Environmental fate and risks of antibiotics and resistance genes in soil: Implications for One Health

Runqiu Feng , Fengxia Yang , Tao Li , Yufeng Zhao , Qi Li , Renxin Zhao , Jie Liu , Yunfeng Yang

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260384

PDF (2027KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260384 DOI: 10.1007/s42832-026-0384-9
REVIEW

Environmental fate and risks of antibiotics and resistance genes in soil: Implications for One Health

Author information +
History +
PDF (2027KB)

Abstract

The widespread use of antibiotics across medicine, agriculture, aquaculture, and industry has driven a significant increase in antimicrobial resistance (AMR), posing a critical threat to both human health and ecosystem stabi-lity. The persistence and distribution of antibiotics and antibiotic resistance genes (ARGs) in the environment are major concerns because they can disseminate through various pathways, including atmospheric transport, biogeochemical cycling, and trophic transfer. This review focuses on the ecological and public health implications of antibiotics and AMR within the framework of “One Health,” emphasizing their occurrence, fate, degradation, and risks in soil ecosystems. We highlight knowledge gaps and advocate for integrated, cross-sectoral research to inform environmental risk assessment and support evidence-based policies for AMR mitigation and ecological sustainability.

Graphical abstract

Keywords

antibiotics / antimicrobial resistance / ecosystem risk / environmental dissemination / One Health / soil ecosystems

Highlight

● Explores antibiotics and AMR within One Health, emphasizing broad health impacts.

● Highlights antibiotic resistance and calls for interdisciplinary solutions globally.

● Reviews the effects on ecosystems, proposing sustainable management strategies.

Cite this article

Download citation ▾
Runqiu Feng, Fengxia Yang, Tao Li, Yufeng Zhao, Qi Li, Renxin Zhao, Jie Liu, Yunfeng Yang. Environmental fate and risks of antibiotics and resistance genes in soil: Implications for One Health. Soil Ecology Letters, 2026, 8(2): 260384 DOI:10.1007/s42832-026-0384-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmad, F., Zhu, D.C., Sun, J.Z., 2021. Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environmental Sciences Europe33, 64.

[2]

Albero, B., Luis Tadeo, J., Escario, M., Miguel, E., Ana Pérez, R., 2018. Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Science of the Total Environment643, 1562–1570.

[3]

Allison, S.D., Jastrow, J.D., 2006. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils. Soil Biology & Biochemistry38, 3245–3256.

[4]

Amin, M.B., Hoque, K.I., Roy, S., Saha, S.R., Islam, M.R., Julian, T.R., Islam, M.A., 2022. Identifying the sources of intestinal colonization with extended-spectrum β-lactamase-producing Escherichia coli in healthy infants in the community. Frontiers in Microbiology13, 803043.

[5]

Aristilde, L., Melis, A., Sposito, G., 2010. Inhibition of photosynthesis by a fluoroquinolone antibiotic. Environmental Science & Technology44, 1444–1450.

[6]

Arnold, B.J., Huang, I.T., Hanage, W.P., 2022. Horizontal gene transfer and adaptive evolution in bacteria. Nature Reviews Microbiology20, 206–218.

[7]

Atashgahi, S., Sánchez-Andrea, I., Heipieper, H.J., van der Meer, J.R., Stams, A.J.M., Smidt, H., 2018. Prospects for harnessing biocide resistance for bioremediation and detoxification. Science360, 743–746.

[8]

Azanu, D., Mortey, C., Darko, G., Weisser, J.J., Styrishave, B., Abaidoo, R.C., 2016. Uptake of antibiotics from irrigation water by plants. Chemosphere157, 107–114.

[9]

Banchón, C., Vivas, T., Aveiga, A., Díaz, L., 2021. Airborne bacteria from wastewater treatment and their antibiotic resistance: a meta-analysis. Journal of Ecological Engineering22, 205–214.

[10]

Bansal, O.P., 2023. A review on antibiotics in the environment, resistance in microbes, impact on human health and treatment and future strategies for tackling the global problem. World Journal of Advanced Research and Reviews20, 959–971.

[11]

Baron, L.F., Fonseca, F.N.D., Maciag, S.S., Bellaver, F.A.V., Ibeli, A.M.G., Mores, M.A.Z., Almeida, G.F.D., Guterres, S.S., Bastos, A.P.A., Paese, K., 2022. Toltrazuril-loaded polymeric nanocapsules as a promising approach for the preventive control of coccidiosis in poultry. Pharmaceutics14, 392.

[12]

Bashir, Y., Raj, R., Ghangrekar, M.M., Nema, A.K., Das, S., 2023. Critical assessment of advanced oxidation processes and bio-electrochemical integrated systems for removing emerging contaminants from wastewater. RSC Sustainability1, 1912–1931.

[13]

Batista, B.D., Singh, B.K., 2023. Next generation tools for crop-microbiome manipulation to mitigate the impact of climate change. Environmental Microbiology25, 105–110.

[14]

Bellino, A., Lofrano, G., Carotenuto, M., Libralato, G., Baldantoni, D., 2018. Antibiotic effects on seed germination and root development of tomato (Solanum lycopersicum L. ). Ecotoxicology and Environmental Safety148, 135–141.

[15]

Berg, G., Eberl, L., Hartmann, A., 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology7, 1673–1685.

[16]

Błażejewska, A., Zalewska, M., Grudniak, A., Popowska, M., 2022. A comprehensive study of the microbiome, resistome, and physical and chemical characteristics of chicken waste from intensive farms. Biomolecules12, 1132.

[17]

Brito, L.R.D., Ganiyu, S.O., dos Santos, E.V., Oturan, MA., Martínez-Huitle, C.A., 2021. Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: role of electrode materials, electrolytes and real water matrices. Electrochimica Acta396, 139254.

[18]

Browne, A.J., Chipeta, M.G., Haines-Woodhouse, G., Kumaran, E.P.A., Hamadani, B.H.K., Zaraa, S., Henry, N.J., Deshpande, A., Reiner, R.C.Jr., Day, N.P.J., Lopez, A.D., Dunachie, S., Moore, C.E., Stergachis, A., Hay, S.I., Dolecek, C., 2021. Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. The Lancet Planetary Health5, e893–e904.

[19]

Bulgarelli, D., Rott, M., Schlaeppi, K., Ver Loren van Themaat, E., Ahmadinejad, N., Assenza, F., Rauf, P., Huettel, B., Reinhardt, R., Schmelzer, E., Peplies, J., Gloeckner, F.O., Amann, R., Eickhorst, T., Schulze-Lefert, P., 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature488, 91–95.

[20]

Burns, R.G., DeForest, J.L., Marxsen, J., Sinsabaugh, R.L., Stromberger, M.E., Wallenstein, M.D., Weintraub, M.N., Zoppini, A., 2013. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biology and Biochemistry58, 216–234.

[21]

Bush, N.G., Diez-Santos, I., Abbott, L.R., Maxwell, A., 2020. Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules25, 5662.

[22]

Byrne-Bailey, K.G., Gaze, W.H., Zhang, L., Kay, P., Boxall, A., Hawkey, P.M., Wellington, E.M.H., 2011. Integron prevalence and diversity in manured soil. Applied and Environmental Microbiology77, 684–687.

[23]

Cerqueira, F., Matamoros, V., Bayona, J., Elsinga, G., Hornstra, L.M., Piña, B., 2019. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L.) grown under different watering regimes. Environmental Research170, 16–25.

[24]

Chen, J.A., Li, J.H., Zeng, Q.Y., Li, H., Chen, F.Y., Hou, H.B., Lan, J.R., 2022. Efficient removal of tetracycline from aqueous solution by Mn-N-doped carbon aerogels: performance and mechanism. Journal of Molecular Liquids358, 119153.

[25]

Chen, K.S., Lin, K.P., Yan, J.X., Hsieh, W.L., 2019a. Renewable power output forecasting using least-squares support vector regression and google data. Sustainability11, 3009.

[26]

Chen, Q.L., Cui, H.L., Su, J.Q., Peñuelas, J., Zhu., Y.G., 2019b. Antibiotic resistomes in plant microbiomes. Trends in Plant Science24, 530–541.

[27]

Cheng, W.X., Li, J.N., Wu, Y., Xu, L.K., Su, C., Qian, Y.Y., Zhu, Y.G., Chen, H., 2016. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: a case study. Journal of Hazardous Materials304, 18–25.

[28]

Chukwujekwu, J.C., van Staden, J., 2016. In vitro antibacterial activity of Combretum edwardsii, Combretum krausii, and Maytenus nemorosa and their synergistic effects in combination with antibiotics. Frontiers in Pharmacology7, 208.

[29]

Conti, V., Romi, M., Guarnieri, M., Cantini, C., Cai, G., 2022. Italian tomato cultivars under drought stress show different content of bioactives in pulp and peel of fruits. Foods11, 270.

[30]

Cycoń, M., Borymski, S., Orlewska, K., Wąsik, T.J., Piotrowska-Seget, Z., 2016. An analysis of the effects of vancomycin and/or vancomycin-resistant Citrobacter freundii exposure on the microbial community structure in soil. Frontiers in Microbiology7, 1015.

[31]

Cycoń, M., Mrozik, A., Piotrowska-Seget, Z., 2019. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Frontiers in Microbiology10, 338.

[32]

Darby, E.M., Trampari, E., Siasat, P., Gaya, M.S., Alav, I., Webber, M.A., Blair, J.M.A., 2023. Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology21, 280–295.

[33]

Dhakar, K., Zarecki, R., Medina, S., Ziadna, H., Igbaria, K., Lati, R., Ronen, Z., Eizenberg, H., Freilich, S., 2022. Modeling-guided amendments lead to enhanced biodegradation in soil. mSystems7, e00169–22.

[34]

Dong, B.C., Li, W., Xu, W.Y., 2021. Effects of partial organic substitution for chemical fertilizer on antibiotic residues in peri-urban agricultural soil in China. Antibiotics10, 1173.

[35]

Du, P.Q., Wu, X.H., Xu, J., Dong, F.S., Liu, X.G., Zheng, Y.Q., 2018. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. Journal of Hazardous Materials353, 204–213.

[36]

Ezzariai, A., Hafidi, M., Khadra, A., Aemig, Q., El Fels, L., Barret, M., Merlina, G., Patureau, D., Pinelli, E., 2018. Human and veterinary antibiotics during composting of sludge or manure: global perspectives on persistence, degradation, and resistance genes. Journal of Hazardous Materials359, 465–481.

[37]

Gao, M.L., Lv, M.T., Han, M., Song, W.H., Wang, D., 2016. Avoidance behavior of Eisenia fetida in oxytetracycline- and heavy metal-contaminated soils. Environmental Toxicology and Pharmacology47, 119–123.

[38]

Gao, Q., Gao, S.H., Bates, C., Zeng, Y.F., Lei, J.S., Su, H., Dong, Q., Qin, Z.Y., Zhao, J.S., Zhang, Q.T., Ning, D.L., Huang, Y., Zhou, J.Z., Yang, Y.F., 2021. The microbial network property as a bio-indicator of antibiotic transmission in the environment. Science of the Total Environment758, 143712.

[39]

Geng, J.G., Liu, X.Y., Wang, J., Li, S., 2022. Accumulation and risk assessment of antibiotics in edible plants grown in contaminated farmlands: a review. Science of the Total Environment853, 158616.

[40]

Gerstel, A., Zamarreño Beas, J., Duverger, Y., Bouveret, E., Barras, F., Py, B., 2020. Oxidative stress antagonizes fluoroquinolone drug sensitivity via the SoxR-SUF Fe-S cluster homeostatic axis. PLoS Genetics16, e1009198.

[41]

Ghosh, S., Chakraborty, S., 2021. Remediation of emerging pollutants by using advanced biological wastewater treatments. In: Inamuddin, Ahamed, M.I., Boddula, R., Rangreez, T.A., eds. Applied Water Science. Salem: Scrivener Publishing LLC, 623–643.

[42]

Giannattasio-Ferraz, S., Ene, A., Johnson, G., Maskeri, L., Oliveira, A.P., Banerjee, S., Barbosa-Stancioli, E.F., Putonti, C., 2022. Multidrug-resistant Klebsiella variicola isolated in the urine of healthy bovine heifers, a potential risk as an emerging human pathogen. Applied and Environmental Microbiology88, e0004422.

[43]

Gomes, M.P., Richardi, V.S., Bicalho, E.M., Da Rocha, D.C., Navarro-Silva, M.A., Soffiatti, P., Garcia, Q.S., Sant'anna-Santos, B.F., 2019. Effects of ciprofloxacin and roundup on seed germination and root development of maize. Science of the Total Environment651, 2671–2678.

[44]

Grenni, P., Ancona, V., Barra Caracciolo, A., 2018. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal136, 25–39.

[45]

Gros, M., Mas-Pla, J., Boy-Roura, M., Geli, I., Domingo, F., Petrović, M., 2019. Veterinary pharmaceuticals and antibiotics in manure and slurry and their fate in amended agricultural soils: findings from an experimental field site (Baix Empordà, NE Catalonia). Science of the Total Environment654, 1337–1349.

[46]

Gu, Y., Yu, F., Chen, J.K., Zhang, Q.F., 2022. Facile synthesis of sillén-aurivillius layered oxide BI7FE2TI2O17CL with efficient photocatalytic performance for degradation of tetracycline. Catalysts12, 221.

[47]

Gu, Y.R., Shen, S.Z., Han, B.J., Tian, X.L., Yang, F.X., Zhang, K.Q., 2020. Family livestock waste: an ignored pollutant resource of antibiotic resistance genes. Ecotoxicology and Environmental Safety197, 110567.

[48]

Guo, H.H., Xue, S.H., Nasir, M., Lv, J.L., Gu, J., 2018. Role of bentonite on the mobility of antibiotic resistance genes, and microbial community in oxytetracycline and cadmium contaminated soil. Frontiers in Microbiology9, 2722.

[49]

Guo, Y.J., Qiu, T.L., Gao, M., Sun, Y.M., Cheng, S.T., Gao, H.Z., Wang, X.M., 2021. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: focusing on the effect of the vegetable species. Journal of Hazardous Materials415, 125595.

[50]

Guron, G.K.P., Arango-Argoty, G., Zhang, L.Q., Pruden, A., Ponder, M.A., 2019. Effects of dairy manure-based amendments and soil texture on lettuce- and radish-associated microbiota and resistomes. mSphere4, e00239–19.

[51]

Hajrulai-Musliu, Z., Uzunov, R., Krluku, M., Jovanov, S., Stojkovski, V., Arapcheska, M., Musliu, D., Sasanya, J.J., 2023. Determination of multi-class antimicrobial residues and antimicrobial resistance in cow milk and feces samples during withdrawal period. Animals13, 3603.

[52]

Han, B.J., Yang, F.X., Shen, S.Z., Mu, M.R., Zhang, K.Q., 2023. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. Science of the Total Environment895, 165109.

[53]

Han, B.J., Yang, F.X., Tian, X.L., Mu, M.R., Zhang, K.Q., 2021a. Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotoxicology and Environmental Safety219, 112335.

[54]

Han, D.G., Ren, T., Yang, Y.M., Li, Z.Y., Du, X., Zhang, C.Y., Pu, Q.Q., He, L., Zhao, K.W., Guo, R.F., Xin, J.G., 2024. Application and substitution of antibiotics in animal feeding. Medycyna Weterynaryjna80, 5–11.

[55]

Han, L.X., Zhang, H.P., Long, Z.N., Ge, Q.Q., Mei, J.J., Yu, Y.L., Fang, H., 2019. Exploring microbial community structure and biological function in manured soil during ten repeated treatments with chlortetracycline and ciprofloxacin. Chemosphere228, 469–477.

[56]

Han, X.Y., Zhang, H., Zhang, C.H., Zhao, Y., Zhang, N., Liang, J.S., 2021b. Preparation of sepiolite nanofibers supported zero valent iron composite material for catalytic removal of tetracycline in aqueous solution. Frontiers in Chemistry9, 736285.

[57]

Hanna, N., Sun, P., Sun, Q., Li, X.W., Yang, X.W., Ji, X., Zou, H.Y., Ottoson, J., Nilsson, L.E., Berglund, B., Dyar, O.J., Tamhankar, A.J., Lundborg, C.S., 2018. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environment International114, 131–142.

[58]

Harrower, J., McNaughtan, M., Hunter, C., Hough, R., Zhang, Z.L., Helwig, K., 2021. Chemical fate and partitioning behavior of antibiotics in the aquatic environment—a review. Environmental Toxicology and Chemistry40, 3275–3298.

[59]

He, L.Y., He, L.K., Liu, Y.S., Zhang, M., Zhao, J.L., Zhang, Q.Q., Ying, G.G., 2019. Microbial diversity and antibiotic resistome in swine farm environments. Science of the Total Environment685, 197–207.

[60]

Holman, D.B., Yang, W.Z., Alexander, T.W., 2019. Antibiotic treatment in feedlot cattle: a longitudinal study of the effect of oxytetracycline and tulathromycin on the fecal and nasopharyngeal microbiota. Microbiome7, 86.

[61]

Hu, X.G., Zhou, Q.X., Luo, Y., 2010. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution158, 2992–2998.

[62]

Jaimes-López, R., Jiménez-Vázquez, A., Pérez-Rodríguez, S., Estudillo-Wong, L.A., Alonso-Vante, N., 2024. Catalyst for the generation of OH radicals in advanced electrochemical oxidation processes: present and future perspectives. Catalysts14, 703.

[63]

Janse, M.E.M., Zinkweg, D.B., Larsen, O.F.A., van de Burgwal, L., 2022. Innovations in the veterinary intestinal health field: a patent landscape analysis. One Health15, 100419.

[64]

Jechalke, S., Heuer, H., Siemens, J., Amelung, W., Smalla, K., 2014. Fate and effects of veterinary antibiotics in soil. Trends in Microbiology22, 536–545.

[65]

Ji, J., Zhu, Q., Yang, X.R., Wang, C.P., 2023. Review of biodegradation of sulfonamide antibiotics influenced by dissolved organic matter and iron oxides. Journal of Environmental Chemical Engineering11, 111020.

[66]

Jiang, T.Q., Liu, T.Q., Dong, W., Liu, Y.J., Hao, C., Zhang, Q.C., 2022. Prediction of safety risk levels of veterinary drug residues in freshwater products in China based on transformer. Foods11, 1690.

[67]

Jo, J.H., Harkins, C.P., Schwardt, N.H., Portillo, J.A., Program, N.C.S., Zimmerman, M.D., Carter, C.L., Hossen, M.A., Peer, C.J., Polley, E.C., Dartois, V., Figg, W.D., Moutsopoulos, N.M., Segre, J.A., Kong, H.H., 2021. Alterations of human skin microbiome and expansion of antimicrobial resistance after systemic antibiotics. Science Translational Medicine13, eabd8077.

[68]

Kandinov, I., Gryadunov, D., Vinokurova, A., Antonova, O., Kubanov, A., Solomka, V., Shagabieva, J., Deryabin, D., Shaskolskiy, B., 2022. In vitro susceptibility to β-lactam antibiotics and viability of Neisseria gonorrhoeae strains producing plasmid-mediated broad- and extended-spectrum β-lactamases. Frontiers in Microbiology13, 896607.

[69]

Khan, M.A., Ding, X.D., Khan, S., Brusseau, M.L., Khan, A., Nawab, J., 2018. The influence of various organic amendments on the bioavailability and plant uptake of cadmium present in mine-degraded soil. Science of the Total Environment636, 810–817.

[70]

Kiguba, R., Karamagi, C., Bird, S.M., 2016. Extensive antibiotic prescription rate among hospitalized patients in Uganda: but with frequent missed-dose days. Journal of Antimicrobial Chemotherapy71, 1697–1706.

[71]

Klein, E.Y., Impalli, I., Poleon, S., Denoel, P., Cipriano, M., Van Boeckel, T.P., Pecetta, S., Bloom, D.E., Nandi, A., 2024. Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proceedings of the National Academy of Sciences of the United States of America121, e2411919121.

[72]

Larsson, D.G.J., Flach, C.F., 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology20, 257–269.

[73]

Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A.K.M., Wertheim, H.F.L., Sumpradit, N., Vlieghe, E., Hara, G.L., Gould, I.M., Goossens, H., Greko, C., So, A.D., Bigdeli, M., Tomson, G., Woodhouse, W., Ombaka, E., Peralta, A.Q., Qamar, F.N., Mir, F., Kariuki, S., Bhutta, Z.A., Coates, A., Bergstrom, R., Wright, G.D., Brown, E.D., Cars, O., 2013. Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases13, 1057–1098.

[74]

Le-Vo, H.N., Tran, P.T.B., Le, L.E., Matsumoto, Y., Motooka, D., Nakamura, S., Jones, J.W., Iida, T., Cao, V., 2019. Complex class 1 integron in a clinical Escherichia coli strain from Vietnam carrying both mcr-1 and blaNDM-1. Frontiers in Microbiology10, 2472.

[75]

Li, L.L., Huang, L.D., Chung, R.S., Fok, K.H., Zhang, Y.S., 2010. Sorption and dissipation of tetracyclines in soils and compost. Pedosphere20, 807–816.

[76]

Li, P.D., Zhu, Z.R., Zhang, Y.Z., Xu, J.P., Wang, H.K., Wang, Z.Y., Li, H.Y., 2022a. The phyllosphere microbiome shifts toward combating melanose pathogen. Microbiome10, 56.

[77]

Li, X.D., Yu, H.X., Xu, S.S., Hua, R.M., 2013. Uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotoxicology and Environmental Safety92, 297–302.

[78]

Li, X.T., Liang, K.M., Yang, B., Xiao, K., Duan, H.B., Song, G.Q., Zhao, H.Z., 2022b. Preparation and application of a targeted magnetically separated catalyst for sulfonamides degradation based on molecular dynamics selection and mechanism analysis. Chemical Engineering Journal432, 134365.

[79]

Li, X.X., Ren, W.C., Li, Y.H., Shi, Y.Y., Sun, H.M., Wang, L.F., Wu, L.Z., Xie, Y.Y., Du, Y., Jiang, Z.B., Hong, B., 2022c. Production of chain-extended cinnamoyl compounds by overexpressing two adjacent cluster-situated LuxR regulators in Streptomyces globisporus C-1027. Frontiers in Microbiology13, 931180.

[80]

Li, Z., Jones, C., Ejigu, G.S., George, N., Geller, A.L., Chang, G.C., Adamski, A., Igboh, L.S., Merrill, R.D., Ricks, P., Mirza, S.A., Lynch, M., 2021. Countries with delayed COVID-19 introduction – characteristics, drivers, gaps, and opportunities. Globalization and Health17, 28.

[81]

Liang, H.B., Wang, F., Mu, R., Huang, J., Zhao, R.X., Li, X.Y., Yu, K., Li, B., 2021. Metagenomics analysis revealing the occurrence of antibiotic resistome in salt lakes. Science of the Total Environment790, 148262.

[82]

Lima, K.V.L., de Jesus, J.H.F., Nogueira, R.F.P., 2024. Occurrence of antibiotics in aqueous matrices: an outlook about the situation in Brazil. Journal of the Brazilian Chemical Society35, e–20230196.

[83]

Liu, F., Ying, G.G., Tao, R., Zhao, J.L., Yang, J.F., Zhao, L.F., 2009. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environmental Pollution157, 1636–1642.

[84]

Liu, L., Liu, Y.H., Liu, C.X., Wang, Z., Dong, J., Zhu, G.F., Huang, X., 2013a. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions. Ecological Engineering53, 138–143.

[85]

Liu, M.M., Zhang, Y., Ding, R., Gao, Y.X., Yang, M., 2013b. Response of activated sludge to the treatment of oxytetracycline production waste stream. Applied Microbiology and Biotechnology97, 8805–8812.

[86]

Liu, X., Steele, J.C., Meng, X.Z., 2017. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: a review. Environmental Pollution223, 161–169.

[87]

Liu, X.T., Wang, Z., Liang, H.X., Li, Y.Y., Liu, T.F., Guo, Q., Wang, L.R., Yang, Y.N., Chen, N., 2022. Solar-driven soil remediation along with the generation of water vapor and electricity. Nanomaterials (Basel),12, 1800.

[88]

Ma, J.W., Lin, H., Sun, W.C., Wang, Q., Yu, Q.G., Zhao, Y.H., Fu, J.R., 2014. Soil microbial systems respond differentially to tetracycline, sulfamonomethoxine, and ciprofloxacin entering soil under pot experimental conditions alone and in combination. Environmental Science and Pollution Research21, 7436–7448.

[89]

Madera, K.S.M., Durango, L.G.C., Martinez, O.I.C., da Silva, M.F.G.F., Fernandes, J.B., Forim, M.R., 2024. Biodegradation of the antibiotic doxycycline by bacteria from the gastrointestinal tract of cucurbit beetles (Diabrotica speciosa). Journal of the Brazilian Chemical Society35, e–20230183.

[90]

Maidana-Kulesza, M.N., Poma, H.R., Sanguino-Jorquera, D.G., Reyes, S.I., del Milagro Said-Adamo, M., Mainardi-Remis, J.M., Gutiérrez-Cacciabue, D., Cristóbal, H.A., Cruz, M.C., Aparicio González, M., Rajal, V.B., 2022. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. Science of the Total Environment848, 157707.

[91]

Marti, R., Tien, Y.C., Murray, R., Scott, A., Sabourin, L., Topp, E., 2014. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure. Applied and Environmental Microbiology80, 3258–3265.

[92]

Martínez, J.L., 2008. Antibiotics and antibiotic resistance genes in natural environments. Science321, 365–367.

[93]

Matamoros, V., Casas, M.E., Mansilla, S., Tadić, Đ., Cañameras, N., Carazo, N., Portugal, J., Piña, B., Díez, S., Bayona, J.M., 2022. Occurrence of antibiotics in Lettuce (Lactuca sativa L. ) and Radish (Raphanus sativus L.) following organic soil fertilisation under plot-scale conditions: crop and human health implications. Journal of Hazardous Materials436, 129044.

[94]

Mehrtens, A., Freund, W., Lüdeke, P., Licha, T., Burke, V., 2022. Understanding flow patterns from the field–controlled laboratory experiments on the transport behavior of veterinary antibiotics in the presence of liquid manure. Science of the Total Environment821, 153415.

[95]

Meng, J., Li, Y., Qiu, Y.B., Luo, Y., Fang, Y.Y., Van Zwieten, L., Wang, H.L., Chen, H.H., 2023. Biochars regulate bacterial community and their putative functions in the charosphere: a mesh-bag field study. Journal of Soils and Sediments23, 596–605.

[96]

Michelini, L., Reichel, R., Werner, W., Ghisi, R., Thiele-Bruhn, S., 2012. Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants. Water, Air, & Soil Pollution223, 5243–5257.

[97]

Mu, M.R., Yang, F.X., Han, B.J., Tian, X.L., Zhang, K.Q., 2022. Manure application: a trigger for vertical accumulation of antibiotic resistance genes in cropland soils. Ecotoxicology and Environmental Safety237, 113555.

[98]

Mukhtar, A., Manzoor, M., Gul, I., Zafar, R., Jamil, H.I., Niazi, A.K., Ali, M.A., Park, T.J., Arshad, M., 2020. Phytotoxicity of different antibiotics to rice and stress alleviation upon application of organic amendments. Chemosphere258, 127353.

[99]

Mulchandani, R., Tiseo, K., Nandi, A., Klein, E., Gandra, S., Laxminarayan, R., Van Boeckel, T., 2025. Global trends in inappropriate use of antibiotics, 2000–2021: scoping review and prevalence estimates. BMJ Public Health3, e002411.

[100]

Müller, M.M., Nedielkov, R., Arndt, K.M., 2022. Strategies for enzymatic inactivation of the veterinary antibiotic florfenicol. Antibiotics (Basel),11, 443.

[101]

Muñoz, M., Ríos-Chaparro, D.I., Herrera, G., Soto-De Leon, S.C., Birchenall, C., Pinilla, D., Pardo-Oviedo, J.M., Josa, D.F., Patarroyo, M.A., Ramírez, J.D., 2018. New insights into Clostridium difficile (CD) infection in Latin America: novel description of toxigenic profiles of diarrhea-associated to CD in Bogotá, Colombia. Frontiers in Microbiology9, 74.

[102]

Najwa, M.S., Rukayadi, Y., Ubong, A., Loo, Y.Y., Chang, W.S., Lye, Y.L., Thung, T.Y., Aimi, S.A., Malcolm, T.T.H., Goh, S.G., Kuan, C.H., Yoshitsugu, N., Nishibuchi, M., Son, R., 2015. Quantification and antibiotic susceptibility of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in raw vegetables (ulam). International Food Research Journal22, 1761–1769.

[103]

Narciso, A., Barra Caracciolo, A., De Carolis, C., 2023. Overview of direct and indirect effects of antibiotics on terrestrial organisms. Antibiotics12, 1471.

[104]

Odelade, K.A., Babalola, O.O., 2019. Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. International Journal of Environmental Research and Public Health16, 3873.

[105]

O'Neill, J., 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available at the website of Review on Antimicrobial Resistance.

[106]

Orzoł, A., Piotrowicz-Cieślak, A.I., 2017. Levofloxacin is phytotoxic and modifies the protein profile of lupin seedlings. Environmental Science and Pollution Research24, 22226–22240.

[107]

Pan, M., Chu, L.M., 2016. Phytotoxicity of veterinary antibiotics to seed germination and root elongation of crops. Ecotoxicology and Environmental Safety126, 228–237.

[108]

Pan, M., Chu, L.M., 2017a. Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment 599–600, 599–600.

[109]

Pan, M., Chu, L.M., 2017b. Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution231, 829–836.

[110]

Pan, M., Wong, C.K.C., Chu, L.M., 2014. Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the pearl river delta, southern China. Journal of Agricultural and Food Chemistry62, 11062–11069.

[111]

Pan, Z., Yang, S.D., Zhao, L.X., Li, X.J., Weng, L.P., Sun, Y., Li, Y.T., 2021. Temporal and spatial variability of antibiotics in agricultural soils from Huang-Huai-Hai Plain, northern China. Chemosphere272, 129803.

[112]

Paumelle, M., Donnadieu, F., Joly, M., Besse-Hoggan, P., Artigas, J., 2021. Effects of sulfonamide antibiotics on aquatic microbial community composition and functions. Environment International146, 106198.

[113]

Qin, Z.Y., Gao, Q., Dong, Q., Van Nostrand, J.D., Qi, Q., Su, Y.F., Liu, S., Dai, T.J., Cheng, J.M., Zhou, J.Z., Yang, Y.F., 2022. Antibiotic resistome mostly relates to bacterial taxonomy along a suburban transmission chain. Frontiers of Environmental Science & Engineering16, 32.

[114]

Qiu, J.C., Chen, Y.S., Feng, Y., Li, X.F., Xu, J.H., Jiang, J.P., 2023. Adaptation of rhizosphere microbial communities to continuous exposure to multiple residual antibiotics in vegetable farms. International Journal of Environmental Research and Public Health20, 3137.

[115]

Rahman, M., Alam, M.U., Luies, S.K., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S.M., Amin, N., Hasan, R., Tadesse, B.T., Taneja, N., Islam, M.A., Ercumen, A., 2022. Contamination of fresh produce with antibiotic-resistant bacteria and associated risks to human health: a scoping review. International Journal of Environmental Research and Public Health19, 360.

[116]

Redondo-Salvo, S., Fernández-López, R., Ruiz, R., Vielva, L., de Toro, M., Rocha, E.P.C., Garcillán-Barcia, M.P., de la Cruz, F., 2020. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nature Communications11, 3602.

[117]

Robles-Jimenez, L.E., Aranda-Aguirre, E., Castelan-Ortega, O.A., Shettino-Bermudez, B.S., Ortiz-Salinas, R., Miranda, M., Li, X.D., Angeles-Hernandez, J.C., Vargas-Bello-Pérez, E., Gonzalez-Ronquillo, M., 2022. Worldwide traceability of antibiotic residues from livestock in wastewater and soil: a systematic review. Animals12, 60.

[118]

Rosace, M.C., Veronesi, F., Briggs, S., Cardenas, L.M., Jeffery, S., 2020. Legacy effects override soil properties for CO2 and N2O but not CH4 emissions following digestate application to soil. Global Change Biology Bioenergy12, 445–457.

[119]

Rui, Y.P., Qiu, G., 2022. Analysis of gut microbial communities and resistance genes in pigs and chickens in central China. Animals12, 3404.

[120]

Saatchi, A., Reid, J.N., Povitz, M., Shariff, S.Z., Silverman, M., Morris, A.M., Reyes, R.C., Patrick, D.M., Marra, F., 2021. Appropriateness of outpatient antibiotic use in seniors across two Canadian provinces. Antibiotics10, 1484.

[121]

Sardar, C., Bhadra, S., Jana, H.K., Mondal, S., 2023. Harnessing the power of bio adsorbents: a review on sustainable approach to eliminate antibiotic residues in wastewater for better public health. Journal of Pure and Applied Microbiology17, 1356–1373.

[122]

Shami, A.Y., Abulfaraj, A.A., Refai, M.Y., Barqawi, A.A., Binothman, N., Tashkandi, M.A., Baeissa, H.M., Baz, L., Abuauf, H.W., Ashy, R.A., Jalal, R.S., 2022. Abundant antibiotic resistance genes in rhizobiome of the human edible Moringa oleifera medicinal plant. Frontiers in Microbiology13, 990169.

[123]

Shi, W.L., Chen, X.L., Wang, L.X., Gong, Z.T., Li, S.Y., Li, C.L., Xie, B.B., Zhang, W., Shi, M., Li, C.Y., Zhang, Y.Z., Song, X.Y., 2016. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. Journal of Experimental Botany67, 2191–2205.

[124]

Sid Ahmed, M.A., Khan, F.A., Hadi, H.A., Skariah, S., Sultan, A.A., Salam, A., Al Khal, A.L., Söderquist, B., Ibrahim, E.B., Omrani, A.S., Jass, J., 2022. Association of blaVIM-2, blaPDC-35, blaOXA-10, blaOXA-488 and blaVEB-9 β-lactamase genes with resistance to ceftazidime–avibactam and ceftolozane–tazobactam in multidrug-resistant Pseudomonas aeruginosa. Antibiotics11, 130.

[125]

Sidhu, H., O’Connor, G., Ogram, A., Kumar, K., 2019. Bioavailability of biosolids-borne ciprofloxacin and azithromycin to terrestrial organisms: microbial toxicity and earthworm responses. Science of the Total Environment650, 18–26.

[126]

Solliec, M., Roy-Lachapelle, A., Gasser, M.O., Coté, C., Généreux, M., Sauvé, S., 2016. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Science of the Total Environment543, 524–535.

[127]

Solliec, M., Roy-Lachapelle, A., Gasser, M.O., Coté, C., Généreux, M., Sauvé, S., 2016. Fractionation and analysis of veterinary antibiotics and their related degradation products in agricultural soils and drainage waters following swine manure amendment. Science of the Total Environment 543, 524–535.

[128]

Sulis, G., Adam, P., Nafade, V., Gore, G., Daniels, B., Daftary, A., Das, J., Gandra, S., Pai, M., 2020. Antibiotic prescription practices in primary care in low- and middle-income countries: a systematic review and meta-analysis. PLoS Medicine17, e1003139.

[129]

Sulis, G., Sayood, S., Gandra, S., 2022. Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Review of Anti-Infective Therapy20, 147–160.

[130]

Suresh, G., Das, R.K., Kaur Brar, S., Rouissi, T., Avalos Ramirez, A., Chorfi, Y., Godbout, S., 2018. Alternatives to antibiotics in poultry feed: molecular perspectives. Critical Reviews in Microbiology44, 318–335.

[131]

Suzuki, M., Asai, Y., Kagi, T., Noguchi, T., Yamada, M., Hirata, Y., Matsuzawa, A., 2020. TAK1 mediates ROS generation triggered by the specific cephalosporins through noncanonical mechanisms. International Journal of Molecular Sciences21, 9497.

[132]

Theophilus, R.J., Taft, D.H., 2023. Antimicrobial Resistance Genes (ARGs), the gut microbiome, and infant nutrition. Nutrients15, 3177.

[133]

Torumkuney, D., Jamil, B., Nizamuddin, S., van Hasselt, J., Pirzada, U., Manenzhe, R., 2022. Country data on AMR in Pakistan in the context of community-acquired respiratory tract infections: links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. Journal of Antimicrobial Chemotherapy77, i18–i25.

[134]

Vaz-Moreira, I., Harnisz, M., Abreu-Silva, J., Rolbiecki, D., Korzeniewska, E., Luczkiewicz, A., Manaia, C.M., Plaza, G., 2022. Antibiotic resistance in wastewater, does the context matter? Poland and Portugal as a case study. Critical Reviews in Environmental Science and Technology52, 4194–4216.

[135]

Wallraven, K., Holmelin, F.L., Glas, A., Hennig, S., Frolov, A.I., Grossmann, T.N., 2020. Adapting free energy perturbation simulations for large macrocyclic ligands: how to dissect contributions from direct binding and free ligand flexibility. Chemical Science11, 2269–2276.

[136]

Wang, F., Fu, Y.H., Sheng, H.J., Topp, E., Jiang, X., Zhu, Y.G., Tiedje, J.M., 2021a. Antibiotic resistance in the soil ecosystem: a One Health perspective. Current Opinion in Environmental Science & Health20, 100230.

[137]

Wang, J.Q., Yu, Q., Tang, B., Wang, X.X., Nie, F.H., Shen, Z., Zhang, Y.L., 2023. An integrated process of Fe/C micro-electrolysis-anaerobic hydrolyze-microalgae for treatment of high concentration pharmaceutical wastewater. Process Safety and Environmental Protection179, 503–512.

[138]

Wang, Q., Li, P.J., Zhang, Z., Jiang, C.Y., Zuojiao, K.C., Jiao, Z., Liu, J.X., Wang, Y.P., 2019. Kinetics and mechanism insights into the photodegradation of tetracycline hydrochloride and ofloxacin mixed antibiotics with the flower-like BiOCl/TiO2 heterojunction. Journal of Photochemistry and Photobiology A: Chemistry378, 114–124.

[139]

Wang, X., Du, G.G., Chen, H., Zeng, X.J., Liu, B., Guo, C.F., Sheng, Q.L., Yuan, Y.H., Yue, T.L., 2021b. Comparative metagenomics reveals microbial communities and their associated functions in two types of Fuzhuan brick tea. Frontiers in Microbiology12, 705681.

[140]

Wang, Y.Y., Zhao, X.P., Zang, J.X., Li, Y.R., Dong, X.L., Jiang, F., Wang, N., Jiang, L.F., Jiang, Q.W., Fu, C.W., 2022. Estimates of dietary exposure to antibiotics among a community population in East China. Antibiotics11, 407.

[141]

Wepking, C., Avera, B., Badgley, B., Barrett, J.E., Franklin, J., Knowlton, K.F., Ray, P.P., Smitherman, C., Strickland, M.S., 2017. Exposure to dairy manure leads to greater antibiotic resistance and increased mass-specific respiration in soil microbial communities. Proceedings of the Royal Society B: Biological Sciences284, 2233.

[142]

Xin, R., Li, K.J., Ding, Y.Z., Zhang, K.Q., Qin, M.Y., Jia, X., Fan, P.L., Li, R.J., Zhang, K., Yang, F.X., 2024. Tracking the extracellular and intracellular antibiotic resistance genes across whole year in wastewater of intensive dairy farm. Ecotoxicology and Environmental Safety269, 115773.

[143]

Xu, X.H., Zarecki, R., Medina, S., Ofaim, S., Liu, X.W., Chen, C., Hu, S.L., Brom, D., Gat, D., Porob, S., Eizenberg, H., Ronen, Z., Jiang, J.D., Freilich, S., 2019. Modeling microbial communities from atrazine contaminated soils promotes the development of biostimulation solutions. The ISME Journal13, 494–508.

[144]

Xu, Y., Zhang, D., Dai, L.X., Ding, H., Ci, D., Qin, F.F., Zhang, G.C., Zhang, Z.M., 2020. Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L. ) cultivars. International Journal of Molecular Sciences21, 2131.

[145]

Yan, Q.F., Li, X.Y., Ma, B.H., Zou, Y.D., Wang, Y., Liao, X.D., Liang, J., Mi, J.D., Wu, Y.B., 2018. Different concentrations of doxycycline in swine manure affect the microbiome and degradation of doxycycline residue in soil. Frontiers in Microbiology9, 3129.

[146]

Yang, B., Cheng, X., Zhang, Y.L., Li, W., Wang, J.Q., Guo, H.G., 2021. Probing the roles of pH and ionic strength on electrostatic binding of tetracycline by dissolved organic matters: reevaluation of modified fitting model. Environmental Science and Ecotechnology8, 100133.

[147]

Yang, F.X., Zhang, Z.L., Li, Z.J., Han, B.J., Zhang, K.Q., Yang, P., Ding, Y.Z., 2022. Prevalence of high-risk β-lactam resistance genes in family livestock farms in Danjiangkou reservoir basin, central China. International Journal of Environmental Research and Public Health19, 6036.

[148]

Yang, X., Shao, M.A., Li, T.C., 2020. Effects of terrestrial isopods on soil nutrients during litter decomposition. Geoderma376, 114546.

[149]

Ye, J., Du, Y.P., Wang, L.M., Qian, J.R., Chen, J.J., Wu, Q.W., Hu, X.J., 2017. Toxin release of cyanobacterium microcystis aeruginosa after exposure to typical tetracycline antibiotic contaminants. Toxins9, 53.

[150]

Ye, Z.X., Shao, K.L., Huang, H., Yang, X., 2021. Tetracycline antibiotics as precursors of dichloroacetamide and other disinfection byproducts during chlorination and chloramination. Chemosphere270, 128628.

[151]

Yu, J., Chen, X., Zhang, Y.J., Cui, X.D., Zhang, Z., Guo, W.X., Wang, D.M., Huang, S.B., Chen, Y.R., Hu, Y.P., Zhao, C., Qiu, J., Li, Y., Meng, M.Y., Guo, M.W., Shen, F., Zhang, M.D., Zhou, B., Gu, X.J., Wang, J.Q., Wang, X., Ma, X.R., Xu, L.Y., 2022. Antibiotic azithromycin inhibits brown/beige fat functionality and promotes obesity in human and rodents. Theranostics12, 1187–1203.

[152]

Zalewska, M., Blazejewska, A., Czapko, A., Popowska, M., 2021. Antibiotics and antibiotic resistance genes in animal manure - consequences of its application in agriculture. Frontiers in Microbiology12, 610656.

[153]

Zambrano, J., García-Encina, P.A., Hernández, F., Botero-Coy, A.M., Jiménez, J.J., Irusta-Mata, R., 2023. Kinetics of the removal mechanisms of veterinary antibiotics in synthetic wastewater using microalgae–bacteria consortia. Environmental Technology & Innovation29, 103031.

[154]

Zeaiter, J., Azizi, F., Lameh, M., Milani, D., Ismail, H.Y., Abbas, A., 2018. Waste tire pyrolysis using thermal solar energy: an integrated approach. Renewable Energy123, 44–51.

[155]

Zeng, J.Q., Tabelin, C.B., Gao, W.Y., Tang, L., Luo, X.H., Ke, W.S., Jiang, J., Xue, S.G., 2023. Heterogeneous distributions of heavy metals in the soil-groundwater system empowers the knowledge of the pollution migration at a smelting site. Chemical Engineering Journal454, 140307.

[156]

Zhang, G.J., Guan, Y.T., Zhao, R.X., Feng, J., Huang, J., Ma, L.P., Li, B., 2020a. Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. Journal of Hazardous Materials400, 123170.

[157]

Zhang, G.R., Zhang, C., Liu, J., Zhang, Y.X., Fu, W.J., 2024a. Occurrence, fate, and risk assessment of antibiotics in conventional and advanced drinking water treatment systems: from source to tap. Journal of Environmental Management358, 120746.

[158]

Zhang, H.M., Zhang, M.K., Gu, G.P., 2008. Residues of tetracyclines in livestock and poultry manures and agricultural soils from north Zhejiang Province. Journal of Ecology and Rural Environment24, 69–73.

[159]

Zhang, J., Sha, N.Q., Li, Y.H., Tang, S., Peng, Y.Q., Zhao, Y., 2022a. Identification and characterization of HD1, a novel ofloxacin-degrading bacillus strain. Frontiers in Microbiology13, 828922.

[160]

Zhang, Q., Zou, X., Wu, S., Wu, N.E., Chen, X.Y., Zhou, W., 2022b. Effects of pyroligneous acid on diversity and dynamics of antibiotic resistance genes in alfalfa silage. Microbiology Spectrum10, e01554–22.

[161]

Zhang, S., Han, W., Liu, T.Q., Feng, C.C., Jiang, Q., Zhang, B., Chen, Y.K., Zhang, Y., 2024b. Tetracycline inhibits the nitrogen fixation ability of soybean (Glycine max (L. ) Merr.) nodules in black soil by altering the root and rhizosphere bacterial communities. Science of the Total Environment908, 168047.

[162]

Zhang, T.R., Li, T., Zhou, Z.J., Li, Z.Q., Zhang, S.R., Wang, G.Y., Xu, X.X., Pu, Y.L., Jia, Y.X., Liu, X.J., Li, Y., 2023. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. Science of the Total Environment877, 162812.

[163]

Zhang, Y.J., Hu, H.W., Chen, Q.L., Singh, B.K., Yan, H., Chen, D.L., He, J.Z., 2019. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International130, 104912.

[164]

Zhang, Y.J., Hu, H.W., Chen, Q.L., Yan, H., Wang, J.T., Chen, D.L., He, J.Z., 2020b. Manure application did not enrich antibiotic resistance genes in root endophytic bacterial microbiota of cherry radish plants. Applied and Environmental Microbiology86, e02106–19.

[165]

Zhao, R., Han, B.J., Yang, F.X., Zhang, Z.L., Sun, Y.T., Li, X., Liu, Y.M., Ding, Y.Z., 2024. Analysis of extracellular and intracellular antibiotic resistance genes in commercial organic fertilizers reveals a non-negligible risk posed by extracellular genes. Journal of Environmental Management354, 120359.

[166]

Zhao, X.D., Li, X.J., Li, Y., Sun, Y., Zhang, X.L., Weng, L.P., Ren, T.Z., Li, Y.T., 2019. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation. Biotechnology for Biofuels12, 160.

[167]

Zhao, Y., Yang, Q.E., Zhou, X., Wang, F.H., Muurinen, J., Virta, M.P., Brandt, K.K., Zhu, Y.G., 2021. Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Critical Reviews in Environmental Science and Technology51, 2159–2196.

[168]

Zheng, S.M., Wang, Y.D., Chen, C.H., Zhou, X.J., Liu, Y., Yang, J.M., Geng, Q.J., Chen, G., Ding, Y.Z., Yang, F.X., 2022. Current progress in natural degradation and enhanced removal techniques of antibiotics in the environment: a review. International Journal of Environmental Research and Public Health19, 10919.

[169]

Zhou, K.X., Liang, J.L., Dong, X., Zhang, P.Y., Feng, C.L., Shi, W.N., Gao, M.D., Li, Q.L., Zhang, X.Y., Lu, J.W., Lin, X., Li, K.W., Zhang, H.L., Zhu, M., Bao, Q.Y., 2021. Identification and characterization of a novel chromosomal aminoglycoside 2'-N-Acetyltransferase, AAC(2')-if, from an isolate of a novel Providencia species, Providencia wenzhouensis R33. Frontiers in Microbiology12, 711037.

[170]

Zhou, Z.K., Huang, F.Y., Chen, L.P., Liu, F., Wang, B., Tang, J., 2024. Effects of antibiotics on microbial nitrogen cycling and N2O emissions: a review. Chemosphere357, 142034.

[171]

Zhu, D., An, X.L., Chen, Q.L., Yang, X.R., Christie, P., Ke, X., Wu, L.H., Zhu, Y.G., 2018. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan. Environmental Science & Technology52, 3081–3090.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2027KB)

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/