Contrasting effects of long-term nitrogen and phosphorus fertilization on phosphorus availability in soil

Ran Tong , Han Yu , Nianfu Zhu , Yongzhao Miao , Song Chen , Yeshi Zheng , Tonggui Wu , G. Geoff Wang , Yakov Kuzyakov

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260378

PDF (3047KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) :260378 DOI: 10.1007/s42832-026-0378-7
RESEARCH ARTICLE

Contrasting effects of long-term nitrogen and phosphorus fertilization on phosphorus availability in soil

Author information +
History +
PDF (3047KB)

Abstract

Soil phosphorus (P) availability is essential for forest productivity and stability, yet the long-term effects of nitrogen (N) and P fertilization on its mobilization remain unclear. To address this, we conducted a 10-year field experiment in Metasequoia glyptostroboides plantations under a subtropical monsoon climate, assessing the responses of soil chemical property, enzyme activity, microbial biomass, and P cycling indices and fractions to five independent levels each of N (0, 56, 168, 280, 336 kg ha−1) and P (0, 7.8, 31, 93, 155 kg ha−1) fertilization. P fertilization strongly increased available P and inorganic P fractions (Resin-Pi, NaHCO3-Pi, NaOH-Pi), while N fertilization had minimal direct effects. Under N fertilization, available P was primarily influenced by microbial biomass P and carbon, with NaOH-Pi as the dominant supply source. In contrast, under P fertilization, available P was regulated by total P, nitrate nitrogen, and organic carbon, with NaOH-Pi, NaOH-Po, NaHCO3-Pi, and NaHCO3-Po as key fractions. The direct effects of P fertilization, with a pathway coefficient of 0.37, slightly exceeded indirect effects. Overall, our decade-long fertilization trial shows that N fertilization sustains soil P availability chiefly through adaptive microbial processes, whereas P fertilization maintains it largely via direct nutrient inputs.

Graphical abstract

Keywords

nitrogen and phosphorus fertilization / phosphorus availability / phosphorus cycling indices / phosphorus fractions / soil microbes

Highlight

● Distinct mechanisms regulate soil P availability under long-term N and P inputs.

● Microbial biomass and NaOH-Pi sustain soil available P under N fertilization.

● P fertilization increases soil available P mainly via direct input and labile Pi.

Cite this article

Download citation ▾
Ran Tong, Han Yu, Nianfu Zhu, Yongzhao Miao, Song Chen, Yeshi Zheng, Tonggui Wu, G. Geoff Wang, Yakov Kuzyakov. Contrasting effects of long-term nitrogen and phosphorus fertilization on phosphorus availability in soil. Soil Ecology Letters, 2026, 8(1): 260378 DOI:10.1007/s42832-026-0378-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdala, D.B., Moore, P.A., Rodrigues, M., Herrera, W.F., Pavinato, P.S., 2018. Long-term effects of alum-treated litter, untreated litter and NH4NO3 application on phosphorus speciation, distribution and reactivity in soils using K-edge XANES and chemical fractionation. Journal of Environmental Management213, 206–216.

[2]

Andrino, A., Guggenberger, G., Kernchen, S., Mikutta, R., Sauheitl, L., Boy, J., 2021. Production of organic acids by arbuscular mycorrhizal fungi and their contribution in the mobilization of phosphorus bound to iron oxides. Frontiers in Plant Science12, 661842.

[3]

Aoyagi, R., Imai, N., Turner, B.L., Kitayama, K., 2024. Plant adaptation and phosphorus limitation in tropical forests: a theoretical and empirical assessment. Ecosystems27, 376–394.

[4]

Bergkemper, F., Schöler, A., Engel, M., Lang, F., Krüger, J., Schloter, M., Schulz, S., 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology18, 1988–2000.

[5]

Butler, O.M., Manzoni, S., Liang, G., Matsumura, S., Warren, C.R., 2025. Microbial physiology conserves phosphorus across long-term ecosystem development. Nature Geoscience18, 503–509.

[6]

Carreira, J.A., Harrison, A.F., Sheppard, L.J., Woods, C., 1997. Reduced soil P availability in a Sitka spruce (Picea sitchensis (Bong.) Carr) plantation induced by applied acid-mist: significance in forest decline. Forest Ecology and Management92, 153–166.

[7]

Chen, J., Seven, J., Zilla, T., Dippold, M.A., Blagodatskaya, E., Kuzyakov, Y., 2019. Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study. Soil Biology and Biochemistry131, 206–216.

[8]

Chen, J., van Groenigen, K.J., Hungate, B.A., Terrer, C., van Groenigen, J.W., Maestre, F.T., Ying, S.C., Luo, Y.Q., Jørgensen, U., Sinsabaugh, R.L., Olesen, J.E., Elsgaard, L., 2020. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology26, 5077–5086.

[9]

Chen, M.M., Zhang, S.R., Liu, L., Wu, L.P., Ding, X.D., 2021. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil and Tillage Research212, 105060.

[10]

Cheng, H.Y., Yuan, M.S., Duan, Q.Y., Sun, R.X., Shen, Y.F., Yu, Q., Li, S.Q., 2020. Influence of phosphorus fertilization patterns on the bacterial community in upland farmland. Industrial Crops and Products155, 112761.

[11]

DeForest, J.L., Dorkoski, R., Freedman, Z.B., Smemo, K.A., 2021. Multi-year soil microbial and extracellular phosphorus enzyme response to lime and phosphate addition in temperate hardwood forests. Plant and Soil464, 391–404.

[12]

Dong, K., Ma, S.H., Zhou, Z., Jiang, L., Zhang, D.H., Yang, C., Chen, Z.X., Ji, C.J., Zhu, J.L., Zhu, B., Fang, J.Y., 2025. Long-term nitrogen addition promotes soil acidity in two tropical montane rainforests. Soil Ecology Letters7, 250304.

[13]

Dong, W.Y., Zhang, X.Y., Liu, X.Y., Fu, X.L., Chen, F.S., Wang, H.M., Sun, X.M., Wen, X.F., 2015. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences12, 5537–5546.

[14]

Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z.C., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science320, 889–892.

[15]

Gao, X.L., Wu, G.Q., Yu, Y.C., Chen, L., Gao, Y.M., Iqbal, K., Yuan, X.C., Cui, J.Y., Fu, S.L., 2025. Eleven-year nitrogen addition exacerbates phosphorus limitation by reducing plant roots and soil microbial biomass in a temperate forest. Soil Ecology Letters7, 250326.

[16]

Garay, M., Amiotti, N., Zalba, P., 2018. Response of phosphorus pools in mollisols to afforestation with Pinus radiata D. don in the argentinean pampa. Forest Ecology and Management422, 33–40.

[17]

Goswami, S., Fisk, M.C., Vadeboncoeur, M.A., Garrison-Johnston, M., Yanai, R.D., Fahey, T.J., 2018. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology99, 438–449.

[18]

Gunina, A., Kuzyakov, Y., 2022. From energy to (soil organic) matter. Global Change Biology28, 2169–2182.

[19]

He, X.J., Augusto, L., Goll, D.S., Ringeval, B., Wang, Y.P., Helfenstein, J., Huang, Y.Y., Hou, E.Q., 2023. Global patterns and drivers of phosphorus fractions in natural soils. Biogeosciences20, 4147–4163.

[20]

Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology80, 1150–1156.

[21]

Hedley, M.J., Stewart, J.W.B., Chauhan, B.S., 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal46, 970–976.

[22]

Hou, E.Q., Luo, Y.Q., Kuang, Y.W., Chen, C.R., Lu, X.K., Jiang, L.F., Luo, X.Z., Wen, D.Z., 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications11, 637.

[23]

Hu, W.J., Tan, J.R., Shi, X.R., Lock, T.R., Kallenbach, R.L., Yuan, Z.Y., 2022. Nutrient addition and warming alter the soil phosphorus cycle in grasslands: a global meta-analysis. Journal of Soils and Sediments22, 2608–2619.

[24]

Khan, A.A., Azeem, I., Hui, J., Chen, Y.P., Yuan, Y.Q., Shah, T., Adeel, M., Shakoor, N., Asghar, R.M.A., Cao, W.D., Zhang, D.B., Gao, Y.J., 2025. Non-leguminous green manures improve labile phosphorus availability and crop yield in agroecosystems: a global meta-analysis. Soil and Tillage Research248, 106430.

[25]

Kwabiah, A.B., Stoskopf, N.C., Palm, C.A., Voroney, R.P., 2003. Soil P availability as affected by the chemical composition of plant materials: implications for P-limiting agriculture in tropical Africa. Agriculture, Ecosystems & Environment100, 53–61.

[26]

Lan, K.M., Li, Y.J., Shuai, Y.W., Zhai, J.T., Ma, Q.X., Kuzyakov, Y., Liu, M., 2024. Phosphorus (P) mobilisation from inorganic and organic P sources depends on P-acquisition strategies in dioecious Populus euphratica. Biology and Fertility of Soils60, 393–406.

[27]

Lang, F., Bauhus, J., Frossard, E., George, E., Kaiser, K., Kaupenjohann, M., Krüger, J., Matzner, E., Polle, A., Prietzel, J., Rennenberg, H., Wellbrock, N., 2016. Phosphorus in forest ecosystems: New insights from an ecosystem nutrition perspective. Journal of Plant Nutrition and Soil Science179, 129–135.

[28]

Li, J.B., Xie, T., Zhu, H., Zhou, J., Li, C.N., Xiong, W.J., Xu, L., Wu, Y.H., He, Z.L., Li, X.Z., 2021. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma404, 115376.

[29]

Li, Q., Zhang, M.H., Geng, Q.H., Jin, C.S., Zhu, J.Q., Ruan, H.H., Xu, X., 2020. The roles of initial litter traits in regulating litter decomposition: a “common plot” experiment in a subtropical evergreen broadleaf forest. Plant and Soil452, 207–216.

[30]

Li, W., Wang, W.Q., Sun, R.M., Li, M.K., Liu, H.W., Shi, Y.F., Zhu, D.D., Li, J.Y., Ma, L., Fu, S.L., 2023. Influence of nitrogen addition on the functional diversity and biomass of fine roots in warm-temperate and subtropical forests. Forest Ecology and Management545, 121309.

[31]

Liu, B., Zhang, C.C., Deng, J., Zhang, B.W., Chen, F.S., Chen, W., Fang, X.M., Li, J.J., Zu, K.L., Bu, W.S., 2024a. Response of tree growth to nutrient addition is size dependent in a subtropical forest. Science of the Total Environment923, 171501.

[32]

Liu, C., Liu, J.J., Wang, J., Ding, X.Y., 2024b. Effects of short-term nitrogen additions on biomass and soil phytochemical cycling in alpine grasslands of Tianshan, China. Plants13, 1103.

[33]

Liu, H.Y., Huang, N., Zhao, C.M., Li, J.H., 2023. Responses of carbon cycling and soil organic carbon content to nitrogen addition in grasslands globally. Soil Biology and Biochemistry186, 109164.

[34]

Liu, L., Gundersen, P., Zhang, T., Mo, J.M., 2012. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology and Biochemistry44, 31–38.

[35]

Liu, S.L., Li, H.M., Xie, X.Y., Chen, Y.X., Lang, M., Chen, X.P., 2024c. Long-term moderate fertilization increases the complexity of soil microbial community and promotes regulation of phosphorus cycling genes to improve the availability of phosphorus in acid soil. Applied Soil Ecology194, 105178.

[36]

Ma, X.M., Liu, Y., Shen, W.J., Kuzyakov, Y., 2021. Phosphatase activity and acidification in lupine and maize rhizosphere depend on phosphorus availability and root properties: Coupling zymography with planar optodes. Applied Soil Ecology167, 104029.

[37]

Mahmood, M., Tian, Y., Ma, Q.X., Hui, X.L., Elrys, A.S., Ahmed, W., Mehmood, S., Wang, Z.H., 2021. Changes in phosphorus fractions in response to long-term nitrogen fertilization in Loess Plateau of China. Field Crops Research270, 108207.

[38]

Martinengo, S., Schiavon, M., Santoro, V., Said-Pullicino, D., Romani, M., Miniotti, E.F., Celi, L., Martin, M., 2023. Assessing phosphorus availability in paddy soils: the importance of integrating soil tests and plant responses. Biology and Fertility of Soils59, 391–405.

[39]

Mei, Z.C., Wu, C.F., Shi, S.J., Zhang, H.Q., Zhu, Z.K., Chen, J.P., Ge, T.D., 2025. Loss of protistan diversity weakens soil phosphorus availability. Applied Soil Ecology208, 105976.

[40]

Mirabello, M.J., Yavitt, J.B., Garcia, M., Harms, K.E., Turner, B.L., Wright, S.J., 2013. Soil phosphorus responses to chronic nutrient fertilisation and seasonal drought in a humid lowland forest, Panama. Soil Research51, 215–221.

[41]

Mori, T., Wang, S.H., Wang, C., Chen, J., Peng, C., Zheng, M.H., Huang, J., Wang, F.M., Liu, Z.F., Mo, J.M., Zhang, W., 2023. Effects of long-term phosphorus addition on soil ratios of phosphomonoesterase to phosphodiesterase in three tropical forests. Journal of Plant Ecology16, rtac091.

[42]

Nziguheba, G., Merckx, R., Palm, C.A., 2002. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an Acrisol in western Kenya. Plant and Soil243, 1–10.

[43]

Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca, S., Obersteiner, M., Janssens, I.A., 2013. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications4, 2934.

[44]

Penuelas, J., Sardans, J., 2023. Human-driven global nutrient imbalances increase risks to health. Eco-Environment & Health2, 246–251.

[45]

Peñuelas, J., Sardans, J., 2022. The global nitrogen-phosphorus imbalance. Science375, 266–267.

[46]

Perring, M.P., Hedin, L.O., Levin, S.A., McGroddy, M., de Mazancourt, C., 2008. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America105, 1971–1976.

[47]

Philippot, L., Chenu, C., Kappler, A., Rillig, M.C., Fierer, N., 2024. The interplay between microbial communities and soil properties. Nature Reviews Microbiology22, 226–239.

[48]

R Core Team, 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

[49]

Raza, S., Zamanian, K., Ullah, S., Kuzyakov, Y., Virto, I., Zhou, J.B., 2021. Inorganic carbon losses by soil acidification jeopardize global efforts on carbon sequestration and climate change mitigation. Journal of Cleaner Production315, 128036.

[50]

Richardson, A.E., Barea, J.M., McNeill, A.M., Prigent-Combaret, C., 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil321, 305–339.

[51]

Richy, E., Fort, T., Odriozola, I., Kohout, P., Barbi, F., Martinovic, T., Tupek, B., Adamczyk, B., Lehtonen, A., Mäkipää, R., Baldrian, P., 2024. Phosphorus limitation promotes soil carbon storage in a boreal forest exposed to long-term nitrogen fertilization. Global Change Biology30, e17516.

[52]

Shen, F.F., Wu, J.P., Fan, H.B., Liu, W.F., Guo, X.M., Duan, H.L., Hu, L., Lei, X.M., Wei, X.H., 2019. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest. Plant and Soil436, 91–107.

[53]

Shi, Y.C., Ziadi, N., Hamel, C., Bélanger, G., Abdi, D., Lajeunesse, J., Lafond, J., Lalande, R., Shang, J.L., 2020. Soil microbial biomass, activity and community structure as affected by mineral phosphorus fertilization in grasslands. Applied Soil Ecology146, 103391.

[54]

Spohn, M., Widdig, M., 2017. Turnover of carbon and phosphorus in the microbial biomass depending on phosphorus availability. Soil Biology and Biochemistry113, 53–59.

[55]

Stock, S.C., Köster, M., Dippold, M.A., Nájera, F., Matus, F., Merino, C., Boy, J., Spielvogel, S., Gorbushina, A., Kuzyakov, Y., 2019. Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale. Geoderma337, 973–982.

[56]

Turner, B.L., Mahieu, N., Condron, L.M., 2003. The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31P NMR spectroscopy. Organic Geochemistry34, 1199–1210.

[57]

Wang, C., Mori, T., Mao, Q.G., Zhou, K.J., Wang, Z.H., Zhang, Y.Q., Mo, H., Lu, X.K., Mo, J.M., 2020. Long-term phosphorus addition downregulates microbial investments on enzyme productions in a mature tropical forest. Journal of Soils and Sediments20, 921–930.

[58]

Wang, F.C., Liu, Q., Hu, X.F., Fang, X.M., Wang, S.N., Chen, F.S., 2024a. Divergent responses of soil microbial community to long-term nitrogen and phosphorus additions in a subtropical Chinese fir plantation. CATENA242, 108132.

[59]

Wang, R.Z., Bicharanloo, B., Hou, E.Q., Jiang, Y., Dijkstra, F.A., 2022. Phosphorus supply increases nitrogen transformation rates and retention in soil: a global meta-analysis. Earth’s Future10, e2021EF002479.

[60]

Wang, S.J., Duan, S.L., George, T.S., Feng, G., Zhang, L., 2024b. Adding plant metabolites improve plant phosphorus uptake by altering the rhizosphere bacterial community structure. Plant and Soil497, 503–522.

[61]

Wang, X.L., Zhang, H.K., Sun, H.Y., Chang, S.X., Lin, Y., Cai, Y.J., 2024c. Converting natural forests to tea plantations reduced soil phosphorus sorption capacity in subtropical China. Land Degradation & Development35, 659–669.

[62]

Wen, Y.L., Liu, W.J., Deng, W.B., He, X.H., Yu, G.H., 2019. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: implications for soil C sequestration. Science of the Total Environment651, 591–600.

[63]

Wu, Y., Zhao, D.Y., Wang, Y.H., Wang, J.P., Wu, Y.Y., Peng, P.H., Yang, L.Y., Wu, Y.H., Bing, H.J., Bol, R., 2024. Plant species modulate wildfire effects on soil phosphorus fractions in alpine forest of eastern Tibetan Plateau. Forest Ecology and Management573, 122338.

[64]

Xia, Y., Peñuelas, J., Sardans, J., Zhong, X.J., Xu, L.L., Yang, Z.J., Yang, Y.S., Yang, L.M., Yue, K., Fan, Y.X., 2024. Phosphorus addition accelerates soil organic carbon mineralization by desorbing organic carbon and increasing microbial activity in subtropical forest soils. Applied Soil Ecology193, 105166.

[65]

Xu, H.D., Sun, J.N., Zhao, Z.Q., Gao, Y., Tian, L.J., Wei, X.M., 2025. Long-term straw return promotes soil phosphorus cycling by enhancing soil microbial functional genes responsible for phosphorus mobilization in the rice rhizosphere. Agriculture, Ecosystems & Environment381, 109422.

[66]

Yang, L.M., Yang, Z.J., Zhong, X.J., Xu, C., Lin, Y.Y., Fan, Y.X., Wang, M.H., Chen, G.S., Yang, Y.S., 2021. Decreases in soil P availability are associated with soil organic P declines following forest conversion in subtropical China. CATENA205, 105459.

[67]

Yang, Z.M., Liao, Y.J., Fu, X., Zaporski, J., Peters, S., Jamison, M., Liu, Y.R., Wullschleger, S.D., Graham, D.E., Gu, B.H., 2019. Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by β-glucosidase. Science of the Total Environment686, 1194–1201.

[68]

Yu, G.R., Jia, Y.L., He, N.P., Zhu, J.X., Chen, Z., Wang, Q.F., Piao, S.L., Liu, X.J., He, H.L., Guo, X.B., Wen, Z., Li, P., Ding, G.A., Goulding, K., 2019. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience12, 424–429.

[69]

Yu, Q.S., Ma, S.H., Ni, X.F., Ni, X.L., Guo, Z.M., Tan, X.P., Zhong, M.Y., Abu Hanif, M., Zhu, J.L., Ji, C.J., Zhu, B., Fang, J.Y., 2022. Long-term phosphorus addition inhibits phosphorus transformations involved in soil arbuscular mycorrhizal fungi and acid phosphatase in two tropical rainforests. Geoderma425, 116076.

[70]

Zamanian, K., Taghizadeh-Mehrjardi, R., Tao, J.J., Fan, L.C., Raza, S., Guggenberger, G., Kuzyakov, Y., 2024. Acidification of European croplands by nitrogen fertilization: consequences for carbonate losses, and soil health. Science of the Total Environment924, 171631.

[71]

Zeng, Q.X., Zhang, Q.F., Fan, Y.X., Gao, Y.L., Yuan, X.C., Zhou, J.C., Dai, H., Chen, Y., 2024. Phosphorus availability regulates nitrogen fixation rate through a key diazotrophic assembly: evidence from a subtropical Moso bamboo forest subjected to nitrogen application. Science of the Total Environment912, 169740.

[72]

Zhang, J.F., Sayer, E.J., Zhou, J.G., Li, Y.W., Li, Y.X., Li, Z.A., Wang, F.M., 2021. Long-term fertilization modifies the mineralization of soil organic matter in response to added substrate. Science of the Total Environment798, 149341.

[73]

Zhang, L.C., Chen, J.J., Chu, G.X., 2022. Legacy phosphorus in calcareous soil under 33 years of P fertilizer application: implications for efficient P management in agriculture. Soil Use and Management38, 1380–1393.

[74]

Zhang, Z.H., Wang, L.J., Li, T., Fu, Z.Y., Sun, J.K., Hu, R., Zhang, Y., 2024. Effects of short-term nitrogen and phosphorus addition on soil bacterial community of different halophytes. mSphere9, e0022624.

[75]

Zheng, M.H., Huang, J., Chen, H., Wang, H., Mo, J.M., 2015. Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China. European Journal of Soil Biology68, 77–84.

[76]

Zhou, Z.H., Wang, C.K., Zheng, M.H., Jiang, L.F., Luo, Y.Q., 2017. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry115, 433–441.

[77]

Zhu, Z.K., Fang, Y.Y., Liang, Y.Q., Li, Y.H., Liu, S.L., Li, Y.F., Li, B.Z., Gao, W., Yuan, H.Z., Kuzyakov, Y., Wu, J.S., Richter, A., Ge, T.D., 2022. Stoichiometric regulation of priming effects and soil carbon balance by microbial life strategies. Soil Biology and Biochemistry169, 108669.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3047KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/