Long-term nitrogen addition of different types and levels altered the relationship between species diversity and ecosystem multifunctionality in alpine grasslands

Hongye Su , Tao Chang , Li Ma , Zhonghua Zhang , Ruimin Qin , Haze Adi , Jingjing Wei , Shan Li , Xue Hu , Zhengchen Shi , Huakun Zhou

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260382

PDF (4018KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (2) : 260382 DOI: 10.1007/s42832-026-0382-y
RESEARCH ARTICLE

Long-term nitrogen addition of different types and levels altered the relationship between species diversity and ecosystem multifunctionality in alpine grasslands

Author information +
History +
PDF (4018KB)

Abstract

In alpine grasslands, nitrogen limitation constrains plant growth, and nitrogen fertilization is a common strategy for rehabilitating degraded lands. However, the effects of different nitrogen types, levels, and durations on plant diversity and ecosystem functionality remain unclear. This study investigates slightly degraded alpine grasslands in the Three Rivers Source Region of the Qinghai-Tibet Plateau. We applied ammonium sulfate, potassium nitrate, and urea at varying concentrations (20 g m–2, 10 g m–2, and 0 g m–2) and assessed plant biodiversity, biomass, and multifunctionality. Under long-term nitrogen addition, different nitrogen types influenced species loss and gain rates, thereby affecting species richness; increasing nitrogen levels elevated species loss rates, while ecosystem multifunctionality remained unaffected by environmental constraints. In contrast, under short-term nitrogen addition, nitrogen type primarily influenced species gain rates, which altered species richness and, in turn, ecosystem multifunctionality; nitrogen levels affected both species loss and gain rates, jointly shaping richness and multifunctionality. Overall, short-term nitrogen addition significantly increased species diversity and biomass, whereas long-term addition reduced diversity without affecting multifunctionality. These findings underscore the contrasting impacts of short- and long-term nitrogen inputs and the combined regulatory roles of nitrogen type, addition level, and application duration in the ecological restoration of degraded alpine grasslands.

Graphical abstract

Keywords

nitrogen type and application rate / species turnover / community productivity / grassland restoration

Highlight

● The ecological effects of nitrogen addition depend on the duration, as well as nitrogen levels and types.

● Long-term nitrogen addition reduces species diversity by favoring grasses and excluding non-dominant species.

● Nitrogen addition alters biodiversity–multifunctionality relationships via species turnover.

Cite this article

Download citation ▾
Hongye Su, Tao Chang, Li Ma, Zhonghua Zhang, Ruimin Qin, Haze Adi, Jingjing Wei, Shan Li, Xue Hu, Zhengchen Shi, Huakun Zhou. Long-term nitrogen addition of different types and levels altered the relationship between species diversity and ecosystem multifunctionality in alpine grasslands. Soil Ecology Letters, 2026, 8(2): 260382 DOI:10.1007/s42832-026-0382-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson, K.J., 2007. Temporal patterns in rates of community change during succession. The American Naturalist169, 780–793.

[2]

Bai, Y.F., Han, X.G., Wu, J.G., Chen, Z.Z., Li, L.H., 2004. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature431, 181–184.

[3]

Bai, Y.F., Wu, J.G., Clark, C.M., Naeem, S., Pan, Q.M., Huang, J.H., Zhang, L.X., Han, X.G., 2010. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology16, 358–372.

[4]

Biggs, C.R., Yeager, L.A., Bolser, D.G., Bonsell, C., Dichiera, A.M., Hou, Z.X., Keyser, S.R., Khursigara, A.J., Lu, K.J., Muth, A.F., Negrete, B.Jr., Erisman, B.E., 2020. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere11, e03184.

[5]

Brandt, A.J., Seabloom, E.W., Cadotte, M.W., 2019. Nitrogen alters effects of disturbance on annual grassland community diversity: implications for restoration. Journal of Ecology107, 2054–2064.

[6]

Byrnes, J.E.K., Gamfeldt, L., Isbell, F., Lefcheck, J.S., Griffin, J.N., Hector, A., Cardinale, B.J., Hooper, D.U., Dee, L.E., Emmett Duffy, J., 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution5, 111–124.

[7]

Chang, T., Zhang, Q., Qin, R.M., Su, H.Y., Wei, J.J., Cheng, H.J., Zhao, T.Y., Shao, X.Q., Zhou, H.K., 2023. Effects of nitrogen combined application on the vegetation and soil of degraded alpine meadow in the three-river headwaters region. Acta Agrestia Sinica31, 860–867.

[8]

Chapin, F.S., Moilanen, L., Kielland, K., 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature361, 150–153.

[9]

Chen, Y.L., Xu, Z.W., Feng, K., Yang, G.W., Fu, W., Chen, B.D., 2020. Nitrogen and water addition regulate soil fungal diversity and co-occurrence networks. Journal of Soils and Sediments20, 3192–3203.

[10]

Cheng, Y., Wang, J., Chang, S.X., Cai, Z.C., Müller, C., Zhang, J.B., 2019. Nitrogen deposition affects both net and gross soil nitrogen transformations in forest ecosystems: a review. Environmental Pollution244, 608–616.

[11]

Dai, Z.M., Su, W.J., Chen, H., Barberán, A., Zhao, H., Yu, M., Yu, L., Brookes, P.C., Schadt, C.W., Chang, S.X., Xu, J.M., 2018. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology24, 3452–3461.

[12]

Du, E.Z., Terrer, C., Pellegrini, A.F.A., Ahlström, A., van Lissa, C.J., Zhao, X., Xia, N., Wu, X.H., Jackson, R.B., 2020. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience13, 221–226.

[13]

Eskelinen, A., Harpole, W.S., Jessen, M.T., Virtanen, R., Hautier, Y., 2022. Light competition drives herbivore and nutrient effects on plant diversity. Nature611, 301–305.

[14]

Feng, H.L., Guo, J.H., Peng, C.H., Kneeshaw, D., Roberge, G., Pan, C., Ma, X.H., Zhou, D., Wang, W.F., 2023. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: a global meta-analysis. Global Change Biology29, 3970–3989.

[15]

Feng, Y.L., Lei, Y.B., Wang, R.F., Callaway, R.M., Valiente-Banuet, A., Inderjit, Li, Y.P., Zheng, Y.L., 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America106, 1853–1856.

[16]

Fu, G., Shen, Z.X., 2016. Response of alpine plants to nitrogen addition on the Tibetan Plateau: a meta-analysis. Journal of Plant Growth Regulation35, 974–979.

[17]

Fu, G., Shen, Z.X., 2017. Response of alpine soils to nitrogen addition on the Tibetan Plateau: a meta-analysis. Applied Soil Ecology114, 99–104.

[18]

Gao, X.X., Dong, S.K., Xu, Y.D., Wu, S.N., Wu, X.H., Zhang, X., Zhi, Y.L., Li, S.L., Liu, S., Li, Y., Shang, Z.H., Dong, Q.M., Zhou, H.K., Stufkens, P., 2019. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time: a case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment279, 169–177.

[19]

Greaver, T.L., Clark, C.M., Compton, J.E., Vallano, D., Talhelm, A.F., Weaver, C.P., Band, L.E., Baron, J.S., Davidson, E.A., Tague, C.L., Felker-Quinn, E., Lynch, J.A., Herrick, J.D., Liu, L., Goodale, C.L., Novak, K.J., Haeuber, R.A., 2016. Key ecological responses to nitrogen are altered by climate change. Nature Climate Change6, 836–843.

[20]

Guan, Z.H., Cao, Z.N., Li, X.G., Scholten, T., Kühn, P., Wang, L., Yu, R.P., He, J.S., 2024. Soil phosphorus availability mediates the effects of nitrogen addition on community- and species-level phosphorus-acquisition strategies in alpine grasslands. Science of the Total Environment906, 167630.

[21]

Harris, R.B., 2010. Rangeland degradation on the Qinghai-Tibetan Plateau: a review of the evidence of its magnitude and causes. Journal of Arid Environments74, 1–12.

[22]

He P., Li Y., Jiang M.J., Liu Y.H., Du W., Zhang J.Q., Jing H.C., 2021. Effects of 14-year continuous nitrogen addition on soil carbon and nitrogen composition and physical structure at different depths in a typical temperate steppe. Acta Ecologica Sinica41, 1808–1823.

[23]

Henneron, L., Kardol, P., Wardle, D.A., Cros, C., Fontaine, S., 2020. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies. New Phytologist228, 1269–1282.

[24]

Hong, P.B., Schmid, B., De Laender, F., Eisenhauer, N., Zhang, X.W., Chen, H.Z., Craven, D., De Boeck, H.J., Hautier, Y., Petchey, O.L., Reich, P.B., Steudel, B., Striebel, M., Thakur, M.P., Wang, S.P., 2022. Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters25, 555–569.

[25]

Jiang, J., Shi, P.L., Zong, N., Fu, G., Shen, Z.X., Zhang, X.Z., Song, M.H., 2015. Climatic patterns modulate ecosystem and soil respiration responses to fertilization in an alpine meadow on the Tibetan Plateau, China. Ecological Research30, 3–13.

[26]

Jing, X., He, J.S., 2021. Relationship between biodiversity, ecosystem multifunctionality and multiserviceability: literature overview and research advances. Chinese Journal of Plant Ecology45, 1094–1111.

[27]

Li, C.B., Zheng, Z., Peng, Y.F., Nie, X.Q., Yang, L.C., Xiao, Y.M., Zhou, G.Y., 2019a. Precipitation and nitrogen addition enhance biomass allocation to aboveground in an alpine steppe. Ecology and Evolution9, 12193–12201.

[28]

Li, C.X., de Jong, R., Schmid, B., Wulf, H., Schaepman, M.E., 2020a. Changes in grassland cover and in its spatial heterogeneity indicate degradation on the Qinghai-Tibetan Plateau. Ecological Indicators119, 106641.

[29]

Li, J.S., Shao, X.Q., Huang, D., Shang, J.Y., Liu, K.S., Zhang, Q., Yang, X.M., Li, H., He, Y.X., 2020b. The addition of organic carbon and nitrogen accelerates the restoration of soil system of degraded alpine grassland in Qinghai-Tibet Plateau. Ecological Engineering158, 106084.

[30]

Li, Q., Huang, Y.X., Zhou, D.W., Cong, S., 2021. Mechanism of the trade-off between biological nitrogen fixation and phosphorus acquisition strategies of herbaceous legumes under nitrogen and phosphorus addition. Chinese Journal of Plant Ecology45, 286–297.

[31]

Li, Y., Xu, X.H., Sun, W., Shen, Y., Ren, T.T., Huang, J.H., Wang, C.H., 2019b. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology43, 174–184.

[32]

Li, Y.Z., Zhang, J.Z., Jia, J.Y., Fan, F., Zhang, F.S., Zhang, J.L., 2022. Research progresses on farmland soil ecosystem multifunctionality. Acta Pedologica Sinica59, 1177–1189.

[33]

Liao, L.R., Wang, J., Dijkstra, F.A., Lei, S.L., Zhang, L., Wang, X.J., Liu, G.B., Zhang, C., 2024. Nitrogen enrichment stimulates rhizosphere multi-element cycling genes via mediating plant biomass and root exudates. Soil Biology and Biochemistry190, 109306.

[34]

Liu, J.S., Li, X.F., Ma, Q.H., Zhang, X., Chen, Y., Isbell, F., Wang, D.L., 2019. Nitrogen addition reduced ecosystem stability regardless of its impacts on plant diversity. Journal of Ecology107, 2427–2435.

[35]

Liu, W.X., Yang, X., Jiang, L., Guo, L.L., Chen, Y.R., Yang, S., Liu, L.L., 2022. Partitioning of beta‐diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecology and Evolution12, e9016.

[36]

Loreau, M., 2001. Microbial diversity, producer-decomposer interactions and ecosystem processes: a theoretical model. Proceedings of the Royal Society B: Biological Sciences268, 303–309.

[37]

Lu, M., Yang, Y.H., Luo, Y.Q., Fang, C.M., Zhou, X.H., Chen, J.K., Yang, X., Li, B., 2011. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta‐analysis. New Phytologist189, 1040–1050.

[38]

Luo, X.Z., Zhang, L.L., Lin, Y.B., Wen, D.Z., Hou, E.Q., 2023. Nitrogen availability mediates soil organic carbon cycling in response to phosphorus supply: a global meta-analysis. Soil Biology and Biochemistry185, 109158.

[39]

Maestre, F.T., Quero, J.L., Gotelli, N.J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., García-Gómez, M., Bowker, M.A., Soliveres, S., Escolar, C., García-Palacios, P., Berdugo, M., Valencia, E., Gozalo, B., Gallardo, A., Aguilera, L., Arredondo, T., Blones, J., Boeken, B., Bran, D., Conceição, A.A., Cabrera, O., Chaieb, M., Derak, M., Eldridge, D.J., Espinosa, C.I., Florentino, A., Gaitán, J., Gatica, M.G., Ghiloufi, W., Gómez-González, S., Gutiérrez, J.R., Hernández, R.M., Huang, X.W., Huber-Sannwald, E., Jankju, M., Miriti, M., Monerris, J., Mau, R.L., Morici, E., Naseri, K., Ospina, A., Polo, V., Prina, A., Pucheta, E., Ramírez-Collantes, D.A., Romão, R., Tighe, M., Torres-Díaz, C., Val, J., Veiga, J.P., Wang, D.L., Zaady, E., 2012. Plant species richness and ecosystem multifunctionality in global drylands. Science335, 214–218.

[40]

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., Whittingham, M.J., Fischer, M., 2018. Redefining ecosystem multifunctionality. Nature Ecology & Evolution2, 427–436.

[41]

Mori, A.S., Isbell, F., Cadotte, M.W., 2023. Assessing the importance of species and their assemblages for the biodiversity-ecosystem multifunctionality relationship. Ecology104, e4104.

[42]

Naeem, S., Duffy, J.E., Zavaleta, E., 2012. The functions of biological diversity in an age of extinction. Science336, 1401–1406.

[43]

O’Brien, S.A., Dehling, D.M., Tylianakis, J.M., 2022. The recovery of functional diversity with restoration. Ecology103, e3618.

[44]

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., Janssens, I.A., 2013. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications4, 2934.

[45]

Pichon, N.A., Cappelli, S.L., Soliveres, S., Mannall, T., Nwe, T.Z., Hölzel, N., Klaus, V.H., Kleinebecker, T., Vincent, H., Allan, E., 2024. Nitrogen availability and plant functional composition modify biodiversity-multifunctionality relationships. Ecology Letters27, e14361.

[46]

Shang, Z.H., Dong, Q.M., Shi, J.J., Zhou, H.K., Dong, S.K., Shao, X.Q., Li, S.X., Wang, Y.L., Ma, Y.T., Ding, L.M., Cao, G.M., Long, R.J., 2018. Research progress in recent ten years of ecological restoration for ‘black soil land’ degraded grassland on Tibetan Plateau—concurrently discuss of ecological restoration in Sangjiangyuan region. Acta Agrestia Sinica26, 1–21.

[47]

Shangguan, Z.J., Jing, X., Wang, H., Liu, H.Y., Gu, H.J., He, J.S., 2024. Plant biodiversity responds more strongly to climate warming and anthropogenic activities than microbial biodiversity in the Qinghai–Tibetan alpine grasslands. Journal of Ecology112, 110–125.

[48]

Shen, H., Dong, S.K., DiTommaso, A., Li, S., Xiao, J.N., Yang, M.Y., Zhang, J., Gao, X.X., Xu, Y.D., Zhi, Y.L., Liu, S.L., Dong, Q.M., Wang, W.Y., Liu, P., Xu, J.Y., 2020. Eco-physiological processes are more sensitive to simulated N deposition in leguminous forbs than non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau. Science of the Total Environment744, 140612.

[49]

Shen, H., Dong, S.K., DiTommaso, A., Westbrook, A.S., Li, S., Zheng, H.Z., Zhi, Y.L., Zuo, H., Wang, Q.Y., Liu, J.X., 2024. Physiological factors contribute to increased competitiveness of grass relative to sedge, forb and legume species under different N application levels. Science of the Total Environment906, 167466.

[50]

Shi, G.X., Zhang, Z.H., Ma, L., Liu, Y.J., Wang, Y.B., Uwamungu, J.Y., Feng, H.Y., Dong, S.K., Yao, B.Q., Zhou, H.K., 2024a. Nitrogen addition drives changes in arbuscular mycorrhizal fungal richness through changes in plant species richness in revegetated alpine grassland. Fungal Ecology67, 101303.

[51]

Shi, L.N., Lin, Z.R., Yao, Z.Y., Peng, C.J., Hu, M.A., Yin, N., Lu, X.M., Zhou, H.K., Liu, K.S., Shao, X.Q., 2024b. Increased precipitation rather than warming increases ecosystem multifunctionality in an alpine meadow. Plant and Soil498, 357–370.

[52]

Song, M.H., Zheng, L.L., Suding, K.N., Yin, T.F., Yu, F.H., 2015. Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization. Plant and Soil394, 215–224.

[53]

Sun, H.L., Zheng, D., Yao, T.D., Zhang, Y.L., 2012. Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica67, 3–12.

[54]

Tian, D.S., Niu, S.L., 2015. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters10, 024019.

[55]

Tian, D.S., Xiang, Y.Z., Seabloom, E., Chen, H.Y.H., Wang, J.S., Yu, G.R., Deng, Y., Li, Z.L., Niu, S.L., 2022a. Ecosystem restoration and belowground multifunctionality: a network view. Ecological Applications32, e2575.

[56]

Tian, Q.Y., Liu, N.N., Bai, W.M., Li, L.H., Chen, J.Q., Reich, P.B., Yu, Q., Guo, D.L., Smith, M.D., Knapp, A.K., Cheng, W.X., Lu, P., Gao, Y., Yang, A., Wang, T.Z., Li, X., Wang, Z.W, Ma, Y.B., Han, X.G., Zhang, W.H., 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology97, 65–74.

[57]

Tian, Q.Y., Lu, P., Zhai, X.F., Zhang, R.F., Zheng, Y., Wang, H., Nie, B., Bai, W.M., Niu, S.L., Shi, P.L., Yang, Y.H., Li, K.H., Yang, D.L., Stevens, C., Lambers, H., Zhang, W.H., 2022b. An integrated belowground trait-based understanding of nitrogen-driven plant diversity loss. Global Change Biology28, 3651–3664.

[58]

Trew, B.T., Maclean, I.M.D., 2021. Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography30, 768–783.

[59]

Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.B., Pe’er, G., Singer, A., Bridle, J.R., Crozier, L.G., De Meester, L., Godsoe, W., Gonzalez, A., Hellmann, J.J., Holt, R.D., Huth, A., Johst, K., Krug, C.B., Leadley, P.W., Palmer, S.C.F., Pantel, J.H., Schmitz, A., Zollner, P.A., Travis, J.M.J., 2016. Improving the forecast for biodiversity under climate change. Science353, aad8466.

[60]

Vallicrosa, H., Sardans, J., Maspons, J., Peñuelas, J., 2022. Global distribution and drivers of forest biome foliar nitrogen to phosphorus ratios (N:P). Global Ecology and Biogeography31, 861–871.

[61]

van der Plas, F., 2019. Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews94, 1220–1245.

[62]

Wang, C., Li, X.N., Hu, Y.X., Zheng, R.L., Hou, Y.H., 2023a. Nitrogen addition weakens the biodiversity multifunctionality relationships across soil profiles in a grassland assemblage. Agriculture, Ecosystems & Environment342, 108241.

[63]

Wang, R.Z., Yang, J.J., Liu, H.Y., Sardans, J., Zhang, Y.H., Wang, X.B., Wei, C.Z., Lü, X.T., Dijkstra, F.A., Jiang, Y., Han, X.G., Peñuelas, J., 2022. Nitrogen enrichment buffers phosphorus limitation by mobilizing mineral-bound soil phosphorus in grasslands. Ecology103, e3616.

[64]

Wang, S.Q., Song, M.H., Wang, C.M., Dou, X.M., Wang, X.Q., Li, X.Y., 2023b. Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of The Total Environment904, 166403.

[65]

Wang, Y.L., Niu, G.X., Wang, R.Z., Rousk, K., Li, A., Hasi, M., Wang, C.H., Xue, J.G., Yang, G.J., Lü, X.T., Jiang, Y., Han, X.G., Huang, J.H., 2023c. Enhanced foliar 15N enrichment with increasing nitrogen addition rates: role of plant species and nitrogen compounds. Global Change Biology29, 1591–1605.

[66]

Wang, Y.S., Li, C.N., Kou, Y.P., Wang, J.J., Tu, B., Li, H., Li, X.Z., Wang, C.T., Yao, M.J., 2017. Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology and Biochemistry115, 547–555.

[67]

Wright, I.J., Reich, P.B., Westoby, M., 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high-and low-rainfall and high-and low-nutrient habitats. Functional Ecology15, 423–434.

[68]

Wu, G.L., Ren, G.H., Dong, Q.M., Shi, J.J., Wang, Y.L., 2014. Above-and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean-Soil, Air, Water42, 319–323.

[69]

Xu, S., Li, P., Sayer, E.J., Zhang, B.B., Wang, J., Qiao, C.L., Peng, Z.Y., Diao, L.W., Chi, Y.G., Liu, W.X., Liu, L.L., 2018. Initial soil organic matter content influences the storage and turnover of litter, root and soil carbon in grasslands. Ecosystems21, 1377–1389.

[70]

Xu, W., Ma, Z.Y., Jing, X., He, J.S., 2016. Biodiversity and ecosystem multifunctionality: advances and perspectives. Biodiversity Science24, 55–71.

[71]

Xu, Y.D., Dong, S.K., Gao, X.X., Yang, M.Y., Li, S., Shen, H., Xiao, J.N., Han, Y.H., Zhang, J., Li, Y., Zhi, Y.L., Yang, Y.F., Liu, S.L., Dong, Q.M., Zhou, H.K., Stufkens, P., 2019. Trade-offs and cost-benefit of ecosystem services of revegetated degraded alpine meadows over time on the Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment279, 130–138.

[72]

Yang, G.W., Ryo, M., Roy, J., Hempel, S., Rillig, M.C., 2021a. Plant and soil biodiversity have non-substitutable stabilising effects on biomass production. Ecology Letters24, 1582–1593.

[73]

Yang, J.X., Hou, D.J., Qiao, X.G., Geng, X.M., Guo, K., He, W.M., 2019. Plowing, seeding, and fertilizing differentially influence species diversity, functional groups and community productivity in a degraded steppe. Flora257, 151414.

[74]

Yang, Y., Dou, Y.X., Wang, B.R., Wang, Y.Q., Liang, C., An, S.S., Soromotin, A., Kuzyakov, Y., 2022. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biology and Biochemistry170, 108688.

[75]

Yang, Z., Zhan, W., Jiang, L., Chen, H., 2021b. Effect of short-term low-nitrogen addition on carbon, nitrogen and phosphorus of vegetation-soil in alpine meadow. International Journal of Environmental Research and Public Health18, 10998.

[76]

Zhang, C., Song, Z.L., Zhuang, D.H., Wang, J., Xie, S.S., Liu, G.B., 2019. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland. Biology and Fertility of Soils55, 229–242.

[77]

Zhang, J., Cai, Z., Müller, C., 2018. Terrestrial N cycling associated with climate and plant-specific N preferences: a review. European Journal of Soil Science69, 488–501.

[78]

Zhang, L., Guo, H.D., Wang, C.Z., Ji, L., Li, J., Wang, K., Dai, L., 2014. The long-term trends (1982–2006) in vegetation greenness of the alpine ecosystem in the Qinghai-Tibetan Plateau. Environmental Earth Sciences72, 1827–1841.

[79]

Zhang, L., Ni, M., Zhu, T.B., Xu, X.L., Zhou, S.R., Shipley, B., 2022a. Nitrogen addition in a Tibetan alpine meadow increases intraspecific variability in nitrogen uptake, leading to increased community-level nitrogen uptake. Ecosystems25, 172–183.

[80]

Zhang, R., Degen, A.A., Bai, Y.F., Zhang, T., Wang, X.M., Zhao, X.Y., Shang, Z.H., 2020. The forb, Ajania tenuifolia, uses soil nitrogen efficiently, allowing it to be dominant over sedges and Graminae in extremely degraded grasslands: implications for grassland restoration and development on the Tibetan Plateau. Land Degradation & Development31, 1265–1276.

[81]

Zhang, R.Y., Tian, D.S., Chen, H.Y.H., Seabloom, E.W., Han, G.D., Wang, S.P., Yu, G.R., Li, Z.L., Niu, S.L., 2022b. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: a global meta-analysis. Global Ecology and Biogeography31, 155–167.

[82]

Zhang, Y., Cai, Z.C., Zhang, J.B., Müller, C., 2023. The controlling factors and the role of soil heterotrophic nitrification from a global review. Applied Soil Ecology182, 104698.

[83]

Zhao, C.Z., Zhu, L.Y., Liang, J., Yin, H.J., Yin, C.Y., Li, D.D., Zhang, N.N., Liu, Q., 2014. Effects of experimental warming and nitrogen fertilization on soil microbial communities and processes of two subalpine coniferous species in eastern Tibetan Plateau, China. Plant and Soil382, 189–201.

[84]

Zhao, M., Zhang, H.X., Baskin, C.C., Wei, C.Z., Yang, J.J., Zhang, Y.H., Jiang, Y., Jiang, L., Han, X.G., 2022. Intra-annual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. Journal of Ecology110, 1942–1956.

[85]

Zhong, Y.Q.W., Yan, W.M., Shangguan, Z.P., 2015. Soil carbon and nitrogen fractions in the soil profile and their response to long-term nitrogen fertilization in a wheat field. CATENA135, 38–46.

[86]

Zhu, J.T., Zong, N., Shi, P.L., He, Y., Yang, X., Zhang, Y.J., Jiang, L., 2023. Resource co-limitation of community biomass but not structure of an alpine grassland. Ecology104, e4167.

[87]

Zong, N., Zhao, G.S., Shi, P.L., 2019. Different sensitivity and threshold in response to nitrogen addition in four alpine grasslands along a precipitation transect on the northern Tibetan Plateau. Ecology and Evolution9, 9782–9793.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4018KB)

Supplementary files

Supplementary materials

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/