Vascular plant encroachment drives soil carbon loss and microbial assembly shifts across a successional gradient in a subtropical Sphagnum-dominated peatland

Meng-Jie Yu , Ting Wang , Jia-Peng Wang , Ze-Dong Lang , Zhi-Yi Zhao , Jing-Yan Hu , Yi-Yue Wang , Yu-Huan Wu

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260388

PDF (5589KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) :260388 DOI: 10.1007/s42832-026-0388-5
RESEARCH ARTICLE

Vascular plant encroachment drives soil carbon loss and microbial assembly shifts across a successional gradient in a subtropical Sphagnum-dominated peatland

Author information +
History +
PDF (5589KB)

Abstract

Peatlands are critical terrestrial carbon (C) pool, yet their C sequestration capacity is highly susceptible to climate changes. Warming- and drought-driven Sphagnum decline and vascular plant encroachment are expected to accelerate C decomposition and ecosystem transitions. Here, we established a wetland-to-forest successional gradient, including Herb-, Shrub-, Small-tree-, and Tree-dominated areas, to investigate how plant encroachment affected C dynamics and microbial community assembly in a subtropical peatland. Our findings revealed that soil nutrient availability and C contents significantly declined with plant encroachment, favoring microbial taxa adapted to distinct C substrates and oxygen regimes. Microbial diversity was lowest in the ecotone (Small-tree-dominated area), suggesting strong environmental filtering during community reassembly in response to peatland degradation. Microbial community assembly was predominantly governed by deterministic processes, with stochasticity playing a more substantial role in shaping bacterial assemblages than in fungal community. Moreover, bacterial co-occurrence networks became increasingly simplified, while fungal networks grew more complex along the successional gradient, indicating divergent microbial responses to peatland degradation. These findings provide new insights into C and microbial dynamics along a forest successional gradient in subtropical peatlands. The vascular encroachment could serve as an early warning signal of peatland degradation, highlighting the need for proactive conservation strategies.

Graphical abstract

Keywords

peatland degradation / Sphagnum mosses / vascular plant encroachment / carbon dynamic / microbial assembly

Highlight

● C dynamics and microbial traits along a wetland-to-forest gradient were assessed.

● Vascular plant encroachment reduced soil nutrient availability and C pools.

● Microbial diversity and communities shifted along the degradation gradient.

● Soils in the small-tree-dominated area exhibited the lowest microbial diversity.

● Stochasticity had a greater influence on bacterial than fungal community assembly.

Cite this article

Download citation ▾
Meng-Jie Yu, Ting Wang, Jia-Peng Wang, Ze-Dong Lang, Zhi-Yi Zhao, Jing-Yan Hu, Yi-Yue Wang, Yu-Huan Wu. Vascular plant encroachment drives soil carbon loss and microbial assembly shifts across a successional gradient in a subtropical Sphagnum-dominated peatland. Soil Ecology Letters, 2026, 8(2): 260388 DOI:10.1007/s42832-026-0388-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aguirre, D., Benhumea, A.E., McLaren, J.R., 2021. Shrub encroachment affects tundra ecosystem properties through their living canopy rather than increased litter inputs. Soil Biology and Biochemistry153, 108121.

[2]

Barabote, R.D., Xie, G., Leu, D.H., Normand, P., Necsulea, A., Daubin, V., Médigue, C., Adney, W.S., Xu, X.C., Lapidus, A., Parales, R.E., Detter, C., Pujic, P., Bruce, D., Lavire, C., Challacombe, J.F., Brettin, T.S., Berry, A.M., 2009. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Research19, 1033–1043.

[3]

Bardgett, R.D., Freeman, C., Ostle, N.J., 2008. Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal2, 805–814.

[4]

Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media3, 361–362.

[5]

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodology)57, 289–300.

[6]

Bennett, J.A., Klironomos, J., 2019. Mechanisms of plant-soil feedback: interactions among biotic and abiotic drivers. New Phytologist222, 91–96.

[7]

Blair, G.J., Lefroy, R.D.B., Lisle, L., 1995. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research46, 1459–1466.

[8]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson II, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[9]

Bragazza, L., Buttler, A., Robroek, B.J.M., Albrecht, R., Zaccone, C., Jassey, V.E.J., Signarbieux, C., 2016. Persistent high temperature and low precipitation reduce peat carbon accumulation. Global Change Biology22, 4114–4123.

[10]

Buttler, A., Bragazza, L., Laggoun-Défarge, F., Gogo, S., Toussaint, M.L., Lamentowicz, M., Chojnicki, B.H., Słowiński, M., Slowińska, S., Zielińska, M., Reczuga, M., Barabach, J., Marcisz, K., Lamentowicz, Ł., Harenda, K., Lapshina, E., Gilbert, D., Schlaepfer, R., Jassey, V.E.J., 2023. Ericoid shrub encroachment shifts aboveground-belowground linkages in three peatlands across Europe and Western Siberia. Global Change Biology29, 6772–6793.

[11]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[12]

Coyte, K.Z., Schluter, J., Foster, K.R., 2015. The ecology of the microbiome: networks, competition, and stability. Science350, 663–666.

[13]

Csárdi, G., Nepusz, T., 2006. The igraph software package for complex network research. InterJournal, Complex Systems1695, 1–9.

[14]

Cui, Y.X., Fang, L.C., Guo, X.B., Wang, X., Wang, Y.Q., Li, P.F., Zhang, Y.J., Zhang, X.C., 2018. Responses of soil microbial communities to nutrient limitation in the desert-grassland ecological transition zone. Science of the Total Environment642, 45–55.

[15]

de Chaves, M.G., Silva, G.G.Z., Rossetto, R., Edwards, R.A., Tsai, S.M., Navarrete, A.A., 2019. Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Frontiers in Microbiology10, 1680.

[16]

de la Cueva, S.C., Rodríguez, C.H., Cruz, N.O.S., Contreras, J.A.R., Miranda, J.L., 2016. Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water, Air, & Soil Pollution227, 91.

[17]

de Vries, F.T., Shade, A., 2013. Controls on soil microbial community stability under climate change. Frontiers in Microbiology4, 265.

[18]

Delgado-Baquerizo, M., Fry, E.L., Eldridge, D.J., de Vries, F.T., Manning, P., Hamonts, K., Kattge, J., Boenisch, G., Singh, B.K., Bardgett, R.D., 2018. Plant attributes explain the distribution of soil microbial communities in two contrasting regions of the globe. New Phytologist219, 574–587.

[19]

Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., Salles, J.F., 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America112, E1326–E1332.

[20]

Ellis, T., Hill, P.W., Fenner, N., Williams, G.G., Godbold, D., Freeman, C., 2009. The interactive effects of elevated carbon dioxide and water table draw-down on carbon cycling in a Welsh ombrotrophic bog. Ecological Engineering35, 978–986.

[21]

Etto, R.M., Jesus, E.C., Cruz, L.M., Schneider, B.S.F., Tomachewski, D., Urrea-Valencia, S., Gonçalves, D.R.P., Galvão, F., Ayub, R.A., Curcio, G.R., Steffens, M.B.R., Galvão, C.W., 2022. Influence of environmental factors on the tropical peatlands diazotrophic communities from the Southern Brazilian Atlantic Rain Forest. Letters in Applied Microbiology74, 543–554.

[22]

Evans, C.D., Bonn, A., Holden, J., Reed, M.S., Evans, M.G., Worrall, F., Couwenberg, J., Parnell, M., 2014. Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: linking process understanding to ecosystem service valuation. Ecosystem Services9, 5–19.

[23]

Fan, F.L., Yin, C., Tang, Y.J., Li, Z.J., Song, A.L., Wakelin, S.A., Zou, J., Liang, Y.C., 2014. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biology and Biochemistry70, 12–21.

[24]

Fenner, N., Freeman, C., 2011. Drought-induced carbon loss in peatlands. Nature Geoscience4, 895–900.

[25]

Gu, H., 1992. A new species in the genus Hynobius, H. amjiensis. In: China Zoological Society, ed. Zoological Science Research. Beijing: Chinese Forestry Press39–43.

[26]

Gu, Y.F., Bai, Y., Xiang, Q.J., Yu, X.M., Zhao, K., Zhang, X.P., Li, C.N., Liu, S.Q., Chen, Q., 2018. Degradation shaped bacterial and archaeal communities with predictable taxa and their association patterns in Zoige wetland at Tibet plateau. Scientific Reports8, 3884.

[27]

Harrell, F.E.Jr., Harrell, M.F.E.Jr., 2019. Package ‘Hmisc’. CRAN2018, 235–236.

[28]

Heijmans, M.M.P.D., van der Knaap, Y.A.M., Holmgren, M., Limpens, J., 2013. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology19, 2240–2250.

[29]

Hiiesalu, I., Bahram, M., Tedersoo, L., 2017. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats. Molecular Ecology26, 4846–4858.

[30]

Holmgren, M., Lin, C.Y., Murillo, J.E., Nieuwenhuis, A., Penninkhof, J., Sanders, N., van Bart, T., van Veen, H., Vasander, H., Vollebregt, M.E., Limpens, J., 2015. Positive shrub-tree interactions facilitate woody encroachment in boreal peatlands. Journal of Ecology103, 58–66.

[31]

IUCN SSC Amphibian Specialist Group, 2021. Hynobius amjiensis. The IUCN Red List of Threatened Species. e. T59089A63876823 [Online].

[32]

Jassey, V.E.J., Signarbieux, C., 2019. Effects of climate warming on Sphagnum photosynthesis in peatlands depend on peat moisture and species-specific anatomical traits. Global Change Biology25, 3859–3870.

[33]

Karimi, B., Maron, P.A., Boure, N.C.P., Bernard, N., Gilbert, D., Ranjard, L., 2017. Microbial diversity and ecological networks as indicators of environmental quality. Environmental Chemistry Letters15, 265–281.

[34]

Katoh, K., Misawa, K., Kuma, K., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research30, 3059–3066.

[35]

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics26, 1463–1464.

[36]

Kõljalg, U., Nilsson, R.H., Abarenkov, K., Tedersoo, L., Taylor, A.F.S., Bahram, M., Bates, S.T., Bruns, T.D., Bengtsson-Palme, J., Callaghan, T.M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G.W., Hartmann, M., Kirk, P.M., Kohout, P., Larsson, E., Lindahl, B.D., Lücking, R., Martín, M.P., Matheny, P.B., Nguyen, N.H., Niskanen, T., Oja, J., Peay, K.G., Peintner, U., Peterson, M., Põldmaa, K., Saag, L., Saar, I., Schüßler, A., Scott, J.A., Senés, C., Smith, M.E., Suija, A., Taylor, D.L., Telleria, M.T., Weiss, M., Larsson, K.H., 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology22, 5271–5277.

[37]

Kolton, M., Weston, D.J., Mayali, X., Weber, P.K., McFarlane, K.J., Pett-Ridge, J., Somoza, M.M., Lietard, J., Glass, J.B., Lilleskov, E.A., Shaw, A.J., Tringe, S., Hanson, P.J., Kostka, J.E., 2022. Defining the Sphagnum core microbiome across the North American continent reveals a central role for diazotrophic methanotrophs in the nitrogen and carbon cycles of boreal peatland ecosystems. mBio13, e03714–21.

[38]

Laiho, R., Laine, J., Trettin, C.C., Finér, L., 2004. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biology and Biochemistry36, 1095–1109.

[39]

Langwig, M.V., De Anda, V., Dombrowski, N., Seitz, K.W., Rambo, I.M., Greening, C., Teske, A.P., Baker, B.J., 2022. Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. The ISME Journal16, 307–320.

[40]

Liu, C., Ren, L.H., Yan, B.H., Luo, L., Zhang, J.C., Awasthi, M.K., 2021. Electron transfer and mechanism of energy production among syntrophic bacteria during acidogenic fermentation: a review. Bioresource Technology323, 124637.

[41]

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology15, 550.

[42]

Ma, X.Y., Xu, H., Cao, Z.Y., Shu, L., Zhu, R.L., 2022. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses. Global Change Biology28, 6419–6432.

[43]

Maslov, M.N., Maslova, O.A., 2022. Soil nitrogen mineralization and its sensitivity to temperature and moisture in temperate peatlands under different land-use management practices. CATENA210, 105922.

[44]

Naylor, D., Sadler, N., Bhattacharjee, A., Graham, E.B., Anderton, C.R., McClure, R., Lipton, M., Hofmockel, K.S., Jansson, J.K., 2020. Soil microbiomes under climate change and implications for carbon cycling. Annual Review of Environment and Resources45, 29–59.

[45]

Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., 2007. The vegan package. Community Ecology Package10, 631–637.

[46]

Parks, D.H., Tyson, G.W., Hugenholtz, P., Beiko, R.G., 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics30, 3123–3124.

[47]

Paul, E.A., 2016. The nature and dynamics of soil organic matter: plant inputs, microbial transformations, and organic matter stabilization. Soil Biology and Biochemistry98, 109–126.

[48]

Peralta, A.L., Ludmer, S., Kent, A.D., 2013. Hydrologic history influences microbial community composition and nitrogen cycling under experimental drying/wetting treatments. Soil Biology and Biochemistry66, 29–37.

[49]

Potter, C., Freeman, C., Golyshin, P.N., Ackermann, G., Fenner, N., McDonald, J.E., Ehbair, A., Jones, T.G., Murphy, L.M., Creer, S., 2017. Subtle shifts in microbial communities occur alongside the release of carbon induced by drought and rewetting in contrasting peatland ecosystems. Scientific Reports7, 11314.

[50]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[51]

Ratcliffe, J.L., Creevy, A., Andersen, R., Zarov, E., Gaffney, P.P.J., Taggart, M.A., Mazei, Y., Tsyganov, A.N., Rowson, J.G., Lapshina, E.D., Payne, R.J., 2017. Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland. Science of the Total Environment 607–608, 607–608.

[52]

Rawat, S.R., Männistö, M.K., Bromberg, Y., Häggblom, M.M., 2012. Comparative genomic and physiological analysis provides insights into the role of Acidobacteria in organic carbon utilization in Arctic tundra soils. FEMS Microbiology Ecology82, 341–355.

[53]

Richy, E., Cabello-Yeves, P.J., Hernandes-Coutinho, F., Rodriguez-Valera, F., González-Álvarez, I., Gandois, L., Rigal, F., Lauga, B., 2024. How microbial communities shape peatland carbon dynamics: new insights and implications. Soil Biology and Biochemistry191, 109345.

[54]

Shen, J., Liang, Z.Y., Kuzyakov, Y., Li, W.T., He, Y.T., Wang, C.Q., Xiao, Y., Chen, K., Sun, G., Lei, Y.B., 2023. Dissolved organic matter defines microbial communities during initial soil formation after deglaciation. Science of the Total Environment878, 163171.

[55]

Shivani, Y., Subhash, Y., Tushar, L., Sasikala, C., Ramana, C.V., 2015. Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta. Systematic and Applied Microbiology38, 110–114.

[56]

Sierra, C.A., Malghani, S., Loescher, H.W., 2017. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences14, 703–710.

[57]

Sloan, W.T., Lunn, M., Woodcock, S., Head, I.M., Nee, S., Curtis, T.P., 2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology8, 732–740.

[58]

Sokol, N.W., Slessarev, E., Marschmann, G.L., Nicolas, A., Blazewicz, S.J., Brodie, E.L., Firestone, M.K., Foley, M.M., Hestrin, R., Hungate, B.A., Koch, B.J., Stone, B.W., Sullivan, M.B., Zablocki, O., LLNL Soil Microbiome Consortium, Pett-Ridge, J., 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology20, 415–430.

[59]

Stegen, J.C., Lin, X.J., Fredrickson, J.K., Chen, X.Y., Kennedy, D.W., Murray, C.J., Rockhold, M.L., Konopka, A., 2013. Quantifying community assembly processes and identifying features that impose them. The ISME Journal7, 2069–2079.

[60]

Stegen, J.C., Lin, X.J., Fredrickson, J.K., Konopka, A.E., 2015. Estimating and mapping ecological processes influencing microbial community assembly. Frontiers in Microbiology6, 370.

[61]

Stegen, J.C., Lin, X.J., Konopka, A.E., Fredrickson, J.K., 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal6, 1653–1664.

[62]

Sui, X., Zhang, R.T., Frey, B., Yang, L.B., Liu, Y.N., Ni, H.W., Li, M.H., 2021. Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China. Ecology and Evolution11, 2194–2208.

[63]

Urbanová, Z., Bárta, J., 2016. Effects of long-term drainage on microbial community composition vary between peatland types. Soil Biology and Biochemistry92, 16–26.

[64]

Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry19, 703–707.

[65]

Walker, T.N., Garnett, M.H., Ward, S.E., Oakley, S., Bardgett, R.D., Ostle, N.J., 2016. Vascular plants promote ancient peatland carbon loss with climate warming. Global Change Biology22, 1880–1889.

[66]

Wallenstein, M.D., McMahon, S., Schimel, J., 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology59, 428–435.

[67]

Ward, S.E., Orwin, K.H., Ostle, N.J., Briones, M.J.I., Thomson, B.C., Griffiths, R.I., Oakley, S., Quirk, H., Bardgett, R.D., 2015. Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology96, 113–123.

[68]

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T.L., Miller, E., Bache, S.M., Müller, K., Ooms, J., Robinson, D., Seidel, D.P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., Yutani, H., 2019. Welcome to the tidyverse. Journal of Open Source Software4, 1686.

[69]

Wickham, H., Chang, W., Wickham, M.H., 2016. Package “ggplot2”. Create Elegant Data Visualisations Using the Grammar of Graphics. Version2, 1–189.

[70]

Wiedermann, M.M., Kane, E.S., Potvin, L.R., Lilleskov, E.A., 2017. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands. Soil Biology and Biochemistry108, 1–8.

[71]

Wu, Y.N., Xu, N., Wang, H., Li, J.B., Zhong, H.X., Dong, H.Y., Zeng, Z.W., Zong, C., 2021. Variations in the diversity of the soil microbial community and structure under various categories of degraded wetland in Sanjiang Plain, northeastern China. Land Degradation & Development32, 2143–2156.

[72]

Yu, M.J., Yue, X.R., Wang, T., Shen, Q.L., Wang, X.T., Wu, Y.H., 2024. Different vegetation communities did not amplify spatial heterogeneity of soil microbial diversity and community in a subtropical Sphagnum-dominated peatland. Plant and Soil495, 271–285.

[73]

Zeglin, L.H., Dahm, C.N., Barrett, J.E., Gooseff, M.N., Fitpatrick, S.K., Takacs-Vesbach, C.D., 2011. Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microbial Ecology61, 543–556.

[74]

Zhang, Y., Ma, C., Zhao, N., Shi, W., Liu, D., Zhu, C., Zheng, C., 2015. Late Holocene Rb/Sr ratios as a paleoclimate procy in the Qianmutian Peat of Tianmu Mountains, Zhejiang Province. Journal of Stratigraphy39, 97–107.

[75]

Zhang, L.Y., Li, Y., Sun, X.X., Adams, J.M., Wang, L.F., Zhang, H.J., Chu, H.Y., 2023. More robust co-occurrence patterns and stronger dispersal limitations of bacterial communities in wet than dry seasons of riparian wetlands. mSystems8, e01187–22.

[76]

Zhang, Y., Shi, F.X., Mao, R., 2019. Alnus sibirica encroachment promotes dissolved organic carbon biodegradation in a boreal peatland. Science of the Total Environment695, 133882.

[77]

Zhao, M.L., Wang, M., Zhao, Y.T., Hu, N.L., Wang, G.D., Jiang, M., 2023. Variations in microbial carbon metabolic activities in sedge peatlands along an altitudinal gradient in the Changbai Mountain, China. CATENA220, 106722.

[78]

Zhou, J.Z., Ning, D.L., 2017. Stochastic community assembly: does it matter in microbial ecology. Microbiology and Molecular Biology Reviews81, e00002-17.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5589KB)

Supplementary files

Supplementary materials

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/