Plant uptake of available N from different layers varies among species in an alpine meadow of permafrost regions on the Qinghai-Tibetan Plateau

Fei Peng , Jianbo Sun , Chimin Lai , Weisong Liu , Chengyang Li , Xiaojie Chen , Ben Chen , Xian Xue , Ji Chen , Carly Stevens

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260387

PDF (2085KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) :260387 DOI: 10.1007/s42832-026-0387-6
RESEARCH ARTICLE

Plant uptake of available N from different layers varies among species in an alpine meadow of permafrost regions on the Qinghai-Tibetan Plateau

Author information +
History +
PDF (2085KB)

Abstract

The uptake of permafrost thaw released nitrogen (N) could benefit plant growth and change vegetation community composition in a warming climate in cold regions. However, the capacity of co-existing species to take up different forms of available N beyond the root zone remains largely unknown in permafrost areas with a deep active layer. In situ 15NH4Cl, K15NO3 and C2H5NO2 (glycine) labelling were conducted up to 70 cm depth for five species. Averaged across the five species, the summed 15N recovery rate of the three tracers was 10.71% ± 10.69%, 1.69% ± 2.51%, 1.54% ± 4.16% and 0.7% ± 2.23% at 0‒15, 15‒30, 30‒50 and 50‒70 cm, respectively. Kobresia humilis had the largest N uptake diversity. The NO3-N recovered from 30‒70 cm for K. humilis and Saussurea japonica was much higher than other species, accounting for 23% and 13% of the total N recovered at 0‒70 cm. Root surface area was positively related to the recovery rate of inorganic N at soil below 15 cm whereas a species’ N requirement negatively to the N recovery at 0‒15 cm. The relative cover of a species in a community was negatively related to a species’ N requirement but showed no relationship with the N recovery rate or N uptake diversity. Plant communitycomposition may not be affected by vertical N uptake patterns of co-existing species. Species that can take up N from deep soil layers may gain competitive advantages, thereby altering the plant community structure in a warm climate in the future.

Graphical abstract

Keywords

nitrogen uptake / 15N tracing / alpine meadow / permafrost / plant functional groups

Highlight

● The N uptake of five common species from different soil depths in alpine meadow was investigated.

● Plants primarily took up more than 75% from the top 15 cm.

● The dominant sedge species and rare forbs species could take up N from soil as deep as 70 cm.

● The N uptake capacity is unrelated with the relative coverage.

Cite this article

Download citation ▾
Fei Peng, Jianbo Sun, Chimin Lai, Weisong Liu, Chengyang Li, Xiaojie Chen, Ben Chen, Xian Xue, Ji Chen, Carly Stevens. Plant uptake of available N from different layers varies among species in an alpine meadow of permafrost regions on the Qinghai-Tibetan Plateau. Soil Ecology Letters, 2026, 8(2): 260387 DOI:10.1007/s42832-026-0387-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albano, L.J., Turetsky, M.T., Mack, M.C., Kane, E.S. 2021. Deep roots of Carex aquatilis have greater amonium uptake capacity than shallow roots in petaland following permafrost thaw. Plant and Soil465, 261–272.

[2]

Ashton, I.W., Miller, A.E., Bowman, W.D., Suding, K.N., 2010. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology91, 3252–3260.

[3]

Beermann, F., Langer, M., Wetterich, S., Strauss, J., Boike, J., Fiencke, C., Schirrmeister, L., Pfeiffer, E.M., Kutzbach, L., 2017. Permafrost thaw and liberation of inorganic nitrogen in eastern Siberia. Permafrost and Periglacial Processes28, 605–618.

[4]

Björk, R.G., Majdi, H., Klemedtsson, L., Lewis-Jonsson, L., Molau, U., 2007. Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytologist176, 862–873.

[5]

Bjorkman, A.D., García Criado, M., Myers-Smith, I.H., Ravolainen, V., Jónsdóttir, I.S., Westergaard, K.B., Lawler, J.P., Aronsson, M., Bennett, B., Gardfjell, H., Heiðmarsson, S., Stewart, L., Normand, S., 2020. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio49, 678–692.

[6]

Blume-Werry, G., Milbau, A., Teuber, L.M., Johansson, M., Dorrepaal, E., 2019. Dwelling in the deep – strongly increased root growth and rooting depth enhance plant interactions with thawing permafrost soil. New Phytologist223, 1328–1339.

[7]

Cao, J.R., Yang, L.Y., Pang, S., Yang, J.J., Hu, Y.C., Li, Y.C., Li, L.H., Wang, Q.B., 2021. Convergent nitrogen uptake patterns and divergent nitrogen acquisition strategies of coexisting plant species in response to long-term nitrogen enrichment in a temperate grassland. Environmental and Experimental Botany185, 104412.

[8]

Chen, H., Ju, P.J., Zhu, Q.A., Xu, X.L., Wu, N., Gao, Y.H., Feng, X.J., Tian, J.Q., Niu, S.L., Zhang, Y.J., Peng, C.H., Wang, Y.F., 2022. Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nature Reviews Earth & Environment3, 701–716.

[9]

Clemmensen, K.E., Sorensen, P.L., Michelsen, A., Jonasson, S., Ström, L., 2008. Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia155, 771–783.

[10]

Crawford, N.M., Glass A.D.M. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science3, 389–395.

[11]

De Baets, S., Poesen, J., Knapen, A., Barberá, G.G., Navarro, J.A., 2007. Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant and Soil294, 169–183.

[12]

Delhon, P., Gojon, A., Tillard, P., Lucien, P. 1996. Diurnal regulation of NO3 uptake in soybean plants IV. Dependence on current photosynthesis and sugar availability to the roots. Journal of Experimental Botany300, 893–900.

[13]

Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D., Gorné, L.D., 2016. The global spectrum of plant form and function. Nature529, 167–171.

[14]

Eissenstat, D., 2000. Root structure and function in an ecological context. New Phytologist148, 353–354.

[15]

Elmendorf, S.C., Henry, G.H.R., Hollister, R.D., Björk, R.G., Boulanger-Lapointe, N., Cooper, E.J., Cornelissen, J.H.C., Day, T.A., Dorrepaal, E., Elumeeva, T.G., Gill, M., Gould, W.A., Harte, J., Hik, D.S., Hofgaard, A., Johnson, D.R., Johnstone, J.F., Jónsdóttir, I.S., Jorgenson, J.C., Klanderud, K., Klein, J.A., Koh, S., Kudo, G., Lara, M., Lévesque, E., Magnússon, B., May, J.L., Mercado-Díaz, J.A., Michelsen, A., Molau, U., Myers-Smith, I.H., Oberbauer, S.F., Onipchenko, V.G., Rixen, C., Martin Schmidt, N., Shaver, G.R., Spasojevic, M.J., Þórhallsdóttir, Þ.E., Tolvanen, A., Troxler, T., Tweedie, C.E., Villareal, S., Wahren, C.H., Walker, X., Webber, P.J., Welker, J.M., Wipf, S., 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change2, 453–457.

[16]

Ficken, C.D., Wright, J.P., 2019. Nitrogen uptake and biomass resprouting show contrasting relationships with resource acquisitive and conservative plant traits. Journal of Vegetation Science30, 65–74.

[17]

Finger, R.A., Turetsky, M.T., Kielland, K., Ruess R.W., Mack M.C., Eurkirchen, E.S. 2016. Effects of permafrost thaw on nitrogen availability and plant-soil interactions in a boreal Alaskan lowland. Journal of Ecology104, 1542–1554.

[18]

Freschet, G.T., Roumet, C., Comas, L.H., Weemstra, M., Bengough, A.G., Rewald, B., Bardgett, R.D., De Deyn, G.B., Johnson, D., Klimešová, J., Lukac, M., McCormack, M.L., Meier, I.C., Pagès, L., Poorter, H., Prieto, I., Wurzburger, N., Zadworny, M., Bagniewska-zadworna, A., Blancaflor, E.B., Brunner, I., Gessler, A., Hobbie, S.E., Iversen, C.M., Mommer, L., Picon-Cochard, C., Postma, J.A., Rose, L., Ryser, P., Scherer-Lorenzen, M., Soudzilovskaia, N.A., Sun, T., Valverde-Barrantes, O.J., Weigelt, A., York, L.M., Stokes, A., 2021. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist232, 1123–1158.

[19]

Gong, C.R., Huangfu, C.H., Hui, D.F., 2025. Linking nitrogen acquisition and use with species abundance along a hydrological gradient in a subtropical sedge-dominated riparian ecosystem. CATENA250, 108757.

[20]

Hansen, H.F.E., Elberling, B., 2023. Spatial distribution of bioavailable inorganic nitrogen from thawing permafrost. Global Biogeochemical Cycles37, e2022GB007589.

[21]

Heijmans, M.M.P.D., Magnússon, R.Í., Lara, M.J., Frost, G.V., Myers-Smith, I.H., van Huissteden, J., Jorgenson, M.T., Fedorov, A.N., Epstein, H.E., Lawrence, D.M., Limpens, J., 2022. Tundra vegetation change and impacts on permafrost. Nature Reviews Earth & Environment3, 68–84.

[22]

Herben, T., Vozabova, T., Hadincova, V., Kahulec, F., Mayerova, H., Pechackova, S., Skalova, H., Krak, K. 2018. VEertical root distribution of individual species in a mountain grassland community: Does it respond to neighbours. Journal of Ecology106, 1083–1095.

[23]

Herben, T., Sasek, J., Balsankova, T., Hadincova, V., Krahulec, F., Krak K., Pechackova, S., Skaloa H. 2022. The shape of root systems in a mountain meadow: plastic responses or species specific architectural blueprints. New Phytologist235, 2223–223.

[24]

Hewitt, R.E., DeVan, M.R., Lagutina, I.V., Genet, H., McGuire, A.D., Taylor, D.L., Mack, M.C., 2020. Mycobiont contribution to tundra plant acquisition of permafrost-derived nitrogen. New Phytologist226, 126–141.

[25]

Hewitt, R.E., DeVan, M.R., Taylor, D.L., Mack, M.C., 2024. Root-associated fungi and acquisitive root traits facilitate permafrost nitrogen uptake from long-term experimentally warmed tundra. New Phytologist242, 1704–1716.

[26]

Hewitt, R.E., Taylor, D.L., Genet, H., McGuire, A.D., Mack, M.C., 2019. Below-ground plant traits influence tundra plant acquisition of newly thawed permafrost nitrogen. Journal of Ecology107, 950–962.

[27]

Hong, J.T., Ma, X.X., Yan,Y., Zhang,X.K., Wang, X.D. 2018. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau. Plant and Soil424, 63–72.

[28]

Iversen, C.M., Sloan, V.L., Sullivan, P.F., Euskirchen, E.S., McGuire, A.D., Norby, R.J., Walker, A.P., Warren, J.M., Wullschleger, S.D., 2015. The unseen iceberg: plant roots in arctic tundra. New Phytologist205, 34–58.

[29]

Jesch, A., Barry, K.E., Ravenek, J.M., Bachmann, D., Strecker, T., Weigelt, A., Buchmann, N., de Kroon, H., Gessler, A., Mommer, L., Roscher, C., Scherer-Lorenzen, M., 2018. Below-ground resource partitioning alone cannot explain the biodiversity–ecosystem function relationship: a field test using multiple tracers. Journal of Ecology106, 2002–2018.

[30]

Keuper, F., Dorrepaal, E., van Bodegom, P.M., van Logtestijn, R., Venhuizen, G., van Hal, J., Aerts, R., 2017. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Global Change Biology23, 4257–4266.

[31]

Keuper, F., van Bodegom, P.M., Dorrepaal, E., Weedon, J.T., van Hal, J., van Logtestijn, R.S.P., Aerts, R., 2012. A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands. Global Change Biology18, 1998–2007.

[32]

Klaminder, J., Giesler, R., Makoto, K., 2013. Physical mixing between humus and mineral matter found in cryoturbated soils increases short-term heterotrophic respiration rates. Soil Biology and Biochemistry57, 922–924.

[33]

Kou, D., Yang, G.B., Li, F., Feng, X.H., Zhang, D.Y., Mao, C., Zhang, Q.W., Peng, Y.F., Ji, C.J., Zhu, Q.A., Fang, Y.T., Liu, X.Y., Xu-Ri, Li, S.Q., Deng, J., Zheng, X.H., Fang, J.Y., Yang, Y.H., 2020. Progressive nitrogen limitation across the Tibetan alpine permafrost region. Nature Communications11, 3331.

[34]

Kuzyakov, Y., Xu, X.L., 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist198, 656–669.

[35]

Lacroix, F., Zaehle, S., Caldararu, S., Schaller, J., Stimmler, P., Holl, D., Kutzbach, L., Göckede, M., 2022. Mismatch of N release from the permafrost and vegetative uptake opens pathways of increasing nitrous oxide emissions in the high Arctic. Global Change Biology28, 5973–5990.

[36]

Lai, C.M., Hu, Q.W., Sun, J.B., Li, C.Y., Chen, X.J., Chen, B., Xue, X., Chen, J., Hou, F.J., Xu, G., Du, W.C., Stevens, C., Peng, F., Zhou, J., 2024. Varying soil moisture and pH with alpine meadow degradation affect nitrogen preference of dominant species. Biology and Fertility of Soils60, 1041–1053.

[37]

Lai, C.M., Peng, F., Sun, J.B., Zhou, J., Li, C.Y., Xu, X.L., Chen, X.J., You, Q.G., Sun, H.Y., Sun, J., Xue, X., Lambers, H., 2023. Niche differentiation and higher uptake of available nitrogen maintained the productivity of alpine meadow at early degradation. Biology and Fertility of Soils59, 35–49.

[38]

Lambers, H., Finnegan, P.M., Laliberte, E., Pearse, S.J., Ryan, M.H., Shane, M.W., Veneklaas E.J. 2011. Phosphorus nutrition of proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops?. Plant Physiology156, 1058–1066.

[39]

Lee, R.B. 1993. Control of net uptake of nutrients by regulation of influx in barley plants recovering from nutrient deficiency. Annals of Botany72, 223–230.

[40]

Li, C.Y., Lai, C.M., Peng, F., Zhou, J., Zhang, W., Song, X.L., Luo, S.Y., Sun, J.B., Chen, X.J., Chen, B., Chen, J., Xue, X., 2024. Restoration of degraded alpine meadows from the perspective of plant–soil feedbacks. Biology and Fertility of Soils60, 941–953.

[41]

Li, C.Y., Peng, F., Lai, C.M., Xue, X., You, Q.G., Chen, X.J., Liao, J., Ma, S.X., Wang, T., 2021. Plant community changes determine the vegetation and soil δ13C and δ15N enrichment in degraded alpine grassland. Land Degradation & Development32, 2371–2382.

[42]

Li, X.J., Zhang, X.Z., Wu, J.S., Shen, Z.X., Zhang, Y.J., Xu, X.L., Fan, Y.Z., Zhao, Y.P., Yan, W., 2011. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environmental Earth Sciences64, 1911–1919.

[43]

Li, X.L., Zhou, J., Du, H.Q., Peng, F., Zhong, H.T., Wu, Y.H., Luo, J., Sun, S.Q., Ming, Y.X., Sun, H.Y., Chen, Y., Wasaki, J., Lambers, H., 2025. Plant nutrient-acquisition strategies contribute to species replacement during primary succession. Journal of Ecology113, 988–1003.

[44]

Liu, M., Yu, C.L., Zhu, T.B., Xu, X.L., Wang, Y.F., 2022. Restoration of degraded alpine grasslands alters plant–microbial competition for nitrogen. Biology and Fertility of Soils58, 803–814.

[45]

Mao, C., Kou, D., Chen, L.Y., Qin, S.Q., Zhang, D.Y., Peng, Y.F., Yang, Y.H., 2020. Permafrost nitrogen status and its determinants on the Tibetan Plateau. Global Change Biology26, 5290–5302.

[46]

Mao, J.H., Wang, J.S., Liao, J.Q., Xu, X.L., Tian, D.S., Zhang, R.Y., Peng, J.L., Niu, S.L., 2025. Plant nitrogen uptake preference and drivers in natural ecosystems at the global scale. New Phytologist246, 972–983.

[47]

McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L., Swan, J.A., 1990. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist115, 495–501.

[48]

Miehe, G., Schleuss, P.M., Seeber, E., Babel, W., Biermann, T., Braendle, M., Chen, F.H., Coners, H., Foken, T., Gerken, T., Graf, H.F., Guggenberger, G., Hafner, S., Holzapfel, M., Ingrisch, J., Kuzyakov, Y., Lai, Z.P., Lehnert, L., Leuschner, C., Li, X.G., Liu, J.Q., Liu, S.B., Ma, Y.M., Miehe, S., Mosbrugger, V., Noltie, H.J., Schmidt, J., Spielvogel, S., Unteregelsbacher, S., Wang, Y., Willinghöfer, S., Xu, X.L., Yang, Y.P., Zhang, S.R., Opgenoorth, L., Wesche, K., 2019. The Kobresia pygmaea ecosystem of the Tibetan highlands – Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Science of the Total Environment648, 754–771.

[49]

Miller, A.J., Cramer, M.D., 2005. Root nitrogen acquisition and assimilation. Plant and Soil274, 1–36.

[50]

Moreau, D., Pivato, B., Bru, D., Busset, H., Deau, F., Faivre, C., Matejicek, A., Strbik, F., Philippot, L., Mougel, C., 2015. Plant traits related to nitrogen uptake influence plant-microbe competition. Ecology96, 2300–2310.

[51]

Nacry, P., Bouguyon, E., Gojon, A., 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil370, 1–29.

[52]

Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytologist182, 31–48.

[53]

Natali, S.M., Schuur, E.A.G., Webb, E.E., Pries, C.E.H., Crummer, K.G., 2014. Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology95, 602–608.

[54]

O'Brien, J. A., Vega, A.,Bouguyon, E., Krouk, G., Gojon, A.,Coruzzi, G.,Gutiérrez, R. A. 2016. Nitrate transport, sensing and response in plants. Molecular Plant9, 837–856.

[55]

Pedersen, E.P., Elberling, B., Michelsen, A., 2020. Foraging deeply: depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic. Global Change Biology26, 6523–6536.

[56]

Raab, T.K., Lipson, D.A., Monson, R.K., 1996. Non-mycorrhizal uptake of amino acids by roots of the alpine sedge Kobresia myosuroides: implications for the alpine nitrogen cycle. Oecologia108, 488–494.

[57]

Ravn, N.M.R., Elberling, B., Michelsen, A., 2017. The fate of 13C15N labelled glycine in permafrost and surface soil at simulated thaw in mesocosms from high arctic and subarctic ecosystems. Plant and Soil419, 201–218.

[58]

Reich, P.B., 2014. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology102, 275–301.

[59]

Salmon, V.G., Schädel, C., Bracho, R., Pegoraro, E., Celis, G., Mauritz, M., Mack, M.C., Schuur, E.A.G., 2018. Adding depth to our understanding of nitrogen dynamics in permafrost soils. Journal of Geophysical Research: Biogeosciences123, 2497–2512.

[60]

Scheifes, D.J.P., te Beest, M., Olde Venterink, H., Jansen, A., Kinsbergen, D.T.P., Wassen, M.J., 2024. The plant root economics space in relation to nutrient limitation in Eurasian herbaceous plant communities. Ecology Letters27, e14402.

[61]

Schuur, E.A.G., Crummer, K.G., Vogel, J.G., MacK, M.C., 2007. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems10, 280–292.

[62]

Schuur, E.A.G., McGuire, A.D., Schädel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E., 2015. Climate change and the permafrost carbon feedback. Nature520, 171–179.

[63]

Siddiqi, M.Y., Glass, A.D., Ruth, T.J., Rufty, T.J. 1990. Studies of the uptake of nitrate in barely 2. Energetics, Plant Physiology93, 1585–1589.

[64]

Strauss, J., Marushchak, M.E., van Delden, L., Sanders, T., Biasi, C., Voigt, C., Jongejans, L.L., Treat, C., 2024. Potential nitrogen mobilisation from the Yedoma permafrost domain. Environmental Research Letters19, 043002.

[65]

Tian, Y.Q., Cui, Y., Wen, S.H., Li, X.B., Song, M.H., Chen, X.X., Zhang, Y., Xu, X.L., Kuzyakov, Y., 2023. Clonal integration under heterogeneous water environment increases plant biomass and nitrogen uptake in a temperate steppe. Plant and Soil491, 145–159.

[66]

Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.

[67]

Vierheilig, H., Coughlan, A.P., Wyss, U., Piché, Y., 1998. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and Environmental Microbiology64, 5004–5007.

[68]

Wang, P., Limpens, J., Nauta, A., van Huissteden, C., Quirina van Rijssel, S., Mommer, L., de Kroon, H., Maximov, T.C., Heijmans, M.M.P.D., 2018. Depth-based differentiation in nitrogen uptake between graminoids and shrubs in an Arctic tundra plant community. Journal of Vegetation Science29, 34–41.

[69]

Wickland, K.P., Waldrop, M.P., Aiken, G.R., Koch, J.C., Jorgenson, M.T., Striegl, R.G., 2018. Dissolved organic carbon and nitrogen release from boreal Holocene permafrost and seasonally frozen soils of Alaska. Environmental Research Letters13, 065011.

[70]

Wild, B., Alves, R.J.E., Bárta, J., Čapek, P., Gentsch, N., Guggenberger, G., Hugelius, G., Knoltsch, A., Kuhry, P., Lashchinskiy, N., Mikutta, R., Palmtag, J., Prommer, J., Schnecker, J., Shibistova, O., Takriti, M., Urich, T., Richter, A., 2018. Amino acid production exceeds plant nitrogen demand in Siberian tundra. Environmental Research Letters13, 034002.

[71]

Wu, Q.B., Zhang, T.J., Liu, Y.Z., 2010. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global and Planetary Change72, 32–38.

[72]

Wu, Y.B., Zhang, J., Deng, Y.C., Wu, J., Wang, S.P., Tang, Y.H., Cui, X.Y., 2014. Effects of warming on root diameter, distribution, and longevity in an alpine meadow. Plant Ecology215, 1057–1066.

[73]

Xie, M.Z., Zhao, L., Wu, X.D., Tian, L.M., Yue, G.Y., Zhou, H.Y., Wu, Z.M., 2020. Seasonal variations of nitrogen in permafrost-affected soils of the Qinghai-Tibetan Plateau. CATENA195, 104793.

[74]

Xu, M.H., Liu, M., Xue, X., Zhai, D.T., 2016. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. Journal of Arid Land8, 773–786.

[75]

Xu, X.L., Ouyang, H., Richter, A., Wanek, W., Cao, G.M., Kuzyakov, Y., 2011. Spatio-temporal variations determine plant-microbe competition for inorganic nitrogen in an alpine meadow. Journal of Ecology99, 563–571.

[76]

You, C.M., Wu, F.Z., Gan, Y.M., Yang, W.Q., Hu, Z.M., Xu, Z.F., Tan, B., Liu, L., Ni, X.Y., 2017. Grass and forbs respond differently to nitrogen addition: a meta-analysis of global grassland ecosystems. Scientific Reports7, 1563.

[77]

Yun, H.B., Zhu, Q., Tang, J., Zhang, W.X., Chen, D.L., Ciais, P., Wu, Q.B., Elberling, B., 2023. Warming, permafrost thaw and increased nitrogen availability as drivers for plant composition and growth across the Tibetan Plateau. Soil Biology and Biochemistry182, 109041.

[78]

Zhu, Q., Iversen, C.M., Riley, W.J., Slette, I.J., Vander Stel, H.M., 2016. Root traits explain observed tundra vegetation nitrogen uptake patterns: implications for trait-based land models. Journal of Geophysical Research: Biogeosciences121, 3101–3112.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2085KB)

Supplementary files

Supplementary materials

2464

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/