Soil microbiomes in urban green spaces: Foundation of ecosystem functions and human health

Xiao-Tong Zhu , Xi-Lin Yuan , Pin Li , Congcong Shen

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260379

PDF (8469KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260379 DOI: 10.1007/s42832-026-0379-6
REVIEW

Soil microbiomes in urban green spaces: Foundation of ecosystem functions and human health

Author information +
History +
PDF (8469KB)

Abstract

Soil microbiomes in urban green spaces (UGSs) critically influence the ecological functions, human health and sustainable development of one city. In the recent decade, the frequent concern of microorganisms in UGSs allow us to systematically review the research progress and focus the key questions for this field. We first summarized microbial major taxa and their distribution patterns in UGSs from local, regional and global scales, further identifying the main assembly mechanisms. We propose a three dimensional (3D) interactive framework “resource competition‒environmental filtering‒anthropogenic stress” that governs assembly of soil microbiomes in UGSs, and drives their homogenization. We then explore the relationship between UGSs soil microbiomes and critical ecosystem processes, including plant growth, carbon-nitrogen cycling and ecosystem stability. We also analyze the potential pathways through which UGSs soil microbiomes influence human health, including indirect impacts through regulating soil environmental quality, as well as direct involvement in human immune regulation. Future directions might be prioritized in monitoring soil microbiome dynamics, analyzing soil microbiome functional networks and constructing microbial-based strategies for synergistic optimization of UGSs ecology and public health.

Graphical abstract

Keywords

urban green spaces / soil microbiome / community assembly / ecological function / human health

Highlight

● Soil microbiomes of urban green spaces exhibit a clear homogenization characteristic.

● A three dimensional interactive framework “resource competition‒environmental filtering‒anthropogenic stress” determines community assembly of soil microbiomes.

● Soil microbiomes affect ecosystem functions and human health via multiple pathways.

● Future directions involving soil microbiomes were proposed for synergistic optimization of urban green spaces ecology and public health.

Cite this article

Download citation ▾
Xiao-Tong Zhu, Xi-Lin Yuan, Pin Li, Congcong Shen. Soil microbiomes in urban green spaces: Foundation of ecosystem functions and human health. Soil Ecology Letters, 2026, 8(1): 260379 DOI:10.1007/s42832-026-0379-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson, J., Ruggeri, K., Steemers, K., Huppert, F., 2017. Lively social space, well-being activity, and urban design: findings from a low-cost community-led public space intervention. Environment and Behavior49, 685–716.

[2]

Banerjee, S., Aschehoug, E.T., Hulbert, S.H., Busby, P.E., 2019. Biotic homogenization of soil fungal communities in European arable fields. Nature Ecology & Evolution3, 1442–1450.

[3]

Barton, J., Hine, R., Pretty, J., 2009. The health benefits of walking in greenspaces of high natural and heritage value. Journal of Integrative Environmental Sciences6, 261–278.

[4]

Baruch, Z., Liddicoat, C., Cando-Dumancela, C., Laws, M., Morelli, H., Weinstein, P., Young, J.M., Breed, M.F., 2021. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environmental Research196, 110425.

[5]

Benton, J.S., Anderson, J., Cotterill, S., Dennis, M., Lindley, S.J., French, D.P., 2018. Evaluating the impact of improvements in urban green space on older adults’ physical activity and wellbeing: protocol for a natural experimental study. BMC Public Health18, 923.

[6]

Birt, H.W.G., Bonnett, S.A.F., 2018. Microbial mechanisms of carbon and nitrogen acquisition in contrasting urban soils. European Journal of Soil Biology88, 1–7.

[7]

Bittencourt, P.P., Alves, A.F., Ferreira, M.B., da Silva Irineu, L.E.S., Pinto, V.B., Olivares, F.L., 2023. Mechanisms and applications of bacterial inoculants in plant drought stress tolerance. Microorganisms11, 502.

[8]

Cavani, L., Manici, L.M., Caputo, F., Peruzzi, E., Ciavatta, C., 2016. Ecological restoration of a copper polluted vineyard: long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. Journal of Environmental Management182, 37–47.

[9]

Chisholm, R.A., Pacala, S.W., 2011. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theoretical Ecology4, 195–200.

[10]

Christel, A., Dequiedt, S., Chemidlin-Prevost-Bouré, N., Mercier, F., Tripied, J., Comment, G., Djemiel, C., Bargeot, L., Matagne, E., Fougeron, A., Passi, J.B.M., Ranjard, L., Maron, P.A., 2023. Urban land uses shape soil microbial abundance and diversity. Science of the Total Environment883, 163455.

[11]

Couturier, M., Ladevèze, S., Sulzenbacher, G., Ciano, L., Fanuel, M., Moreau, C., Villares, A., Cathala, B., Chaspoul, F., Frandsen, K.E., Labourel, A., Herpoël-Gimbert, I., Grisel, S., Haon, M., Lenfant, N., Rogniaux, H., Ropartz, D., Davies, G.J., Rosso, M.N., Walton, P.H., Henrissat, B., Berrin, J.G., 2018. Lytic Xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology14, 306–310.

[12]

Coyte, K.Z., Schluter, J., Foster, K.R., 2015. The ecology of the microbiome: networks, competition, and stability. Science350, 663–666.

[13]

Delgado-Baquerizo, M., Bardgett, R.D., Vitousek, P.M., Maestre, F.T., Williams, M.A., Eldridge, D.J., Lambers, H., Neuhauser, S., Gallardo, A., García-Velázquez, L., Sala, O.E., Abades, S.R., Alfaro, F.D., Berhe, A.A., Bowker, M.A., Currier, C.M., Cutler, N.A., Hart, S.C., Hayes, P.E., Hseu, Z.Y., Kirchmair, M., Peña-Ramírez, V.M., Pérez, C.A., Reed, S.C., Santos, F., Siebe, C., Sullivan, B.W., Weber-Grullon, L., Fierer, N., 2019. Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences of the United States of America116, 6891–6896.

[14]

Delgado-Baquerizo, M., Eldridge, D.J., Liu, Y.R., Sokoya, B., Wang, J.T., Hu, H.W., He, J.Z., Bastida, F., Moreno, J.L., Bamigboye, A.R., Blanco-Pastor, J.L., Cano-Díaz, C., Illán, J.G., Makhalanyane, T.P., Siebe, C., Trivedi, P., Zaady, E., Verma, J.P., Wang, L., Wang, J.Y., Grebenc, T., Peñaloza-Bojacá, G.F., Nahberger, T.U., Teixido, A.L., Zhou, X.Q., Berdugo, M., Duran, J., Rodríguez, A., Zhou, X.B., Alfaro, F., Abades, S., Plaza, C., Rey, A., Singh, B.K., Tedersoo, L., Fierer, N., 2021. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances7, eabg5809.

[15]

Delgado-Baquerizo, M., García-Palacios, P., Bradford, M.A., Eldridge, D.J., Berdugo, M., Sáez-Sandino, T., Liu, Y.R., Alfaro, F., Abades, S., Bamigboye, A.R., Bastida, F., Blanco-Pastor, J.L., Duran, J., Gaitan, J.J., Illán, J.G., Grebenc, T., Makhalanyane, T.P., Jaiswal, D.K., Nahberger, T.U., Peñaloza-Bojacá, G.F., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Sun, W., Trivedi, P., Verma, J.P., Wang, L., Wang, J.Y., Yang, T.X., Zaady, E., Zhou, X.B., Zhou, X.Q., Plaza, C., 2023. Biogenic factors explain soil carbon in paired urban and natural ecosystems worldwide. Nature Climate Change13, 450–455.

[16]

Diamond, J.M., 1975. Assembly of species communities. In: Cody, M.L., Diamond, J.M., eds. Ecology and Evolution of Communities. Boston: Harvard University Press, 342–444.

[17]

Dzhambov, A.M., Markevych, I., Hartig, T., Tilov, B., Arabadzhiev, Z., Stoyanov, D., Gatseva, P., Dimitrova, D.D., 2018. Multiple pathways link urban green- and bluespace to mental health in young adults. Environmental Research166, 223–233.

[18]

Eilers, K.G., Debenport, S., Anderson, S., Fierer, N., 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry50, 58–65.

[19]

Eldridge, D.J., Travers, S.K., Val, J., Wang, J.T., Liu, H.W., Singh, B.K., Delgado-Baquerizo, M., 2020. Grazing regulates the spatial heterogeneity of soil microbial communities within ecological networks. Ecosystems23, 932–942.

[20]

Epp Schmidt, D.J., Pouyat, R., Szlavecz, K., Setälä, H., Kotze, D.J., Yesilonis, I., Cilliers, S., Hornung, E., Dombos, M., Yarwood, S.A., 2017. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology & Evolution1, 0123.

[21]

Erktan, A., Or, D., Scheu, S., 2020. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biology and Biochemistry148, 107876.

[22]

Fan, K.K., Chu, H.Y., Eldridge, D.J., Gaitan, J.J., Liu, Y.R., Sokoya, B., Wang, J.T., Hu, H.W., He, J.Z., Sun, W., Cui, H.Y., Alfaro, F.D., Abades, S., Bastida, F., Díaz-López, M., Bamigboye, A.R., Berdugo, M., Blanco-Pastor, J.L., Grebenc, T., Duran, J., Illán, J.G., Makhalanyane, T.P., Mukherjee, A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Verma, J.P., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Trivedi, P., Wang, L., Wang, J.Y., Yang, T.X., Zhou, X.Q., Zhou, X.B., Zaady, E., Tedersoo, L., Delgado-Baquerizo, M., 2023. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nature Ecology & Evolution7, 113–126.

[23]

Feng, X.J., Sun, X.Y., Li, S.Y., Zhang, J.D., Hu, N., 2021. Relationship study among soils physicochemical properties and bacterial communities in urban green space and promotion of its composition and network analysis. Agronomy Journal113, 515–526.

[24]

Foster, K.R., 2012. The secret social lives of microorganisms. In: Kolter, R., Maloy, S., eds. Microbes and Evolution: The World That Darwin Never Saw. Washington: ASM Press, 77–83.

[25]

Foster, K.R., Bell, T., 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Current Biology22, 1845–1850.

[26]

Fu, F.Y., Lu, H.F., 2015. Effects of urbanization on soil community structure under subtropical evergreen broad-leaved forests. Ecology and Environmental Sciences24, 938–946.

[27]

Gámez-Virués, S., Perović, D.J., Gossner, M.M., Börschig, C., Blüthgen, N., De Jong, H., Simons, N.K., Klein, A.M., Krauss, J., Maier, G., Scherber, C., Steckel, J., Rothenwöhrer, C., Steffan-Dewenter, I., Weiner, C.N., Weisser, W., Werner, M., Tscharntke, T., Westphal, C., 2015. Landscape simplification filters species traits and drives biotic homogenization. Nature Communications6, 8568.

[28]

Gascon, M., Sánchez-Benavides, G., Dadvand, P., Martínez, D., Gramunt, N., Gotsens, X., Cirach, M., Vert, C., Molinuevo, J.L., Crous-Bou, M., Nieuwenhuijsen, M., 2018. Long-term exposure to residential green and blue spaces and anxiety and depression in adults: a cross-sectional study. Environmental Research162, 231–239.

[29]

Ghoul, M., Mitri, S., 2016. The ecology and evolution of microbial competition. Trends in Microbiology24, 833–845.

[30]

Gong, X., Qiao, Z.H., Yao, H.F., Zhao, D., Eisenhauer, N., Scheu, S., Liang, C., Liu, M.Q., Zhu, Y.G., Sun, X., 2024. Urbanization simplifies soil nematode communities and coincides with decreased ecosystem stability. Soil Biology and Biochemistry190, 109297.

[31]

Graham, E.B., Knelman, J.E., Schindlbacher, A., Siciliano, S., Breulmann, M., Yannarell, A., Beman, J.M., Abell, G., Philippot, L., Prosser, J., Foulquier, A., Yuste, J.C., Glanville, H.C., Jones, D.L., Angel, R., Salminen, J., Newton, R.J., Bürgmann, H., Ingram, L.J., Hamer, U., Siljanen, H.M.P., Peltoniemi, K., Potthast, K., Bañeras, L., Hartmann, M., Banerjee, S., Yu, R.Q., Nogaro, G., Richter, A., Koranda, M., Castle, S.C., Goberna, M., Song, B., Chatterjee, A., Nunes, O.C., Lopes, A.R., Cao, Y., Kaisermann, A., Hallin, S., Strickland, M.S., Garcia-Pausas, J., Barba, J., Kang, H., Isobe, K., Papaspyrou, S., Pastorelli, R., Lagomarsino, A., Lindström, E.S., Basiliko, N, Nemergut, D.R., 2016. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes. Frontiers in Microbiology7, 214.

[32]

Groffman, P.M., Williams, C.O., Pouyat, R.V., Band, L.E., Yesilonis, I.D., 2009. Nitrate leaching and nitrous oxide flux in urban forests and grasslands. Journal of Environmental Quality38, 1848–1860.

[33]

Guo, W., Qi, X.B., Li, P., Li, Z.Y., Zhou, Y., Xiao, Y.T., 2017. Impact of reclaimed water irrigation and nitrogen fertilization on soil bacterial community structure. Acta Scientiae Circumstantiae37, 280–287.

[34]

Hao, Y.L., Sun, A.Q., Lu, C.Y., Su, J.Q., Chen, Q.L., 2024. Protists and fungi: reinforcing urban soil ecological functions against flash droughts. Science of the Total Environment950, 175274.

[35]

Hättenschwiler, S., Tiunov, A.V., Scheu, S., 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics36, 191–218.

[36]

Hu, X.F., Jiang, Y., Shu, Y., Hu, X., Liu, L.M., Luo, F., 2014. Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. Journal of Geochemical Exploration147, 139–150.

[37]

Idnurm, A., Heitman, J., 2005. Light controls growth and development via a conserved pathway in the fungal kingdom. PLoS Biology3, e95.

[38]

Jia, X., Dini-Andreote, F., Salles, J.F., 2018. Community assembly processes of the microbial rare biosphere. Trends in Microbiology26, 738–747.

[39]

Johnston, A.S.A., Sibly, R.M., 2018. The influence of soil communities on the temperature sensitivity of soil respiration. Nature Ecology & Evolution2, 1597–1602.

[40]

Jurburg, S.D., Nunes, I., Stegen, J.C., Roux, X.L., Priemé, A., Sørensen, S.J., Salles, J.F., 2017. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities. Scientific Reports7, 45691.

[41]

Kimic, K., Polko, P., 2022. The use of urban parks by older adults in the context of perceived security. International Journal of Environmental Research and Public Health19, 4184.

[42]

Laforest-Lapointe, I., Messier, C., Kembel, S.W., 2016. Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome4, 27.

[43]

Lambais, M.R., Lucheta, A.R., Crowley, D.E., 2014. Bacterial community assemblages associated with the phyllosphere, dermosphere, and rhizosphere of tree species of the Atlantic forest are host taxon dependent. Microbial Ecology68, 567–574.

[44]

Lehmann, J., Bossio, D.A., Kögel-Knabner, I., Rillig, M.C., 2020. The concept and future prospects of soil health. Nature Reviews Earth & Environment1, 544–533.

[45]

Leitão, I.A., van Schaik, L., Ferreira, A.J.D., Alexandre, N., Geissen, V., 2023. The spatial distribution of microplastics in topsoils of an urban environment - Coimbra City case-study. Environmental Research218, 114961.

[46]

Li, H., Wu, Z.F., Yang, X.R., An, X.L., Ren, Y., Su, J.Q., 2021. Urban greenness and plant species are key factors in shaping air microbiomes and reducing airborne pathogens. Environment International153, 106539.

[47]

Li, L.L., Abu Al-Soud, W., Bergmark, L., Riber, L., Hansen, L.H., Magid, J., Sørensen, S.J., 2013. Investigating the diversity of Pseudomonas spp. in soil using culture dependent and independent techniques. Current Microbiology67, 423–430.

[48]

Li, M., Zheng, L.X., 2021. Influence of winery production wastewater irrigation on soil microbial communities in green belt. Jiangsu Agricultural Sciences49, 228–235.

[49]

Li, X.M., Li, S., Huang, F.Y., Wang, Z., Zhang, Z.Y., Chen, S.C., Zhu, Y.G., 2023. Artificial light at night triggers negative impacts on nutrients cycling and plant health regulated by soil microbiome in urban ecosystems. Geoderma436, 116547.

[50]

Li, Z.P., Shangguan, H.Y., Yao, H.F., Yang, X.R., Mazei, Y., Zhu, B., Scheu, S., Sun, X., 2024. Colonization ability and uniformity of resources and environmental factors determine biological homogenization of soil protists in human land-use systems. Global Change Biology30, e17411.

[51]

Liang, Q., Li, C.R., Zhang, F., Zhang, Y.S., Jia, K.H., Zhang, C.H., 2017. Analysis of soil microorganism community structure in different types of green space in Taian City. Shandong Agricultural Sciences49, 99–104.

[52]

Lin, Q.C., Cen, Y.Q., Xu, M., Jiang, D.D., Zhang, J., 2024. Effects of urban green space habitats and tree species on ectomycorrhizal fungal diversity. Scientific Reports14, 25369.

[53]

Liu, Y.R., van der Heijden, M.G.A., Riedo, J., Sanz-Lazaro, C., Eldridge, D.J., Bastida, F., Moreno-Jiménez, E., Zhou, X.Q., Hu, H.W., He, J.Z., Moreno, J.L., Abades, S., Alfaro, F., Bamigboye, A.R., Berdugo, M., Blanco-Pastor, J.L., de Los Ríos, A., Duran, J., Grebenc, T., Illán, J.G., Makhalanyane, T.P., Molina-Montenegro, M.A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Casado-Coy, N., Trivedi, P., Torres-Díaz, C., Verma, J.P., Mukherjee, A., Zeng, X.M., Wang, L., Wang, J.Y., Zaady, E., Zhou, X.B., Huang, Q.Y., Tan, W.F., Zhu, Y.G., Rillig, M.C., Delgado-Baquerizo, M., 2023. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nature Communications14, 1706.

[54]

Lu, C.Y., Xiao, Z.F., Li, H., Han, R.X., Sun, A.Q Xiang, Q., Zhu, Z., Li, G., Yang, X.R., Zhu, Y.G., Chen, Q.L., 2024. Aboveground plants determine the exchange of pathogens within air-phyllosphere-soil continuum in urban greenspaces. Journal of Hazardous Materials465, 133149.

[55]

Lu, T., Xu, N.H., Lei, C.T., Zhang, Q., Zhang, Z.Y., Sun, L.W., He, F., Zhou, N.Y., Peñuelas, J., Zhu, Y.G., Qian, H.F., 2023. Bacterial biogeography in China and its association to land use and soil organic carbon. Soil Ecology Letters5, 230172.

[56]

Martiny, J.B.H., Eisen, J.A., Penn, K., Allison, S.D., Horner-Devine, M.C., 2011. Drivers of bacterial β-diversity depend on spatial scale. Proceedings of the National Academy of Sciences of the United States of America108, 7850–7854.

[57]

McKinney, M.L., 2006. Urbanization as a major cause of biotic homogenization. Biological Conservation127, 247–260.

[58]

Meng, X.S., Ouyang, Z.Y., Cui, G.F., Li, W.F., Zheng, H., 2004. Composition of plant species and their distribution patterns in Beijing urban ecosystem. Acta Ecologica Sinica24, 2200–2206.

[59]

Michel, H.M., Williams, M.A., 2011. Soil habitat and horizon properties impact bacterial diversity and composition. Soil Science Society of America Journal75, 1440–1448.

[60]

Mills, J.G., Weinstein, P., Gellie, N.J.C., Weyrich, L.S., Lowe, A.J., Breed, M.F., 2017. Urban habitat restoration provides a human health benefit through microbiome rewilding: the microbiome rewilding hypothesis. Restoration Ecology25, 866–872.

[61]

Ministry of Housing, Urban-Rural Development of the People’s Republic of China, 2018. Standard for classification of urban green space (CJJ/T 85–2017). .

[62]

Mittler, R., Simon, L., Lam, E., 1997. Pathogen-induced programmed cell death in tobacco. Journal of Cell Science110, 1333–1344.

[63]

Ning, D.L., Yuan, M.T., Wu, L.W., Zhang, Y., Guo, X., Zhou, X.S., Yang, Y.F Arkin, A.P., Firestone, M.K., Zhou, J.Z., 2020. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications11, 4717.

[64]

Pegas, P.N., Alves, C.A., Nunes, T., Bate-Epey, E.F., Evtyugina, M., Pio, C.A., 2012. Could houseplants improve indoor air quality in schools. Journal of Toxicology and Environmental Health, Part A75, 1371–1380.

[65]

Qiao, Z.H., Wang, B., Yao, H.F., Li, Z.P., Scheu, S., Zhu, Y.G., Sun, X., 2022. Urbanization and greenspace type as determinants of species and functional composition of collembolan communities. Geoderma428, 116175.

[66]

Racić, G., Körmöczi, P., Kredics, L., Raičević, V., Mutavdžić, B., Vrvić, M.M., Panković, D., 2017. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp. Environmental Science and Pollution Research24, 3375–3386.

[67]

Rai, P.K., Rai, A., Sharma, N.K., Singh, V.K., Singh, S., 2021. Urbanization reduces overall cyanobacterial abundance but favors heterocystous forms. Applied Soil Ecology167, 104059.

[68]

Ramirez, K.S., Leff, J.W., Barberán, A., Bates, S.T., Betley, J., Crowther, T.W., Kelly, E.F., Oldfield, E.E., Shaw, E.A., Steenbock, C., Bradford, M.A., Wall, D.H., Fierer, N., 2014. Biogeographic patterns in below-ground diversity in New York City’s central park are similar to those observed globally. Proceedings of the Royal Society B: Biological Sciences281, 20141988.

[69]

Ratzke, C., Barrere, J., Gore, J., 2020. Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution4, 376–383.

[70]

Ren, Y., Han, C., Yang, H., Wei, Y.B., Cao, S.Y., Qian, Y.J., Tang, Y., 2021. Study on soil microbial diversity under five urban landscape plants. Soils53, 746–754.

[71]

Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C.M., Barceló, D., Balcázar, J.L., 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research69, 234–242.

[72]

Romdhane, S., Spor, A., Aubert, J., Bru, D., Breuil, M.C., Hallin, S., Mounier, A., Ouadah, S., Tsiknia, M., Philippot, L., 2021. Unraveling negative biotic interactions determining soil microbial community assembly and functioning. The ISME Journal16, 296–306.

[73]

Roslund, M.I., Puhakka, R., Grönroos, M., Nurminen, N., Oikarinen, S., Gazali, A.M., Cinek, O., Kramná, L., Siter, N., Vari, H.K., Soininen, L., Parajuli, A., Rajaniemi, J., Kinnunen, T., Laitinen, O.H., Hyöty, H., Sinkkonen, A., Adele Research Group 2020. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Science Advances6, eaba2578.

[74]

Sanchez-Tello, J.D., Corrales, A., 2024. Ectomycorrhizal fungal communities in natural and urban ecosystems: Quercus humboldtii as a study case in the tropical Andes. Mycorrhiza34, 45–55.

[75]

Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J.M., Kowarik, I., Maaß, S., Joshi, J., 2022. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology110, 916–934.

[76]

Selway, C.A., Mills, J.G., Weinstein, P., Skelly, C., Yadav, S., Lowe, A., Breed, M.F., Weyrich, L.S., 2020. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment International145, 106084.

[77]

Shangguan, H.Y., Geisen, S., Li, Z.P., Yao, H.F., Li, G., Breed, M.F., Scheu, S., Sun, X., 2024. Urban greenspaces shape soil protist communities in a location-specific manner. Environmental Research240, 117485.

[78]

Shao, Q.Y., Dong, C.B., Zhang, Z.Y., Han, Y.F., Liang, Z.Q., 2021. Effects of Perilla frutescens on the fungal community composition and ecological guild structure in a hospital grassplot soil. Mycosystema40, 1008–1022.

[79]

Sheik, C.S., Mitchell, T.W., Rizvi, F.Z., Rehman, Y., Faisal, M., Hasnain, S., McInerney, M.J., Krumholz, L.R., 2012. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One7, e40059.

[80]

Sifton, M.A., Smith, S.M., Thomas, S.C., 2023. Biochar-biofertilizer combinations enhance growth and nutrient uptake in silver maple grown in an urban soil. PLoS One18, e0288291.

[81]

Singh, A.K., Zhu, X.A., Chen, C.F., Wu, J.N., Yang, B., Zakari, S., Jiang, X.J., Singh, N., Liu, W.J., 2022. The role of glomalin in mitigation of multiple soil degradation problems. Critical Reviews in Environmental Science and Technology50, 1604–1638.

[82]

Singh, B.K., Quince, C., Macdonald, C.A., Khachane, A., Thomas, N., Al-Soud, W.A., Sørensen, S.J., He, Z.L., White, D., Sinclair, A., Crooks, B., Zhou, J.Z., Campbell, C.D., 2014. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environmental Microbiology16, 2408–2420.

[83]

Strohbach, M.W., Haase, D., 2012. Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landscape and Urban Planning104, 95–104.

[84]

Sun, X., Liddicoat, C., Tiunov, A., Wang, B., Zhang, Y.Y., Lu, C.Y., Li, Z.P., Scheu, S., Breed, M.F., Geisen, S., Zhu, Y.G., 2023. Harnessing soil biodiversity to promote human health in cities. npj Urban Sustainability3, 5.

[85]

Upadhyay, S.K., Rajput, V.D., Kumari, A., Espinosa-Saiz, D., Menendez, E., Minkina, T., Dwivedi, P., Mandzhieva, S., 2023. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. Environmental Geochemistry and Health45, 9321–9344.

[86]

Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology85, 183–206.

[87]

Wang, F.H., Qiao, M., Su, J.Q., Chen, Z., Zhou, X., Zhu, Y.G., 2014. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environmental Science & Technology48, 9079–9085.

[88]

Wang, H.H., Li, L.Q., Pan, G.X., Wu, X.M., 2005. Topsoil microbial carbon and nitrogen and enzyme activity of different city zones in Nanjing, China. Chinese Journal of Ecology24, 273–277.

[89]

Wang, H.T., Cheng, M.Y., Dsouza, M., Weisenhorn, P., Zheng, T.L., Gilbert, J.A., 2018a. Soil bacterial diversity is associated with human population density in urban greenspaces. Environmental Science & Technology52, 5115–5124.

[90]

Wang, X., Wu, J., Kumari, D., 2018b. Composition and functional genes analysis of bacterial communities from urban parks of Shanghai, China and their role in ecosystem functionality. Landscape and Urban Planning177, 83–91.

[91]

Wang, X.B., Lü, X.T., Yao, J., Wang, Z.W., Deng, Y., Cheng, W.X., Zhou, J.Z., Han, X.G., 2017. Habitat-specific patterns and drivers of bacterial β-diversity in China’s drylands. The ISME Journal11, 1345–1358.

[92]

Wang, X.M., Meng, Q.Y., Zhao, S.H., Li, J., Zhang, L.L., Chen, X., 2020. Urban green space classification and landscape pattern measurement based on GF-2 Image. Journal of Geo-Information Science22, 1971–1982.

[93]

Wang, Y.F., Liu, Y.J., Fu, Y.M., Xu, J.Y., Zhang, T.L., Cui, H.L., Qiao, M., Rillig, M.C., Zhu, Y.G., Zhu, D., 2024. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nature Communications15, 9788.

[94]

Williams, N.S.G., Schwartz, M.W., Vesk, P.A., Mccarthy, M.A., Hahs, A.K., Clemants, S.E., Corlett, R.T., Duncan, R.P., Norton, B.A., Thompson, K., Mcdonnell, M.J., 2009. A conceptual framework for predicting the effects of urban environments on floras. Journal of Ecology97, 4–9.

[95]

Wright, E.S., Vetsigian, K.H., 2016. Inhibitory interactions promote frequent bistability among competing bacteria. Nature Communications7, 11274.

[96]

Xiao, X.Y., Wang, M.W., Zhu, H.W., Guo, Z.H., Han, X.Q., Zeng, P., 2017. Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicology and Environmental Safety142, 200–206.

[97]

Xie, M.X., Zhang, J.L., Jia, J.Y., Wang, G.Z., Qin, Z.F., Gao, H., Li, H.G., 2023. Advances in the Assembly of soil microbial communities in natural and farmland ecosystems. Chinese Journal of Soil Science54, 1503–1512.

[98]

Yao, H.F., Li, Z.P., Geisen, S., Qiao, Z.H., Breed, M.F., Sun, X., 2023. Degree of urbanization and vegetation type shape soil biodiversity in city parks. Science of the Total Environment899, 166437.

[99]

Yuan, L.F., Jiang, H., Li, T.G., Liu, Q.B., Jiang, X.L., Han, X., Wei, Y.F., Yin, X.T., Wang, S.N., 2024. A simulation study to reveal the epidemiology and aerosol transmission characteristics of Botrytis cinerea in grape greenhouses. Pathogens13, 505.

[100]

Zhang, C., Nie, S., Liang, J., Zeng, G.M., Wu, H.P., Hua, S.S., Liu, J.Y., Yuan, Y.J., Xiao, H.B., Deng, L.J., Xiang, H., 2016. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment557–558, 785–790.

[101]

Zhang, L., Feng, G., Declerck, S., 2018. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. The ISME Journal12, 2339–2351.

[102]

Zhang, M.Y., Liu, L.H., Xu, D.Y., Zhang, B.H., Li, J.J., Gao, B., 2022. Small-sized microplastics (<500 μm) in roadside soils of Beijing, China: accumulation, stability, and human exposure risk. Environmental Pollution304, 119121.

[103]

Zhou, J.Z., Deng, Y., Shen, L., Wen, C.Q., Yan, Q.Y., Ning, D.L., Qin, Y.J., Xue, K., Wu, L.Y., He, Z.L., Voordeckers, J.W., Van Nostrand, J.D., Buzzard, V., Michaletz, S.T., Enquist, B.J., Weiser, M.D., Kaspari, M., Waide, R., Yang, Y.F., Brown, J.H., 2016. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications7, 12083.

[104]

Zhou, Y.Y., Wang, J.P., 2023. The composition and assembly of soil microbial communities differ across vegetation cover types of urban green spaces. Sustainability15, 13105.

[105]

Zhu, W.X., Carreiro, M.M., 2004. Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban-rural gradient. Soil Biology and Biochemistry36, 279–288.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (8469KB)

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/