The enhanced nitrous oxide emissions are driven by prokaryotic ammonia oxidizers and nirK-denitrifiers under various combinations of nitrogen and rice straw in a paddy soil

Chunyan Wu , Yinxiu Liu , Xu Tang , Tao Sun , Che Tan , Yu Zeng , Yan Li , Chang Yin , Yongchao Liang

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260386

PDF (4254KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260386 DOI: 10.1007/s42832-026-0386-7
RESEARCH ARTICLE

The enhanced nitrous oxide emissions are driven by prokaryotic ammonia oxidizers and nirK-denitrifiers under various combinations of nitrogen and rice straw in a paddy soil

Author information +
History +
PDF (4254KB)

Abstract

Nitrous oxide (N2O), a potent greenhouse gas, contributes significantly to global warming, with agricultural soils being a major source due to intensified nitrogen fertilizer use. While straw incorporation is widely adopted to enhance soil organic carbon sequestration and nutrient retention, its impact on N2O emissions remains controversial. This study investigated the effects of various combinations of rice straw and nitrogen fertilizer on N2O emissions in a paddy soil through a controlled microcosm experiment. We monitored CO2 and N2O fluxes, ammonium and nitrate dynamics, the activities of key extracellular enzymes involved in carbon and nitrogen cycling, and the abundances of N2O-related microbial guilds. Results showed that straw amendment stimulated microbial activity and enhanced CO2 emissions, whereas nitrogen addition suppressed heterotrophic respiration. Both straw and nitrogen amendments significantly increased N2O emissions, with a synergistic effect observed under combined applications. N2O emissions were primarily driven by nitrogen amendment and exhibited significant positive correlations with the abundances of ammonia-oxidizing bacteria (AOB), complete ammonia oxidizers clade A (comammox clade A), nirK-denitrifiers, and fungal denitrifiers; moreover, random forest modeling revealed that the abundances of AOB, comammox clade A, nirK-denitrifiers accounted for a substantial portion of the variation in cumulative N2O emissions. Additionally, partial least squares path modeling (PLS-PM) identified a hierarchical regulatory cascade involving nitrogen availability, microbial community dynamics, and enzyme activity as the key mechanisms governing N2O fluxes. Overall, these findings underscore the critical roles of prokaryotic ammonia oxidizers and nirK-denitrifiers in modulating N2O emissions and provide valuable insights for developing field management strategies to mitigate greenhouse gas emissions from agricultural soils receiving straw amendment.

Graphical abstract

Keywords

nitrous oxide / straw / nitrogen / AOB / nirK-denitrifiers

Highlight

● Straw and nitrogen amendments synergistically enhance N2O emissions from paddy soils.

● Prokaryotic ammonia oxidizers and nirK -denitrifiers emerge as key drivers of enhanced N2O emissions.

● Nitrogen substrate availability governs N2O emissions under straw amendments through a hierarchical regulatory cascade.

● Distinct niche differentiation among functionally similar N2O-related guilds shapes emission patterns.

Cite this article

Download citation ▾
Chunyan Wu, Yinxiu Liu, Xu Tang, Tao Sun, Che Tan, Yu Zeng, Yan Li, Chang Yin, Yongchao Liang. The enhanced nitrous oxide emissions are driven by prokaryotic ammonia oxidizers and nirK-denitrifiers under various combinations of nitrogen and rice straw in a paddy soil. Soil Ecology Letters, 2026, 8(2): 260386 DOI:10.1007/s42832-026-0386-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abalos, D., Recous, S., Butterbach-Bahl, K., De Notaris, C., Rittl, T.F., Topp, C.F.E., Petersen, S.O., Hansen, S., Bleken, M.A., Rees, R.M., Olesen, J.E., 2022. A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment828, 154388.

[2]

Aldossari, N., Ishii, S., 2021. Fungal denitrification revisited – recent advancements and future opportunities. Soil Biology and Biochemistry157, 108250.

[3]

Archer, E., 2025. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.5.4 [Online].

[4]

Assémien, F.L., Cantarel, A.A.M., Florio, A., Lerondelle, C., Pommier, T., Gonnety, J.T., Le Roux, X., 2019. Different groups of nitrite-reducers and N2O-reducers have distinct ecological niches and functional roles in west African cultivated soils. Soil Biology and Biochemistry129, 39–47.

[5]

Bateman, E.J., Baggs, E.M., 2005. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biology and Fertility of Soils41, 379–388.

[6]

Bösch, Y., Pold, G., Saghaï, A., Karlsson, M., Jones, C.M., Hallin, S., 2023. Distribution and environmental drivers of fungal denitrifiers in global soils. Microbiology Spectrum11, e00061–23.

[7]

Chen, H.H., Li, X.C., Hu, F., Shi, W., 2013. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Global Change Biology19, 2956–2964.

[8]

Chen, Z., Luo, X.Q., Hu, R.G., Wu, M.N., Wu, J.S., Wei, W.X., 2010. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology60, 850–861.

[9]

Chen, Z.X., Tu, X.S., Meng, H., Chen, C., Chen, Y.J., Elrys, A.S., Cheng, Y., Zhang, J.B., Cai, Z.C., 2021. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environmental Pollution284, 117176.

[10]

Cleveland, C.C., Liptzin, D., 2007. C:N:P stoichiometry in soil: is there a “redfield ratio” for the microbial biomass. Biogeochemistry85, 235–252.

[11]

Crenshaw, C.L., Lauber, C., Sinsabaugh, R.L., Stavely, L.K., 2008. Fungal control of nitrous oxide production in semiarid grassland. Biogeochemistry87, 17–27.

[12]

Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nature528, 504–509.

[13]

Daims, H., Lücker, S., Wagner, M., 2016. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends in Microbiology24, 699–712.

[14]

Dong, W.L., Li, X., Wang, E.Z., Liu, X.D., Wang, M., Song, A.L., Yin, H.Q., Fan, F.L., 2021. Linking microbial taxa and the effect of mineral nitrogen forms on residue decomposition at the early stage in arable soil by DNA-qSIP. Geoderma400, 115127.

[15]

German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., Allison, S.D., 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry43, 1387–1397.

[16]

Graf, D.R.H., Jones, C.M., Hallin, S., 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One9, e114118.

[17]

Hallin, S., Philippot, L., Löffler, F.E., Sanford, R.A., Jones, C.M., 2018. Genomics and ecology of novel N2O-reducing microorganisms. Trends in Microbiology26, 43–55.

[18]

Hink, L., Nicol, G.W., Prosser, J.I., 2017. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environmental Microbiology19, 4829–4837.

[19]

Islam, M.U., Guo, Z.C., Jiang, F.H., Peng, X.H., 2022. Does straw return increase crop yield in the wheat-maize cropping system in China? A meta-analysis. Field Crops Research279, 108447.

[20]

Ji, C., Wang, J.D., Sun, Y.X., Xu, C., Zhou, J., Zhong, Y.H., Ning, Y.W., Zhang, H., Zhang, Y.C., Chen, Y.L., 2024. Wheat straw and microbial inoculants have an additive effect on N2O emissions by changing microbial functional groups. European Journal of Soil Science75, e13494.

[21]

Jiang, M.D., Yang, N.P., Zhao, J.S., Shaaban, M., Hu, R.G., 2021. Crop straw incorporation mediates the impacts of soil aggregate size on greenhouse gas emissions. Geoderma401, 115342.

[22]

Jones, C.M., Graf, D.R.H., Bru, D., Philippot, L., Hallin, S., 2013. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. The ISME Journal7, 417–426.

[23]

Kits, K.D., Jung, M.Y., Vierheilig, J., Pjevac, P., Sedlacek, C.J., Liu, S.R., Herbold, C., Stein, L.Y., Richter, A., Wissel, H., Brüggemann, N., Wagner, M., Daims, H., 2019. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature Communications10, 1836.

[24]

Kuypers, M.M.M., Marchant, H.K., Kartal, B., 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology16, 263–276.

[25]

Lenth, R.V., 2025. emmeans: estimated marginal means, aka Least-squares means. R package version 1.11.0 [Online].

[26]

Li, C.Y., He, Z.Y., Hu, H.W., He, J.Z., 2023. Niche specialization of comammox Nitrospira in terrestrial ecosystems: oligotrophic or copiotrophic. Critical Reviews in Environmental Science and Technology53, 161–176.

[27]

Liang, L.L., Eberwein, J.R., Allsman, L.A., Grantz, D.A., Jenerette, G.D., 2015. Regulation of CO2 and N2O fluxes by coupled carbon and nitrogen availability. Environmental Research Letters10, 034008.

[28]

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News2, 18–22.

[29]

Lin, J.T., Xu, Z.Y., Xue, Y.H., Sun, R.H., Yang, R.G., Cao, X.X., Li, H., Shao, Q., Lou, Y.H., Wang, H., Yang, Q.G., Pan, H., Zhuge, Y.P., 2023. N2O emissions from soils under short-term straw return in a wheat-corn rotation system are associated with changes in the abundance of functional microbes. Agriculture, Ecosystems & Environment341, 108217.

[30]

Liu, C., Lu, M., Cui, J., Li, B., Fang, C.M., 2014. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biology20, 1366–1381.

[31]

Ma, J., Ma, E.D., Xu, H., Yagi, K., Cai, Z.C., 2009. Wheat straw management affects CH4 and N2O emissions from rice fields. Soil Biology and Biochemistry41, 1022–1028.

[32]

Ma, W.B., Jiang, S.J., Assemien, F., Qin, M.S., Ma, B.B., Xie, Z., Liu, Y.J., Feng, H.Y., Du, G.Z., Ma, X.J., Le Roux, X., 2016. Response of microbial functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biology and Biochemistry101, 195–206.

[33]

Miller, M.N., Zebarth, B.J., Dandie, C.E., Burton, D.L., Goyer, C., Trevors, J.T., 2008. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biology and Biochemistry40, 2553–2562.

[34]

Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., Schnecker, J., Takriti, M., Watzka, M., Wild, B., Keiblinger, K.M., Zechmeister-Boltenstern, S., Richter, A., 2014. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nature Communications5, 3694.

[35]

Mooshammer, M., Wanek, W., Schnecker, J., Wild, B., Leitner, S., Hofhansl, F., Blöchl, A., Hämmerle, I., Frank, A.H., Fuchslueger, L., Keiblinger, K.M., Zechmeister-Boltenstern, S., Richter, A., 2012. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology93, 770–782.

[36]

Muhammad, I., Sainju, U.M., Zhao, F.Z., Khan, A., Ghimire, R., Fu, X., Wang, J., 2019. Regulation of soil CO2 and N2O emissions by cover crops: a meta-analysis. Soil and Tillage Research192, 103–112.

[37]

Ouyang, Y., Evans, S.E., Friesen, M.L., Tiemann, L.K., 2018. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology and Biochemistry127, 71–78.

[38]

Palomo, A., Pedersen, A.G., Fowler, S.J., Dechesne, A., Sicheritz-Pontén, T., Smets, B.F., 2018. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal12, 1779–1793.

[39]

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., Smith, P., 2016. Climate-smart soils. Nature532, 49–57.

[40]

Philippot, L., Hallin, S., Schloter, M., 2007. Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy96, 249–305.

[41]

Pold, G., Bonilla-Rosso, G., Saghaï, A., Strous, M., Jones, C.M., Hallin, S., 2024. Phylogenetics and environmental distribution of nitric oxide-forming nitrite reductases reveal their distinct functional and ecological roles. ISME Communications4, ycae020.

[42]

Prosser, J.I., Hink, L., Gubry-Rangin, C., Nicol, G.W., 2020. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology26, 103–118.

[43]

Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science326, 123–125.

[44]

Sanchez, G., Trinchera, L., Russolillo, G., 2015. plspm: tools for partial least squares path modeling (PLS-PM). R package version 0.4.9 [Online].

[45]

Senbayram, M., Well, R., Bol, R., Chadwick, D.R., Jones, D.L., Wu, D., 2018. Interaction of straw amendment and soil NO3 content controls fungal denitrification and denitrification product stoichiometry in a sandy soil. Soil Biology and Biochemistry126, 204–212.

[46]

Shan, J., Yan, X.Y., 2013. Effects of crop residue returning on nitrous oxide emissions in agricultural soils. Atmospheric Environment71, 170–175.

[47]

Tan, C., Yin, C., Li, W.J., Fan, X.P., Jiang, Y.S., Liang, Y.C., 2022. Comammox Nitrospira play a minor role in N2O emissions from an alkaline arable soil. Soil Biology and Biochemistry171, 108720.

[48]

Tian, H.Q., Xu, R.T., Canadell, J.G., Thompson, R.L., Winiwarter, W., Suntharalingam, P., Davidson, E.A., Ciais, P., Jackson, R.B., Janssens-Maenhout, G., Prather, M.J., Regnier, P., Pan, N.Q., Pan, S.F., Peters, G.P., Shi, H., Tubiello, F.N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A.F., Buitenhuis, E.T., Chang, J.F., Chipperfield, M.P., Dangal, S.R.S., Dlugokencky, E., Elkins, J.W., Eyre, B.D., Fu, B.J., Hall, B., Ito, A., Joos, F., Krummel, P.B., Landolfi, A., Laruelle, G.G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod, M., Millet, D.B., Olin, S., Patra, P.K., Prinn, R.G., Raymond, P.A., Ruiz, D.J., van der Werf, G.R., Vuichard, N., Wang, J.J., Weiss, R.F., Wells, K.C., Wilson, C., Yang, J., Yao, Y.Z., 2020. A comprehensive quantification of global nitrous oxide sources and sinks. Nature586, 248–256.

[49]

Wallenstein, M.D., Myrold, D.D., Firestone, M., Voytek, M., 2006. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecological Applications16, 2143–2152.

[50]

Wang, J.C., Wang, J.L., Rhodes, G., He, J.Z., Ge, Y., 2019. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Science of the Total Environment668, 224–233.

[51]

Wang, R., Pan, Z.L., Liu, Y., Yao, Z.S., Wang, J., Zheng, X.H., Zhang, C., Ju, X.T., Wei, H.H., Butterbach-Bahl, K., 2022. Full straw incorporation into a calcareous soil increased N2O emission despite more N2O being reduced to N2 in the winter crop season. Agriculture, Ecosystems & Environment335, 108007.

[52]

Wang, S.P., Zhai, L.M., Guo, S.F., Zhang, F.L., Hua, L.L., Liu, H.B., 2023. Returned straw reduces nitrogen runoff loss by influencing nitrification process through modulating soil C:N of different paddy systems. Agriculture, Ecosystems & Environment354, 108438.

[53]

Wei, H.H., Li, Y., Zhu, K., Ju, X.T., Wu, D., 2024. The divergent role of straw return in soil O2 dynamics elucidates its confounding effect on soil N2O emission. Soil Biology and Biochemistry199, 109620.

[54]

Wei, W., Isobe, K., Shiratori, Y., Nishizawa, T., Ohte, N., Otsuka, S., Senoo, K., 2014. N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer. Soil Biology and Biochemistry69, 157–167.

[55]

Wu, D., Senbayram, M., Well, R., Brüggemann, N., Pfeiffer, B., Loick, N., Stempfhuber, B., Dittert, K., Bol, R., 2017. Nitrification inhibitors mitigate N2O emissions more effectively under straw-induced conditions favoring denitrification. Soil Biology and Biochemistry104, 197–207.

[56]

Xia, L.L., Lam, S.K., Wolf, B., Kiese, R., Chen, D.L., Butterbach-Bahl, K., 2018. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Global Change Biology24, 5919–5932.

[57]

Xie, Z., Le Roux, X., Wang, C.P., Gu, Z.K., An, M., Nan, H.Y., Chen, B.Z., Li, F., Liu, Y.J., Du, G.Z., Feng, H.Y., Ma, X.J., 2014. Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biology and Biochemistry77, 89–99.

[58]

Xu, C., Han, X., Zhuge, Y.P., Xiao, G.M., Ni, B., Xu, X.C., Meng, F.Q., 2021. Crop straw incorporation alleviates overall fertilizer-N losses and mitigates N2O emissions per unit applied N from intensively farmed soils: an in situ 15N tracing study. Science of the Total Environment764, 142884.

[59]

Yang, Y.J., Liu, H.X., Chen, Y., Wu, L.J., Huang, G., Lv, J.L., 2024. Soil nitrogen cycling gene abundances in response to organic amendments: a meta-analysis. Science of the Total Environment921, 171048.

[60]

Yin, C., Fan, F.L., Song, A.L., Fan, X.P., Ding, H., Ran, W., Qiu, H.Z., Liang, Y.C., 2017. The response patterns of community traits of N2O emission-related functional guilds to temperature across different arable soils under inorganic fertilization. Soil Biology and Biochemistry108, 65–77.

[61]

Yin, C., Fan, X.P., Chen, H., Jiang, Y.S., Ye, M.J., Yan, G.C., Peng, H.Y., Wakelin, S.A., Liang, Y.C., 2021. 3, 4-Dimethylpyrazole phosphate is an effective and specific inhibitor of soil ammonia-oxidizing bacteria. Biology and Fertility of Soils57, 753–766.

[62]

Yoshida, M., Ishii, S., Otsuka, S., Senoo, K., 2010. nirK-Harboring denitrifiers are more responsive to denitrification- inducing conditions in rice Paddy soil than nirS-harboring bacteria. Microbes and Environments25, 45–48.

[63]

Zhang, X., Liang, Q., Wang, G.Y., Zhang, H.W., Zhang, A.J., Tan, Y.C., Bol, R., 2023. Incorporating straw into intensively farmed cropland soil can reduce N2O emission via inhibition of nitrification and denitrification pathways. Journal of Environmental Management342, 118115.

[64]

Zhu, K., Ye, X., Ran, H.Y., Zhang, P.X., Wang, G., 2022. Contrasting effects of straw and biochar on microscale heterogeneity of soil O2 and pH: implication for N2O emissions. Soil Biology and Biochemistry166, 108564.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4254KB)

Supplementary files

Supplementary materials

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/