Influence of nitrogen fertilization and the indigenous soil microbiome on rice (Oryza sativa L.) seedling stage

Zheng Sun , Yunyun Cao , Gawuhaer Sanlamuhan , Zhicheng Liu , Gaochao Cai , Han Lyu , Jingguang Chen , Shurong Liu

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260381

PDF (4805KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260381 DOI: 10.1007/s42832-026-0381-z
RESEARCH ARTICLE

Influence of nitrogen fertilization and the indigenous soil microbiome on rice (Oryza sativa L.) seedling stage

Author information +
History +
PDF (4805KB)

Abstract

Soil microbial communities are important to nutrient cycling and rice plant growth. Increasingly frequent extreme climate events pose a severe threat to the stability of soil microbial communities, yet the consequences of a catastrophic microbial disturbance on rice seedling stage remain poorly understood. Therefore, we used a gamma-sterilization experiment to eliminate the native microbiome and investigate its functional importance for rice seedlings under four N input levels (0, 50, 100, and 200 mg N kg−1). Amplicon sequencing showed that sterilization showed more significant impacts than N input on microbial diversity and composition. Sterilization reduced alpha diversity, enriched copiotrophs, and suppressed oligotrophs, while increasing unclassified fungal taxa. Microbial communities in non-sterilized soils were resilient to N addition, likely due to fertilization legacy. Rice biomass declined significantly in sterilized soils under low N, indicating the critical role of indigenous microbes in nutrient acquisition. Correlation analyses revealed distinct rice biomass associated taxa among treatments, suggesting disrupted plant–microbe interactions. Although the relative abundance of plant growth-promoting taxa increased in sterilized soils, their enrichment did not compensate for the loss of indigenous microbial community functions. These findings highlighted the ecological importance of native soil microbiota in supporting rice growth under variable N inputs and provided insights for nutrient management.

Graphical abstract

Keywords

rice paddy soil / PGPR / soil sterilization / rice seedling stage / nitrogen input level, soil microbial community

Highlight

● Rice cultivars exhibited distinct rice seedling stage growth responses to severe microbial community disturbance.

● Gamma irradiation sterilization reshaped bacterial and fungal community structure more than N input.

● Sterilized soils showed increased relative abundance of PGPR genera (e.g., Azospirillum , Ralstonia ) but failed to restore seedling biomass.

● Recolonized microbial communities were strongly governed by urea-N input levels, altering diversity and composition.

Cite this article

Download citation ▾
Zheng Sun, Yunyun Cao, Gawuhaer Sanlamuhan, Zhicheng Liu, Gaochao Cai, Han Lyu, Jingguang Chen, Shurong Liu. Influence of nitrogen fertilization and the indigenous soil microbiome on rice (Oryza sativa L.) seedling stage. Soil Ecology Letters, 2026, 8(1): 260381 DOI:10.1007/s42832-026-0381-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abd El-Mageed, T.A., Abd El-Mageed, S.A., El-Saadony, M.T., Abdelaziz, S., Abdou, N.M., 2022. Plant growth-promoting rhizobacteria improve growth, morph-physiological responses, water productivity, and yield of rice plants under full and deficit drip irrigation. Rice15, 16.

[2]

Afridi, M.S., Kumar, A., Javed, M.A., Dubey, A., de Medeiros, F.H.V., Santoyo, G., 2024. Harnessing root exudates for plant microbiome engineering and stress resistance in plants. Microbiological Research279, 127564.

[3]

Afzal, M.R., Naz, M., Yu, Y.B., Yan, L.S., Wang, P.Y., Mohotti, J., Hao, G.F., Zhou, J.J., Chen, Z., Zhang, L.B., Wang, Q., 2025. Root exudates: the rhizospheric frontier for advancing sustainable plant protection. Resources, Environment and Sustainability21, 100249.

[4]

Bai, L.F., Zhang, X.Q., Li, B.Z., Sun, F.C., Zhao, X.Q., Wang, Y.F., Lu, Z.Y., Zhang, D.J., Fang, J., 2022. Fungal communities are more sensitive to nitrogen fertilization than bacteria in different spatial structures of silage maize under short-term nitrogen fertilization. Applied Soil Ecology170, 104275.

[5]

Banerjee, S., Walder, F., Büchi, L., Meyer, M., Held, A.Y., Gattinger, A., Keller, T., Charles, R., van der Heijden, M.G.A., 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal13, 1722–1736.

[6]

Bei, Q.C., Reitz, T., Schnabel, B., Eisenhauer, N., Schädler, M., Buscot, F., Heintz-Buschart, A., 2023. Extreme summers impact cropland and grassland soil microbiomes. The ISME Journal17, 1589–1600.

[7]

Berendsen, R.L., Pieterse, C.M.J., Bakker, P.A.H.M., 2012. The rhizosphere microbiome and plant health. Trends in Plant Science17, 478–486.

[8]

Berendsen, R.L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W.P., Burmølle, M., Herschend, J., Bakker, P.A.H.M., Pieterse, C.M.J., 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. The ISME Journal12, 1496–1507.

[9]

Berns, A.E., Philipp, H., Narres, H.D., Burauel, P., Vereecken, H., Tappe, W., 2008. Effect of gamma-sterilization and autoclaving on soil organic matter structure as studied by solid state NMR, UV and fluorescence spectroscopy. European Journal of Soil Science59, 540–550.

[10]

Biswas, D., Chakraborty, A.K., Srivastava, V., Mandal, A., 2024. Plant Growth Promoting Rhizobacteria (PGPR): reports on their colonization, beneficial activities, and use as bioinoculant. Advances in Agriculture2024, 8173024.

[11]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G.I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[12]

Bossolani, J.W., Leite, M.F.A., Momesso, L., ten Berge, H., Bloem, J., Kuramae, E.E., 2023. Nitrogen input on organic amendments alters the pattern of soil–microbe-plant co-dependence. Science of the Total Environment890, 164347.

[13]

Buchan, D., Moeskops, B., Ameloot, N., De Neve, S., Sleutel, S., 2012. Selective sterilisation of undisturbed soil cores by gamma irradiation: effects on free-living nematodes, microbial community and nitrogen dynamics. Soil Biology and Biochemistry47, 10–13.

[14]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from illumina amplicon data. Nature Methods13, 581–583.

[15]

Chen, S.X., Lin, Z.C., Zhou, D.G., Wang, C.R., Li, H., Yu, R.B., Deng, H.C., Tang, X.Y., Zhou, S.C., Deng, X.W., He, H., 2017. Genome-wide study of an elite rice pedigree reveals a complex history of genetic architecture for breeding improvement. Scientific Reports7, 45685.

[16]

Chen, Y.N., Li, Y., Qiu, T.Y., He, H.R., Liu, J., Duan, C.J., Cui, Y.X., Huang, M., Wu, C.Y., Fang, L.C., 2024. High nitrogen fertilizer input enhanced the microbial network complexity in the paddy soil. Soil Ecology Letters6, 230205.

[17]

Chi, Y.W., Ma, X.Z., Chu, S.H., You, Y.M., Chen, X.F., Wang, J.C., Wang, R.Y., Zhang, X., Zhang, D.W., Zhao, T., Zhang, D., Zhou, P., 2025. Nitrogen cycle induced by plant growth-promoting rhizobacteria drives “microbial partners” to enhance cadmium phytoremediation. Microbiome13, 113.

[18]

Compant, S., Clément, C., Sessitsch, A., 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry42, 669–678.

[19]

Compant, S., Duffy, B., Nowak, J., Clément, C., Barka, E.A., 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology71, 4951–4959.

[20]

de Souza, R., Beneduzi, A., Ambrosini, A., da Costa, P.B., Meyer, J., Vargas, L.K., Schoenfeld, R., Passaglia, L.M.P., 2013. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L. ) cropped in southern Brazilian fields. Plant and Soil366, 585–603.

[21]

Delgado-Baquerizo, M., Reich, P.B., Trivedi, C., Eldridge, D.J., Abades, S., Alfaro, F.D., Bastida, F., Berhe, A.A., Cutler, N.A., Gallardo, A., García-Velázquez, L., Hart, S.C., Hayes, P.E., He, J.Z., Hseu, Z.Y., Hu, H.W., Kirchmair, M., Neuhauser, S., Pérez, C.A., Reed, S.C., Santos, F., Sullivan, B.W., Trivedi, P., Wang, J.T., Weber-Grullon, L., Williams, M.A., Singh, B.K., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution4, 210–220.

[22]

Deng, X.H., Zhang, N., Li, Y.C., Zhu, C.Z., Qu, B.Y., Liu, H.J., Li, R., Bai, Y., Shen, Q.R., Falcao Salles, J., 2022. Bio-organic soil amendment promotes the suppression of Ralstonia solanacearum by inducing changes in the functionality and composition of rhizosphere bacterial communities. New Phytologist235, 1558–1574.

[23]

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

[24]

FAO, 2019. World Fertilizer Trends and Outlook to 2022. Rome: FAO.

[25]

Fierer, N., Leff, J.W., Adams, B.J., Nielsen, U.N., Bates, S.T., Lauber, C.L., Owens, S., Gilbert, J.A., Wall, D.H., Caporaso, J.G., 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences of the United States of America109, 21390–21395.

[26]

Florio, A., Bréfort, C., Gervaix, J., Bérard, A., Le Roux, X., 2019. The responses of NO2- and N2O-reducing bacteria to maize inoculation by the PGPR Azospirillum lipoferum CRT1 depend on carbon availability and determine soil gross and net N2O production. Soil Biology and Biochemistry136, 107524.

[27]

Fox, S., Sikes, B.A., Brown, S.P., Cripps, C.L., Glassman, S.I., Hughes, K., Semenova-Nelsen, T., Jumpponen, A., 2022. Fire as a driver of fungal diversity — a synthesis of current knowledge. Mycologia114, 215–241.

[28]

Furtak, K., Wolińska, A., 2023. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – a review. CATENA231, 107378.

[29]

Gong, R., Huang, D.Q., Chen, Y.B., Li, H., Wang, Z.D., Zhou, D.G., Zhao, L., Pan, Y.Y., Chang, Y.X., Xiang, Y., Wang, C.R., Zhou, S.C., 2020. Comparative metabolomics analysis reveals the variations of eating quality among three high-quality rice cultivars. Molecular Breeding40, 112.

[30]

Ho, A., Di Lonardo, D.P., Bodelier, P.L.E., 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiology Ecology93, fix006.

[31]

IUSS Working Group WRB, 2022. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. 4th ed. Vienna: International Union of Soil Sciences (IUSS).

[32]

Katoh, K., Misawa, K., Kuma, K.I., Miyata, T., 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research30, 3059–3066.

[33]

Knight, C.G., Nicolitch, O., Griffiths, R.I., Goodall, T., Jones, B., Weser, C., Langridge, H., Davison, J., Dellavalle, A., Eisenhauer, N., Gongalsky, K.B., Hector, A., Jardine, E., Kardol, P., Maestre, F.T., Schädler, M., Semchenko, M., Stevens, C., Tsiafouli, M.Α., Vilhelmsson, O., Wanek, W., de Vries, F.T., 2024. Soil microbiomes show consistent and predictable responses to extreme events. Nature636, 690–696.

[34]

Kuzyakov, Y., Xu, X.L., 2013. Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist198, 656–669.

[35]

Li, K., DiLegge, M.J., Minas, I.S., Hamm, A., Manter, D., Vivanco, J.M., 2019. Soil sterilization leads to re-colonization of a healthier rhizosphere microbiome. Rhizosphere12, 100176.

[36]

Li, W.T., Kuzyakov, Y., Zheng, Y.L., Li, P.F., Li, G.L., Liu, M., Alharbi, H.A., Li, Z.P., 2022. Depth effects on bacterial community assembly processes in paddy soils. Soil Biology and Biochemistry165, 108517.

[37]

Lozano, Y.M., Aguilar-Trigueros, C.A., Roy, J., Rillig, M.C., 2021. Drought induces shifts in soil fungal communities that can be linked to root traits across 24 plant species. New Phytologist232, 1917–1929.

[38]

Martin, F.M., van der Heijden, M.G.A., 2024. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytologist242, 1486–1506.

[39]

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal17, 10–12.

[40]

McBain, A.J., Bartolo, R.G., Catrenich, C.E., Charbonneau, D., Ledder, R.G., Rickard, A.H., Symmons, S.A., Gilbert, P., 2003. Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Applied and Environmental Microbiology69, 177–185.

[41]

McNamara, N.P., Black, H.I.J., Beresford, N.A., Parekh, N.R., 2003. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Applied Soil Ecology24, 117–132.

[42]

Mendes, R., Garbeva, P., Raaijmakers, J.M., 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews37, 634–663.

[43]

Moreira, H., Pereira, S.I.A., Marques, A.P.G.C., Rangel, A.O.S.S., Castro, P.M.L., 2019. Effects of soil sterilization and metal spiking in plant growth promoting rhizobacteria selection for phytotechnology purposes. Geoderma334, 72–81.

[44]

Morriën, E., Hannula, S.E., Snoek, L.B., Helmsing, N.R., Zweers, H., de Hollander, M., Soto, R.L., Bouffaud, M.L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R.I., Jørgensen, H.B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R.M., Schmidt, O., Thomson, B.C., Tisserant, E., Uroz, S., Winding, A., Bailey, M.J., Bonkowski, M., Faber, J.H., Martin, F., Lemanceau, P., de Boer, W., van Veen, J.A., van der Putten, W.H., 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications8, 14349.

[45]

Muhammad, M., Wahab, A., Waheed, A., Hakeem, K.R., Mohamed, H.I., Basit, A., Toor, M.D., Liu, Y.H., Li, L., Li, W.J., 2025. Navigating climate change: exploring the dynamics between plant–soil microbiomes and their impact on plant growth and productivity. Global Change Biology31, e70057.

[46]

Oleńska, E., Małek, W., Wójcik, M., Swiecicka, I., Thijs, S., Vangronsveld, J., 2020. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of the Total Environment743, 140682.

[47]

Paravar, A., Piri, R., Balouchi, H., Ma, Y., 2023. Microbial seed coating: an attractive tool for sustainable agriculture. Biotechnology Reports37, e00781.

[48]

Philippot, L., Griffiths, B.S., Langenheder, S., 2021. Microbial community resilience across ecosystems and multiple disturbances. Microbiology and Molecular Biology Reviews85, e00026–20.

[49]

Philippot, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013a. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology11, 789–799.

[50]

Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C.M., Sarr, A., Maron, P.A., 2013b. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal7, 1609–1619.

[51]

Price, M.N., Dehal, P.S., Arkin, A.P., 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution26, 1641–1650.

[52]

Romero, F., Hilfiker, S., Edlinger, A., Held, A., Hartman, K., Labouyrie, M., van der Heijden, M.G.A., 2023. Soil microbial biodiversity promotes crop productivity and agro-ecosystem functioning in experimental microcosms. Science of the Total Environment885, 163683.

[53]

Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B., Sundaresan, V., 2017. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio8, e00764–17.

[54]

Saxena, A.K., Kumar, M., Chakdar, H., Anuroopa, N., Bagyaraj, D.J., 2020. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology128, 1583–1594.

[55]

Trabelsi, D., Mhamdi, R., 2013. Microbial inoculants and their impact on soil microbial communities: a review. BioMed Research International2013, 863240.

[56]

Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G.A., 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

[57]

Walker, N.J., 2001. Real-time and quantitative PCR: applications to mechanism-based toxicology. Journal of Biochemical and Molecular Toxicology15, 121–127.

[58]

Walter, J., Tannock, G.W., Tilsala-Timisjarvi, A., Rodtong, S., Loach, D.M., Munro, K., Alatossava, T., 2000. Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Applied and Environmental Microbiology66, 297–303.

[59]

Wang, J.L., Xiao, X., Hu, A.Y., Shen, R.F., Zhao, X.Q., 2023. Yield gap of rice genotypes under N and P deficiencies: evidence from differential recruitment of bacterial keystone taxa in the rhizosphere. Applied Soil Ecology184, 104791.

[60]

Wehr, J.B., Kirchhof, G., 2021. Gamma irradiation with 50 kGy has a limited effect on agronomic properties of air-dry soil. Soil Systems5, 28.

[61]

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., eds. PCR Protocols. Amsterdam: Elsevier, 315–322.

[62]

Xu, J., Liu, S.J., Song, S.R., Guo, H.L., Tang, J.J., Yong, J.W.H., Ma, Y.D., Chen, X., 2018. Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability. Soil Biology and Biochemistry120, 181–190.

[63]

Yang, L., Li, T.T., Li, X.X., Wang, Y.S., Wang, X.W., 2024. Nitrogen addition decreases root exudation of four temperate tree species seedlings, independent of the applied nitrogen form. Plant and Soil498, 637–650.

[64]

Yoshida, S., 1981. Fundamentals of Rice Crop Science. Los Baños, Laguna, Philippines: International Rice Research Institute.

[65]

Zhang, B., Wei, Z.B., Schaeffer, S.M., Liang, A.Z., Ding, X.L., 2021. Recovery of bacterial communities and functions of soils under ridge tillage and no-tillage after different intensities and frequencies of drying-wetting disturbances in agroecosystems of northeastern China. CATENA203, 105367.

[66]

Zhang, H., Jiang, N., Zhang, S.Y., Zhu, X.Y., Wang, H., Xiu, W., Zhao, J.N., Liu, H.M., Zhang, H.F., Yang, D.L., 2024. Soil bacterial community composition is altered more by soil nutrient availability than pH following long-term nutrient addition in a temperate steppe. Frontiers in Microbiology15, 1455891.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4805KB)

Supplementary files

Supplementary materials

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/