Metagenomic evidence for adaptive P-acquisition strategies to sustain elevated soil microbial biomass P under swine manure fertilization

Yunbin Jiang , Yijie Zhao , Cheng Han , Huan Deng , Kailou Liu , Shangshu Huang , Wenhui Zhong

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260392

PDF (9032KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260392 DOI: 10.1007/s42832-026-0392-9
RESEARCH ARTICLE

Metagenomic evidence for adaptive P-acquisition strategies to sustain elevated soil microbial biomass P under swine manure fertilization

Author information +
History +
PDF (9032KB)

Abstract

The application of livestock manure increases soil microbial biomass phosphorus (MBP), a highly bioavailable P pool, thereby enhancing soil P fertility and helping address global P challenges. However, it remains unclear how microbial communities adapt their P-acquisition strategies to sustain the elevated MBP, limiting a comprehensive understanding of the microbial mechanisms underlying this sustainable P management practice. This study investigated the relationship between soil MBP and microbial functional profiles of P transformation through metagenomic analysis at a long-term experimental site with repeated applications of swine manure. Manure fertilization significantly increased soil MBP by 153% and reshaped the composition of microbial P-transformation genes, with a significant increase in the normalized abundances of 85 out of the 135 detected genes. MBP was signifi-cantly and positively correlated with the metabolic potential for P-acquisition processes including orthophosphate uptake, phosphoglycerol uptake, phytate hydrolysis, 2-aminoethylphosphonic acid degradation, and phosphite oxidation. Distinct dominant genera were significantly enriched under manure fertilization among the bacterial communities involved in these critical P-acquisition processes. Solirubrobacter and Nocardioides were the shared enriched taxa and crucial for the stability of their corresponding communities. The considerable variation in copy numbers of the corresponding genes among the 56 reconstructed bacterial metagenome-assembled genomes was indicative of potential shifts in the functional capacity for the critical P-acquisition processes of the enriched taxa. Collectively, the findings of this study suggest the detailed adaptive P-acquisition strategies employed by soil microbial communities to maintain the elevated MBP under swine manure fertilization and the microbial taxa contributing to this adaptation.

Graphical abstract

Keywords

upland Ultisol / soil P management / soil P availability / microbial adaptation / microbial functional profiles

Highlight

● Swine manure fertilization increased soil MBP and altered microbial functional profiles of P transformation.

● Microbial metabolic potential for P acquisition and synthesis were upregulated under swine manure fertilization.

● MBP increased with the increasing metabolic potential for P acquisition from Ortho-P, Glycerol-P, phytate, 2-AEP, and phosphite.

● Distinct taxa were associated with the enhanced metabolic potential for these P-acquisition processes.

Cite this article

Download citation ▾
Yunbin Jiang, Yijie Zhao, Cheng Han, Huan Deng, Kailou Liu, Shangshu Huang, Wenhui Zhong. Metagenomic evidence for adaptive P-acquisition strategies to sustain elevated soil microbial biomass P under swine manure fertilization. Soil Ecology Letters, 2026, 8(2): 260392 DOI:10.1007/s42832-026-0392-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergkemper, F., Schöler, A., Engel, M., Lang, F., Krüger, J., Schloter, M., Schulz, S., 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology18, 1988–2000.

[2]

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

[3]

Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry14, 319–329.

[4]

Buchfink, B., Reuter, K., Drost, H.G., 2021. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods18, 366–368.

[5]

Bushnell, B., 2014. BBMap: A Fast, Accurate, Splice-Aware Aligner [Online]. Available at the website of eScholarship.

[6]

Bünemann, E.K., Smernik, R.J., Doolette, A.L., Marschner, P., Stonor, R., Wakelin, S.A., McNeill, A.M., 2008a. Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biology and Biochemistry40, 1908–1915.

[7]

Bünemann, E.K., Smernik, R.J., Marschner, P., McNeill, A.M., 2008b. Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biology and Biochemistry40, 932–946.

[8]

Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., Parks, D.H., 2020. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics36, 1925–1927.

[9]

Cordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: global food security and food for thought. Global Environmental Change19, 292–305.

[10]

Dai, Z.M., Liu, G.F., Chen, H.H., Chen, C.R., Wang, J.K., Ai, S.Y., Wei, D., Li, D.M., Ma, B., Tang, C.X., Brookes, P.C., Xu, J.M., 2020. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal14, 757–770.

[11]

Dai, Z.M., Su, W.Q., Chen, H.H., Barberán, A., Zhao, H.C., Yu, M.J., Yu, L., Brookes, P.C., Schadt, C.W., Chang, S.X., Xu, J.M., 2018. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology24, 3452–3461.

[12]

Hartmann, M., Six, J., 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment4, 4–18.

[13]

Hu, X.J., Gu, H.D., Liu, J.J., Wei, D., Zhu, P., Cui, X., Zhou, B.K., Chen, X.L., Jin, J., Liu, X.B., Wang, G.H., 2023. Metagenomic strategies uncover the soil bioavailable phosphorus improved by organic fertilization in mollisols. Agriculture, Ecosystems & Environment349, 108462.

[14]

Huang, Y.L., Lin, J.H., Tang, C.X., Xu, J.M., 2024. Organic carbon inputs shift the profiles of phosphorus cycling-related genes in maize rhizosphere. Plant and Soil503, 595–609.

[15]

Huson, D.H., Beier, S., Flade, I., Górska, A., El-Hadidi, M., Mitra, S., Ruscheweyh, H.J., Tappu, R., 2016. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Computational Biology12, e1004957.

[16]

Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics11, 119.

[17]

Jara-Servin, A., Mejia, G., Romero, M.F., Peimbert, M., Alcaraz, L.D., 2024. Unravelling the genomic and environmental diversity of the ubiquitous Solirubrobacter. Environmental Microbiology26, e16685.

[18]

Jiang, Y.B., Kuang, D.X., Li, W., Han, C., Deng, H., Liu, K.L., Huang, S.S., Zhong, W.H., 2025. Predominant effects of soil organic carbon quality on phosphatase activity in upland Ultisols under long-term fertilizations. Geoderma454, 117186.

[19]

Kajihara, K.T., Hynson, N.A., 2024. Networks as tools for defining emergent properties of microbiomes and their stability. Microbiome12, 184.

[20]

Kang, D.D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., Wang, Z., 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ7, e7359.

[21]

Khan, K.S., Ali, M.M., Naveed, M., Rehmani, M.I.A., Shafique, M.W., Ali, H.M., Abdelsalam, N.R., Ghareeb, R.Y., Feng, G., 2022. Co-application of organic amendments and inorganic P increase maize growth and soil carbon, phosphorus availability in calcareous soil. Frontiers in Environmental Science10, 949371.

[22]

Khan, K.S., Naveed, M., Qadir, M.F., Ahmad, A., Javed, H.H., Ditta, A., 2023. Variation in soil C and P fractions associated with microbial biomass. Journal of Soil Science and Plant Nutrition23, 6573–6583.

[23]

Krause, H.M., Mueller, R.C., Lori, M., Mayer, J., Mäder, P., Hartmann, M., 2025. Organic cropping systems alter metabolic potential and carbon, nitrogen and phosphorus cycling capacity of soil microbial communities. Soil Biology and Biochemistry203, 109737.

[24]

Li, D.H., Liu, C.M., Luo, R.B., Sadakane, K., Lam, T.W., 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676.

[25]

Li, H.L., Zhu, H.T., Li, H.B., Zhang, Y.Q., Xu, S.X., Cai, S.M., Sulaiman, A.A., Kuzyakov, Y., Rengel, Z., Zhang, D.S., 2023. Dynamics of root–microbe interactions governing crop phosphorus acquisition after straw amendment. Soil Biology and Biochemistry181, 109039.

[26]

Li, W.Z., Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics22, 1658–1659.

[27]

Liao, X.H., Zhao, J., Yi, Q., Li, J.N., Li, Z.L., Wu, S.S., Zhang, W., Wang, K.L., 2023. Metagenomic insights into the effects of organic and inorganic agricultural managements on soil phosphorus cycling. Agriculture, Ecosystems & Environment343, 108281.

[28]

Liu, L., Gao, Z.Y., Yang, Y., Gao, Y., Mahmood, M., Jiao, H.J., Wang, Z.H., Liu, J.S., 2023. Long-term high-P fertilizer input shifts soil P cycle genes and microorganism communities in dryland wheat production systems. Agriculture, Ecosystems & Environment342, 108226.

[29]

Louca, S., Polz, M.F., Mazel, F., Albright, M.B.N., Huber, J.A., O’Connor, M.I., Ackermann, M., Hahn, A.S., Srivastava, D.S., Crowe, S.A., Doebeli, M., Parfrey, L.W., 2018. Function and functional redundancy in microbial systems. Nature Ecology & Evolution2, 936–943.

[30]

Ma, Y.C., Wang, J.X., Liu, Y., Wang, X.Y., Zhang, B.L., Zhang, W., Chen, T., Liu, G.X., Xue, L.G., Cui, X.W., 2023. Nocardioides: “specialists” for hard-to-degrade pollutants in the environment. Molecules28, 7433.

[31]

MacDonald, G.K., Bennett, E.M., Potter, P.A., Ramankutty, N., 2011. Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences of the United States of America108, 3086–3091.

[32]

Malik, M.A., Khan, K.S., Marschner, P., Ali, S., 2013. Organic amendments differ in their effect on microbial biomass and activity and on P pools in alkaline soils. Biology and Fertility of Soils49, 415–425.

[33]

McGrath, J.W., Chin, J.P., Quinn, J.P., 2013. Organophosphonates revealed: new insights into the microbial metabolism of ancient molecules. Nature Reviews Microbiology11, 412–419.

[34]

McLaren, T.I., Smernik, R.J., Guppy, C.N., Bell, M.J., Tighe, M.K., 2014. The organic P composition of Vertisols as determined by 31P NMR spectroscopy. Soil Science Society of America Journal78, 1893–1902.

[35]

Meziti, A., Rodriguez-R, L.M., Hatt, J.K., Peña-Gonzalez, A., Levy, K., Konstantinidis, K.T., 2021. The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: insights from comparing MAGs against isolate genomes derived from the same fecal sample. Applied and Environmental Microbiology87, e02593–20.

[36]

Morel, C., Tiessen, H., Stewart, J.W.B., 1996. Correction for P-sorption in the measurement of soil microbial biomass P by CHCl3 fumigation. Soil Biology and Biochemistry28, 1699–1706.

[37]

Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta27, 31–36.

[38]

Neal, A.L., Rossmann, M., Brearley, C., Akkari, E., Guyomar, C., Clark, I.M., Allen, E., Hirsch, P.R., 2017. Land-use influences phosphatase gene microdiversity in soils. Environmental Microbiology19, 2740–2753.

[39]

Oliverio, A.M., Bissett, A., McGuire, K., Saltonstall, K., Turner, B.L., Fierer, N., 2020. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. mBio11, 10–1128.

[40]

Park, Y., Solhtalab, M., Thongsomboon, W., Aristilde, L., 2022. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. Environmental Microbiology Reports14, 3–24.

[41]

Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research25, 1043–1055.

[42]

Peng, Y., Duan, Y.S., Huo, W.G., Xu, M.G., Yang, X.Y., Wang, X.H., Wang, B.R., Blackwell, M.S.A., Feng, G., 2021. Soil microbial biomass phosphorus can serve as an index to reflect soil phosphorus fertility. Biology and Fertility of Soils57, 657–669.

[43]

Purakayastha, T.J., Bhadraray, S., Chhonkar, P.K., Verma, V., 2006. Microbial biomass phosphorus and alkaline phosphomonoesterase activity in the rhizosphere of different wheat cultivars as influenced by inorganic phosphorus and farmyard manure. Biology and Fertility of Soils43, 153–161.

[44]

Qin, X.C., Guo, S.F., Zhai, L.M., Pan, J.T., Khoshnevisan, B., Wu, S.X., Wang, H.Y., Yang, B., Ji, J.H., Liu, H.B., 2020. How long-term excessive manure application affects soil phosphorous species and risk of phosphorous loss in fluvo-aquic soil. Environmental Pollution266, 115304.

[45]

Quinn, J.P., Kulakova, A.N., Cooley, N.A., McGrath, J.W., 2007. New ways to break an old bond: the bacterial carbon–phosphorus hydrolases and their role in biogeochemical phosphorus cycling. Environmental Microbiology9, 2392–2400.

[46]

Santos-Beneit, F., 2015. The Pho regulon: a huge regulatory network in bacteria. Frontiers in Microbiology6, 402.

[47]

Schlatter, D.C., Gamble, J.D., Castle, S., Rogers, J., Wilson, M., 2023. Abiotic and biotic drivers of soil fungal communities in response to dairy manure amendment. Applied and Environmental Microbiology89, e01931–22.

[48]

Semenov, M.V., Krasnov, G.S., Semenov, V.M., Ksenofontova, N., Zinyakova, N.B., van Bruggen, A.H.C., 2021. Does fresh farmyard manure introduce surviving microbes into soil or activate soil-borne microbiota. Journal of Environmental Management294, 113018.

[49]

Shu, X.Y., Liu, W.J., Huang, H., Ye, Q.X., Zhu, S.X., Peng, Z.H., Li, Y.D., Deng, L.J., Yang, Z.P., Chen, H.L., Liu, D.H., Shi, J.L., 2023. Meta-analysis of organic fertilization effects on soil bacterial diversity and community composition in agroecosystems. Plants12, 3801.

[50]

Souza, R.C., Hungria, M., Cantão, M.E., Vasconcelos, A.T.R., Nogueira, M.A., Vicente, V.A., 2015. Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Applied Soil Ecology86, 106–112.

[51]

Tapia-Torres, Y., Rodríguez-Torres, M.D., Elser, J.J., Islas, A., Souza, V., García-Oliva, F., Olmedo-Álvarez, G., 2016. How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Applied and Environmental Microbiology82, 4652–4662.

[52]

Vincent, A.G., Vestergren, J., Gröbner, G., Persson, P., Schleucher, J., Giesler, R., 2013. Soil organic phosphorus transformations in a boreal forest chronosequence. Plant and Soil367, 149–162.

[53]

Wang, H., Chen, J.P., Ruan, Y.H., Sun, W., Wang, S.L., Wang, H.T., Zhang, Y.L., Guo, J.M., Wang, Y.C., Guo, H.Y., Shao, R.X., Yang, Q.H., 2024a. Metagenomes reveal the effect of crop rotation systems on phosphorus cycling functional genes and soil phosphorus avail–ability. Agriculture, Ecosystems & Environment364, 108886.

[54]

Wang, J.C., Zhu, Y.G., Ge, Y., 2024b. Global distribution pattern of soil phosphorus-cycling microbes under the influence of human activities. Global Change Biology30, e17477.

[55]

Wang, W., Jiang, Y., Cai, S.S., Li, Y.M., Sun, L., Qu, J.J., 2025. Metagenomics reveals the effects of organic material co-application on phosphorus cycling functional genes and bioavailable phosphorus. Agronomy15, 1187.

[56]

Wang, X.W., Guo, H., Wang, J.N., He, P., Kuzyakov, Y., Ma, M.J., Ling, N., 2024c. Microbial phosphorus-cycling genes in soil under global change. Global Change Biology30, e17281.

[57]

Wen, T., Xie, P.H., Yang, S.D., Niu, G.Q., Liu, X.Y., Ding, Z.X., Xue, C., Liu, Y.X., Shen, Q.R., Yuan, J., 2022. ggClusterNet: an R package for microbiome network analysis and modularity-based multiple network layouts. iMeta1, e32.

[58]

Wu, X.J., Cui, Z.L., Peng, J.J., Zhang, F.S., Liesack, W., 2022a. Genome-resolved metagenomics identifies the particular genetic traits of phosphate-solubilizing bacteria in agricultural soil. ISME Communications2, 17.

[59]

Wu, X.J., Peng, J.J., Liu, P.F., Bei, Q.C., Rensing, C., Li, Y., Yuan, H.M., Liesack, W., Zhang, F.S., Cui, Z.L., 2021. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Science of the Total Environment785, 147329.

[60]

Wu, X.J., Rensing, C., Han, D.F., Xiao, K.Q., Dai, Y.X., Tang, Z.X., Liesack, W., Peng, J.J., Cui, Z.L., Zhang, F.S., 2022b. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems7, e01107–21.

[61]

Xu, Q.C., Li, L., Guo, J.J., Guo, H.Y., Liu, M.Q., Guo, S.W., Kuzyakov, Y., Ling, N., Shen, Q.R., 2024. Active microbial population dynamics and life strategies drive the enhanced carbon use efficiency in high-organic matter soils. mBio15, e00177–24.

[62]

Yao, Q.M., Li, Z., Song, Y., Wright, S.J., Guo, X., Tringe, S.G., Tfaily, M.M., Paša-Tolić, L., Hazen, T.C., Turner, B.L., Mayes, M.A., Pan, C.L., 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology & Evolution2, 499–509.

[63]

Zeng, J.X., Tu, Q.C., Yu, X.L., Qian, L., Wang, C., Shu, L.F., Liu, F., Liu, S.W., Huang, Z.J., He, J.G., Yan, Q.Y., He, Z.L., 2022. PCycDB: a comprehensive and accurate database for fast analysis of phosphorus cycling genes. Microbiome10, 101.

[64]

Zhang, D.S., Kuzyakov, Y., Zhu, H.T., Alharbi, H.A., Li, H.B., Rengel, Z., 2022. Increased microbial biomass and turnover underpin efficient phosphorus acquisition by Brassica chinensis. Soil and Tillage Research223, 105492.

[65]

Zhang, X.Y., Dong, W.Y., Dai, X.Q., Schaeffer, S., Yang, F.T., Radosevich, M., Xu, L.L., Liu, X.Y., Sun, X.M., 2015. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer. Science of the Total Environment536, 59–67.

[66]

Zhang, Y.J., Gao, W., Ma, L., Luan, H.A., Tang, J.W., Li, R.N., Li, M.Y., Huang, S.W., Wang, L., 2023. Long-term partial substitution of chemical fertilizer by organic amendments influences soil microbial functional diversity of phosphorus cycling and improves phosphorus availability in greenhouse vegetable production. Agriculture, Ecosystems & Environment341, 108193.

[67]

Zou, T., Zhang, X., Davidson, E.A., 2022. Global trends of cropland phosphorus use and sustainability challenges. Nature611, 81–87.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (9032KB)

Supplementary files

Supplementary materials

304

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/