Tree species dramatically reshape the functional traits of Collembola community in a subtropical forest common garden

Lindan Zheng , Huihui Wen , Xiaohao Lin , Jingjing Li , Jingni Wang , Kai Yue , Xiangyin Ni , Fuzhong Wu

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260385

PDF (4301KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260385 DOI: 10.1007/s42832-026-0385-8
RESEARCH ARTICLE

Tree species dramatically reshape the functional traits of Collembola community in a subtropical forest common garden

Author information +
History +
PDF (4301KB)

Abstract

Collembola predominates soil fauna community of subtropical forests, where they play essential roles in the soil detrital network. Diverse tree species can reshape the functional traits of Collembola communities by altering habitat conditions and food availability, yet little is known about this process. In June 2023, we investigated the structural composition and functional traits of Collembola in the litter and soil layers under six tree species in a subtropical forest common garden. A total of 543 Collembola individuals were captured, belonging to six families, with higher abundance observed in forests dominated by phoebe (Michelia macclurei), fir (Cunninghamia lanceolata), and pine (Pinus massoniana) compared to other forests. Among functional traits, sensory and dispersal traits of Collembola were significantly more pronounced in fir and Sapindus saponaria forests than in Castanopsis carlesii forests. The highest functional diversity indices of Collembola were recorded in fir forests relative to other forest types. Statistical analysis revealed that Collembola dispersal and sensory traits are primarily influenced by litter calcium content and soil organic matter, highlighting their adaptive responses to key environmental factors. This study adopted a functional trait-based approach to explore how tree species affect the community structure and functional traits of Collembola.

Graphical abstract

Keywords

soil fauna / functional diversity index / species diversity / community characteristics / common garden / functional traits

Highlight

● The litter and soil properties shaped by tree species directly influence the species diversity of collembolan communities.

● The collembolans beneath Sapindus saponaria species exhibit better dispersal capabilities and sensory functions.

● Fir forests promote diverse resource utilization strategies and complementarity, fostering a more complex Collembola community.

● The calcium content in litter and soil organic matter are the primary controlling factors of the traits of Collembola.

Cite this article

Download citation ▾
Lindan Zheng, Huihui Wen, Xiaohao Lin, Jingjing Li, Jingni Wang, Kai Yue, Xiangyin Ni, Fuzhong Wu. Tree species dramatically reshape the functional traits of Collembola community in a subtropical forest common garden. Soil Ecology Letters, 2026, 8(2): 260385 DOI:10.1007/s42832-026-0385-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anthony, M.A., Bender, S.F., van der Heijden, M.G.A., 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Science of the United States of American120, e2304663120.

[2]

Argote, K., Albert, C.H., Geslin, B., Biryol, C., Santonja, M., 2023. Effects of litter quality on foraging behaviour and demographic parameters in Folsomia candida (Collembola). Ecology and Evolution13, e10420.

[3]

Arnič, D., Gričar, J., Jevšenak, J., Božič, G., von Arx, G., Prislan, P., 2021. Different wood anatomical and growth responses in European beech (Fagus sylvatica L. ) at three forest sites in Slovenia. Frontiers in Plant Science12, 669229.

[4]

Basset, Y., Cizek, L., Cuénoud, P., Didham, R.K., Guilhaumon, F., Missa, O., Novotny, V., Ødegaard, F., Roslin, T., Schmidl, J., Tishechkin, A.K., Winchester, N.N., Roubik, D.W., Aberlenc, H.P., Bail, J., Barrios, H., Bridle, J.R., Castaño-Meneses, G., Corbara, B., Curletti, G., da Rocha, W.D., de Bakker, D., Delabie, J.H.C., Dejean, A., Fagan, L.L., Floren, A., Kitching, R.L., Medianero, E., Miller, S.E., de Oliveira, E.G., Orivel, J., Pollet, M., Rapp, M., Ribeiro, S.P., Roisin, Y., Schmidt, J.B., Sørensen, L., Leponce, M., 2012. Arthropod diversity in a tropical forest. Science338, 1481–1484.

[5]

Botta-Dukát, Z., 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science16, 533–540.

[6]

Chauvat, M., Perez, G., Ponge, J.F., 2014. Foraging patterns of soil springtails are impacted by food resources. Applied Soil Ecology82, 72–77.

[7]

da Silva, P.M., Carvalho, F., Dirilgen, T., Stone, D., Creamer, R., Bolger, T., Sousa, J.P., 2016. Traits of collembolan life-form indicate land use types and soil properties across an European transect. Applied Soil Ecology97, 69–77.

[8]

Faucon, M.P., Houben, D., Lambers, H., 2017. Plant functional traits: soil and ecosystem services. Trends in Plant Science22, 385–394.

[9]

Gruss, I., Lallaouna, R., Twardowski, J., Magiera-Dulewicz, J., Twardowska, K., 2024. Collembola growth in heavy metal-contaminated soils. Scientific Reports14, 27998.

[10]

Hishi, T., Urakawa, R., Saitoh, S., Maeda, Y., Hyodo, F., 2022. Topography is more important than forest type as a determinant for functional trait composition of Collembola community. Pedobiologia90, 150776.

[11]

Holmstrup, M., Ehlers, B.K., Slotsbo, S., Ilieva-Makulec, K., Sigurdsson, B.D., Leblans, N.I.W., Ellers, J., Berg, M.P., 2018. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming. Functional Ecology32, 1304–1316.

[12]

Hopkin, S.P., 1997. Biology of the Springtails: (Insecta: Collembola). Oxford: Oxford University Press.

[13]

Kime, R.D., Golovatch, S.I., 2000. Trends in the ecological strategies and evolution of millipedes (Diplopoda). Biological Journal of the Linnean Society69, 333–349.

[14]

Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology91, 299–305.

[15]

Li, J.Y., Gao, Y.X., Li, C.Y., Jin, Y.L., Yang, S.Q., Xia, J.H., Zhang, Y.F., Bu, Y., Li, K., 2023. Effects of species invasion and inundation on the collembola community in coastal mudflat wetland from the perspective of functional traits. Insects14, 210.

[16]

Li, L., Wen, Z.F., Wei, S.G., Lian, J.Y., Ye, W.H., 2022. Functional diversity and its influencing factors in a subtropical forest community in China. Forests13, 966.

[17]

Liu, Q., Yin, R., Tan, B., You, C.M., Zhang, L., Zhang, J., Xu, Z.F., Schädler, M., Scheu, S., 2021. Nitrogen addition and plant functional type independently modify soil mesofauna effects on litter decomposition. Soil Biology and Biochemistry160, 108340.

[18]

Liu, Z.F., Liu, G.H., Fu, B.J., Zheng, X.X., 2008. Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecological Research23, 511–518.

[19]

Ma, S.J., Wang, Q.C., Zhang, Y., Yan, L.M., Cui, D.H., Xu, L.Q., 2023. Effects of natural forest conversion and plantation tree species composition on soil macrofauna communities in Northeast China mountains. Journal of Forestry Research34, 1475–1489.

[20]

Moretti, M., Dias, A.T.C., de Bello, F., Altermatt, F., Chown, S.L., Azcárate, F.M., Bell, J.R., Fournier, B., Hedde, M., Hortal, J., Ibanez, S., Öckinger, E., Sousa, J.P., Ellers, J., Berg, M.P., 2017. Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Functional Ecology31, 558–567.

[21]

Natalio, A.I.M., Back, M.A., Richards, A., Jeffery, S., 2025. Dynamics of Collembola ecomorphological groups within a no-till arable system. Agricultural and Forest Entomology27, 357–368.

[22]

Peng, Y., Holmstrup, M., Schmidt, I.K., De Schrijver, A., Schelfhout, S., Heděnec, P., Zheng, H.F., Bachega, L.R., Yue, K., Vesterdal, L., 2022. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma407, 115570.

[23]

Pollierer, M.M., Klarner, B., Ott, D., Digel, C., Ehnes, R.B., Eitzinger, B., Erdmann, G., Brose, U., Maraun, M., Scheu, S., 2021. Diversity and functional structure of soil animal communities suggest soil animal food webs to be buffered against changes in forest land use. Oecologia196, 195–209.

[24]

Potapov, A., Bellini, B.C., Chown, S.L., Deharveng, L., Janssens, F., Kováč, L., Kuznetsova, N., Ponge, J.F., Potapov, M., Querner, P., Russell, D., Sun, X., Zhang, F., Berg, M.P., 2020. Towards a global synthesis of Collembola knowledge: challenges and potential solutions. Soil Organisms92, 161–188.

[25]

Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O.A., Hale, C.M., Tjoelker, M.G., 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. Ecology Letters8, 811–818.

[26]

Rillich, B., Oliveira, F.G.L., 2023. On latches in biological systems: a comparative morphological and functional study of the retinaculum and the dens lock in Collembola. Frontiers in Zoology20, 16.

[27]

Salmon, S., Ponge, J.F., 2012. Species traits and habitats in springtail communities: a regional scale study. Pedobiologia55, 295–301.

[28]

Salmon, S., Ponge, J.F., Gachet, S., Deharveng, L., Lefebvre, N., Delabrosse, F., 2014. Linking species, traits and habitat characteristics of Collembola at European scale. Soil Biology and Biochemistry75, 73–85.

[29]

Shannon, C.E., 1948. A mathematical theory of communication. The Bell System Technical Journal27, 379–423.

[30]

Simpson, E.H., 1949. Measurement of diversity. Nature163, 688.

[31]

Sun, J.N., Zhang, C.Z., Yu, D.Y., Yin, X.Y., Cheng, Y.H., Chen, X.Y., Liu, M.Q., 2024. Responses of invertebrate traits to litter chemistry accelerate decomposition under nitrogen enrichment. Soil Biology and Biochemistry198, 109572.

[32]

Těšitel, J., Tahadlová, M., Lepš, J., Hölzel, N., 2021. Linking insect herbivory with plant traits: phylogenetically structured trait syndromes matter. Journal of Vegetation Science32, e13061.

[33]

Villéger, S., Mason, N.W.H., Mouillot, D., 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology89, 2290–2301.

[34]

Vincent, Q., Leyval, C., Beguiristain, T., Auclerc, A., 2018. Functional structure and composition of Collembola and soil macrofauna communities depend on abiotic parameters in derelict soils. Applied Soil Ecology130, 259–270.

[35]

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. Let the concept of trait be functional. Oikos116, 882–892.

[36]

Wan, B.B., Barnes, A.D., Potapov, A., Yang, J.N., Zhu, M.Y., Chen, X.Y., Hu, F., Liu, M.Q., 2024. Altered litter stoichiometry drives energy dynamics of food webs through changing multiple facets of soil biodiversity. Soil Biology and Biochemistry191, 109331.

[37]

Wen, H.H., Van Meerbeek, K., Zhang, H.L., Peng, Y., Yue, K., Ni, X.Y., Qiu, D.N., Chen, Z.H., Bol, R., Wu, F.Z., 2025. Loss of soil fauna following conversion of subtropical natural forests. Soil Ecology Letters7, 250315.

[38]

Wen, H.H., Wu, F.Z., Zhang, H.L., Peng, Q.Q., Qiu, D.N., Peng, Y., 2023. Community structure of soil fauna under different tree species in subtropical forests. Chinese Journal of Applied Ecology34, 2797–2804.

[39]

Winck, B.R., de Sá, E.L.S., Rigotti, V.M., Chauvat, M., 2017. Relationship between land-use types and functional diversity of epigeic Collembola in Southern Brazil. Applied Soil Ecology109, 49–59.

[40]

Xu, F.D., Li, C., Chen, Y.X., Wu, J.C., Bai, H.D., Fan, S.G., Yang, Y.C., Zhang, Y.P., Li, S.F., Su, J.R., 2024. Soil microbial community structure and soil fertility jointly regulate soil microbial residue carbon during the conversion from subtropical primary forest to plantations. Geoderma441, 116767.

[41]

Xue, Q.N., Yan, M., Bi, R.C., 2015. Functional diversity research of tree and shrub layers in forest communities of the Wulu Mountains Nature Reserve in Shanxi, China. Acta Ecologica Sinica35, 7023–7032.

[42]

Yang, X., Liu, R.T., Li, T.C., Dai, Y.C., 2023. Changes of soil fauna along the non-native tree afforestation chronosequence on Loess Plateau. Plant and Soil485, 489–505.

[43]

Yin, R., Kardol, P., Thakur, M.P., Gruss, I., Wu, G.L., Eisenhauer, N., Schädler, M., 2020. Soil functional biodiversity and biological quality under threat: intensive land use outweighs climate change. Soil Biology and Biochemistry147, 107847.

[44]

Yin, X.Q., Liu, J.L., Gao, M., 2007. Relationships of nutrient elements in forest ecosysterm of Xiao Hinggan mountains and role of soil fauna. Scientia Geographica Sinica27, 814–819.

[45]

Zhang, W.W., Yang, K., Lyu, Z., Zhu, J.J., 2019. Microbial groups and their functions control the decomposition of coniferous litter: a comparison with broadleaved tree litters. Soil Biology and Biochemistry133, 196–207.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4301KB)

Supplementary files

Supplementary materials

67

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/