (p < 0.05) increased soil microbial biomass C and dissolved organic C by 60% and 9.1%, respectively. Oxalic acid, citric acid, and p-hydroxybenzoic acid significantly (p < 0.05) stimulated greater CO2 release than D-tryptophan and D(+) maltose. Under N enrichment, root exudates influenced SOC dynamics primarily by regulating soil microbial biomass N. These findings highlight the interactive effects of N deposition and root exudate composition on soil C stability in agricultural ecosystems.

Graphical abstract

Keywords

N enrichment / agricultural soil C pool / root exudates / C emissions

Highlight

● N fertilizer altered SOC primarily through changes in CO2 emissions, NH4+, TN, and MBN.

● Root exudates stimulated CO2 release and contributed to SOC accumulation, but reduced MBC.

● N enrichment interacting with root exudates increased soil microbial biomass C and dissolved organic C.

● Oxalic acid, citric acid, and p-hydroxybenzoic acid promoted higher CO2 release than D-tryptophan and D(+) maltose.

Cite this article

Download citation ▾
Zhenhao Wei, Shu Zhu, Tiantao Jia, Jiwei Li, Lei Deng, Jiajia Li, Zhouping Shangguan. Interactive effects of nitrogen and root exudate addition on soil organic carbon fractions in wheat agroecosystems. Soil Ecology Letters, 2026, 8(2): 260393 DOI:10.1007/s42832-026-0393-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Badri, D.V., Vivanco, J.M., 2009. Regulation and function of root exudates. Plant, Cell & Environment32, 666–681.

[2]

Bi, B.Y., Tong, Q., Wan, C.Y., Wang, K., Han, F.P., 2022. Pinus sylvestris var. mongolica mediates interspecific belowground chemical interactions through root exudates. Forest Ecology and Management511, 120158.

[3]

Bölscher, T., Cardon, Z.G., Arredondo, M.G., Grand, S., Griffen, G., Hestrin, R., Imboden, J., Jamoteau, F., Lacroix, E.M., Castro, S.P., Persson, P., Riley, W.J., Keiluweit, M., 2025. Vulnerability of mineral-organic associations in the rhizosphere. Nature Communications16, 5527.

[4]

Chari, N.R., Taylor, B.N., 2022. Soil organic matter formation and loss are mediated by root exudates in a temperate forest. Nature Geoscience15, 1011–1016.

[5]

Chen, J.G., Xiao, W., Zheng, C.Y., Zhu, B., 2020. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biology and Biochemistry142, 107708.

[6]

Chen, Y., Liu, X., Hou, Y.H., Zhou, S.R., Zhu, B., 2021. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil458, 93–103.

[7]

Dang, R., Liu, J., Lichtfouse, E., Zhou, L.F., Zhou, M., Xiao, L.L., 2024. Soil microbial carbon use efficiency and the constraints. Annals of Microbiology74, 37.

[8]

Drake, J.E., Darby, B.A., Giasson, M.A., Kramer, M.A., Phillips, R.P., Finzi, A.C., 2013. Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest. Biogeosciences10, 821–838.

[9]

Feng, H.L., Guo, J.H., Peng, C.H., Kneeshaw, D., Roberge, G., Pan, C., Ma, X.H., Zhou, D., Wang, W.F., 2023. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: a global meta-analysis. Global Change Biology29, 3970–3989.

[10]

Fierer, N., Walsh, C.M., 2023. Can we manipulate the soil microbiome to promote carbon sequestration in croplands. PLoS Biology21, e3002207.

[11]

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science320, 889–892.

[12]

Heimann, M., Reichstein, M., 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature451, 289–292.

[13]

Jenkinson, D., 2004. Measuring soil microbial biomass. Soil Biology and Biochemistry36, 5–7.

[14]

Jia, X.Y., Zhong, Y.Q.W., Liu, J., Zhu, G.Y., Shangguan, Z.P., Yan, W.M., 2020. Effects of nitrogen enrichment on soil microbial characteristics: from biomass to enzyme activities. Geoderma366, 114256.

[15]

Jiang, Z.H., Zhong, Y.M., Yang, J.P., Wu, Y.X.Y., Li, H., Zheng, L., 2019. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Science of the Total Environment670, 210–217.

[16]

Keiluweit, M., Bougoure, J.J., Nico, P.S., Pett-Ridge, J., Weber, P.K., Kleber, M., 2015. Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change5, 588–595.

[17]

Kell, D.B., 2012. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philosophical Transactions of the Royal Society B: Biological Sciences367, 1589–1597.

[18]

Keller, A.B., Borer, E.T., Collins, S.L., Delancey, L.C., Fay, P.A., Hofmockel, K.S., Leakey, A.D.B., Mayes, M.A., Seabloom, E.W., Walter, C.A., Wang, Y., Zhao, Q., Hobbie, S.E., 2022. Soil carbon stocks in temperate grasslands differ strongly across sites but are insensitive to decade-long fertilization. Global Change Biology28, 1659–1677.

[19]

Kuzyakov, Y., 2010. Priming effects: interactions between living and dead organic matter. Soil Biology and Biochemistry42, 1363–1371.

[20]

Kuzyakov, Y., Friedel, J.K., Stahr, K., 2000. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry32, 1485–1498.

[21]

Landi, L., Valori, F., Ascher, J., Renella, G., Falchini, L., Nannipieri, P., 2006. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology and Biochemistry38, 509–516.

[22]

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Mellado-Vázquez, P.G., Malik, A.A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B.C., Trumbore, S.E., Gleixner, G., 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications6, 6707.

[23]

Lefroy, R.D.B., Blair, G.J., Strong, W.M., 1993. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant and Soil155, 399–402.

[24]

Li, J., Sang, C.P., Yang, J.Y., Qu, L.R., Xia, Z.W., Sun, H., Jiang, P., Wang, X.G., He, H.B., Wang, C., 2021. Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition. Soil Biology and Biochemistry156, 108207.

[25]

Li, J.W., Wu, J.Z., Liang, C., Shangguan, Z.P., Deng, L., 2025. Global change reshapes microbial residues and plant lignin components in soils. Environmental Science & Technology59, 21967–21977.

[26]

Li, Y., Niu, S.L., Yu, G.R., 2016. Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology22, 934–943.

[27]

Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology2, 17105.

[28]

Liang, J.Y., Zhou, Z.H., Huo, C.F., Shi, Z., Cole, J.R., Huang, L., Konstantinidis, K.T., Li, X.M., Liu, B., Luo, Z.K., Penton, C.R., Schuur, E.A.G., Tiedje, J.M., Wang, Y.P., Wu, L.Y., Xia, J.Y., Zhou, J.Z., Luo, Y.Q., 2018. More replenishment than priming loss of soil organic carbon with additional carbon input. Nature Communications9, 3175.

[29]

Liao, L.R., Wang, J., Dijkstra, F.A., Lei, S.L., Zhang, L., Wang, X.J., Liu, G.B., Zhang, C., 2024. Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Biology and Biochemistry190, 109306.

[30]

Liu, L.L., Greaver, T.L., 2010. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters13, 819–828.

[31]

Liu, W.X., Jiang, L., Hu, S.J., Li, L.H., Liu, L.L., Wan, S.Q., 2014. Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biology and Biochemistry72, 116–122.

[32]

Lou, Y.L., Wang, J.K., Liang, W.J., 2011. Impacts of 22-year organic and inorganic n managements on soil organic c fractions in a maize field, Northeast China. Catena87, 386–390.

[33]

Luo, Y.Q., Zhao, X.Y., Andrén, O., Zhu, Y.C., Huang, W.D., 2014. Artificial root exudates and soil organic carbon mineralization in a degraded sandy grassland in Northern China. Journal of Arid Land6, 423–431.

[34]

Man, M.L., Pierson, D., Chiu, R., Tabatabaei Anaraki, M., Vandenenden, L., Ye, R.X., Lajtha, K., Simpson, M.J., 2022. Twenty years of litter manipulation reveals that above-ground litter quantity and quality controls soil organic matter molecular composition. Biogeochemistry159, 393–411.

[35]

Mao, R., Zhang, X.H., Song, C.C., 2020. Chronic nitrogen addition promotes dissolved organic carbon accumulation in a temperate freshwater wetland. Environmental Pollution260, 114030.

[36]

Mason-Jones, K., Kuzyakov, Y., 2017. “Non-metabolizable” glucose analogue shines new light on priming mechanisms: triggering of microbial metabolism. Soil Biology and Biochemistry107, 68–76.

[37]

McDonald, M.D., Owusu-Ansah, C., Ellenbogen, J.B., Malone, Z.D., Ricketts, M.P., Frolking, S.E., Ernakovich, J.G., Ibba, M., Bagby, S.C., Weissman, J.L., 2024. What is microbial dormancy. Trends in Microbiology32, 142–150.

[38]

Mondal, P., Mcdermid, S.S., Qadir, A., 2020. A reporting framework for sustainable development goal 15: multi-scale monitoring of forest degradation using MODIS, Landsat and sentinel data. Remote Sensing of Environment237, 111592.

[39]

Morrissey, E.M., Kane, J., Tripathi, B.M., Rion, M.S.I., Hungate, B.A., Franklin, R., Walter, C., Sulman, B., Brzostek, E., 2023. Carbon acquisition ecological strategies to connect soil microbial biodiversity and carbon cycling. Soil Biology and Biochemistry177, 108893.

[40]

Nazir, M.J., Li, G.L., Nazir, M.M., Zulfiqar, F., Siddique, K.H.M., Iqbal, B., Du, D.L., 2024. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil and Tillage Research237, 105959.

[41]

Novak, V., Andeer, P.F., Bowen, B.P., Ding, Y.Z., Zhalnina, K., Hofmockel, K.S., Tomaka, C., Harwood, T.V., van Winden, M.C.M., Golini, A.N., Kosina, S.M., Northen, T.R., 2024. Reproducible growth of Brachypodium in EcoFAB 2.0 reveals that nitrogen form and starvation modulate root exudation. Science Advances10, eadg7888.

[42]

Panchal, P., Preece, C., Peñuelas, J., Giri, J., 2022. Soil carbon sequestration by root exudates. Trends in Plant Science27, 749–757.

[43]

Patoine, G., Eisenhauer, N., Cesarz, S., Phillips, H.R.P., Xu, X.F., Zhang, L.H., Guerra, C.A., 2022. Drivers and trends of global soil microbial carbon over two decades. Nature Communications13, 4195.

[44]

Pausch, J., Kuzyakov, Y., 2018. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology24, 1–12.

[45]

Schulte-Uebbing, L., de Vries, W., 2018. Global-scale impacts of nitrogen deposition on tree carbon sequestration in tropical, temperate, and boreal forests: a meta-analysis. Global Change Biology24, e416–e431.

[46]

Stevens, C.J., Lind, E.M., Hautier, Y., Harpole, W.S., Borer, E.T., Hobbie, S., Seabloom, E.W., Ladwig, L., Bakker, J.D., Chu, C.J., Collins, S., Davies, K.F., Firn, J., Hillebrand, H., Pierre, K.J.L., Macdougall, A., Melbourne, B., Mcculley, R.L., Morgan, J., Orrock, J.L., Prober, S.M., Risch, A.C., Schuetz, M., Wragg, P.D., 2015. Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology96, 1459–1465.

[47]

Sun, L.F., Wanek, W., Moorhead, D.L., Yang, X.Y., Gao, W.L., Domeignoz-Horta, L.A., 2025. Interpreting differences in microbial carbon and nitrogen use efficiencies estimated by isotope methods and the ecoenzyme stoichiometry model. Soil Biology and Biochemistry209, 109914.

[48]

Sun, T., Mao, X.L., Han, K.F., Wang, X.J., Cheng, Q., Liu, X., Zhou, J.J., Ma, Q.X., Ni, Z.H., Wu, L.H., 2023. Nitrogen addition increased soil particulate organic carbon via plant carbon input whereas reduced mineral−associated organic carbon through attenuating mineral protection in agroecosystem. Science of the Total Environment899, 165705.

[49]

Thomas, F., Corre, E., Cébron, A., 2019. Stable isotope probing and metagenomics highlight the effect of plants on uncultured phenanthrene-degrading bacterial consortium in polluted soil. The ISME Journal13, 1814–1830.

[50]

Tian, J., Dungait, J.A.J., Lu, X.K., Yang, Y.F., Hartley, I.P., Zhang, W., Mo, J.M., Yu, G.R., Zhou, J.Z., Kuzyakov, Y., 2019. Long-term nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology25, 3267–3281.

[51]

Wang, D., Yi, W.B., Zhou, Y.L., He, S.R., Tang, L., Yin, X.H., Zhao, P., Long, G.Q., 2021. Intercropping and N application enhance soil dissolved organic carbon concentration with complicated chemical composition. Soil and Tillage Research210, 104979.

[52]

Wang, M.H., Li, F.C., Dong, L.L., Wang, X., Han, L.B., Olesen, J.E., 2023. Effects of exogenous organic/inorganic nitrogen addition on carbon pool distribution and transformation in grassland soil. Science of the Total Environment858, 159919.

[53]

Wen, T., Yu, G.H., Hong, W.D., Yuan, J., Niu, G.Q., Xie, P.H., Sun, F.S., Guo, L.D., Kuzyakov, Y., Shen, Q.R., 2022. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundamental Research2, 697–707.

[54]

Wu, H.W., Cui, H.L., Fu, C.X., Li, R., Qi, F.Y., Liu, Z.L., Yang, G., Xiao, K.Q., Qiao, M., 2024. Unveiling the crucial role of soil microorganisms in carbon cycling: a review. Science of the Total Environment909, 168627.

[55]

Xing, A.J., Du, E.Z., Shen, H.H., Xu, L.C., de Vries, W., Zhao, M.Y., Liu, X.Y., Fang, J.Y., 2022. Nonlinear responses of ecosystem carbon fluxes to nitrogen deposition in an old-growth boreal forest. Ecology Letters25, 77–88.

[56]

Xu, C.H., Xu, X., Ju, C.H., Chen, H.Y.H., Wilsey, B.J., Luo, Y.Q., Fan, W., 2021. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide. Global Change Biology27, 1170–1180.

[57]

Xu, X., Shi, Z., Li, D.J., Rey, A., Ruan, H.H., Craine, J.M., Liang, J.Y., Zhou, J.Z., Luo, Y.Q., 2016. Soil properties control decomposition of soil organic carbon: results from data-assimilation analysis. Geoderma262, 235–242.

[58]

Yan, S.B., Yin, L.M., Dijkstra, F.A., Wang, P., Cheng, W.X., 2023. Priming effect on soil carbon decomposition by root exudate surrogates: a meta-analysis. Soil Biology and Biochemistry178, 108955.

[59]

Ye, C.L., Chen, D.M., Hall, S.J., Pan, S., Yan, X.B., Bai, T.S., Guo, H., Zhang, Y., Bai, Y.F., Hu, S.J., 2018. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecology Letters21, 1162–1173.

[60]

Yin, H.J., Wheeler, E., Phillips, R.P., 2014. Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology and Biochemistry78, 213–221.

[61]

Yuan, Y.S., Zhao, W.Q., Zhang, Z.L., Xiao, J., Li, D.D., Liu, Q., Yin, H.J., 2018. Impacts of oxalic acid and glucose additions on n transformation in microcosms via artificial roots. Soil Biology and Biochemistry121, 16–23.

[62]

Zhang, Q.F., Cheng, L., Feng, J.G., Mei, K.C., Zeng, Q.X., Zhu, B., Chen, Y., 2021. Nitrogen addition stimulates priming effect in a subtropical forest soil. Soil Biology and Biochemistry160, 108339.

[63]

Zhang, T., Chen, H.Y.H., Ruan, H.H., 2018. Global negative effects of nitrogen deposition on soil microbes. The ISME Journal12, 1817–1825.

[64]

Zhong, Y.Q.W., Yan, W.M., Shangguan, Z.P., 2015. Impact of long-term n additions upon coupling between soil microbial community structure and activity, and nutrient-use efficiencies. Soil Biology and Biochemistry91, 151–159.

[65]

Zhu, X.F., Jackson, R.D., Delucia, E.H., Tiedje, J.M., Liang, C., 2020. The soil microbial carbon pump: from conceptual insights to empirical assessments. Global Change Biology26, 6032–6039.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4180KB)

Supplementary files

Supplementary materials

643

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/