Increasing aridity reduces soil protist diversity and weakens its link to ecosystem functioning in grassland ecosystem, northern China

Rong Hao , Shuang Pang , Zonghao Hu , Wei Yang , Ximei Zhang , Haiyan Ren

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260376

PDF (2383KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 260376 DOI: 10.1007/s42832-026-0376-9
RESEARCH ARTICLE

Increasing aridity reduces soil protist diversity and weakens its link to ecosystem functioning in grassland ecosystem, northern China

Author information +
History +
PDF (2383KB)

Abstract

Soil protists, as critical components of soil microbial communities, play key roles in nutrient cycling and ecosystem functioning in drylands. However, the mechanisms through which increasing aridity influences their diversity and contribution to ecosystem multifunctionality remain poorly understood. To address this, we investigated soil protist richness at 14 sites along a natural aridity gradient in northern China and evaluated its relationship with ecosystem function. We found that increased aridity significantly reduced protist richness (R2 = 0.296, P < 0.001), including consumer (R2 = 0.413, P < 0.001), parasitic (R2 = 0.302, P < 0.001), and phototrophic groups (R2 = 0.188, P < 0.001) and altered soil protist community composition (PERMANOVA, P < 0.001). Protist richness (R2 = 0.264, P < 0.001) and the richness of each functional group (all P < 0.001) were positively correlated with ecosystem multifunctionality, but these richness-ecosystem multifunctionality relationships were weakened by increasing aridity (all P < 0.05). Our results suggested that aridity directly reduced protist biodiversity and disrupted its contribution to ecosystem functioning. These findings highlight the importance of addressing drought-driven biodiversity loss and its cascading effects on soil ecosystem functions in dryland management strategies.

Graphical abstract

Keywords

diversity / grassland / soil protist / decouple / functional group / ecosystem multifunctionality

Highlight

● Increased aridity significantly reduced soil protist and functional group richness.

● Protist diversity and that of their functional groups enhanced ecosystem multifunctionality.

● Aridity decoupled the relationship between protist biodiversity and ecosystem multifunctionality.

Cite this article

Download citation ▾
Rong Hao, Shuang Pang, Zonghao Hu, Wei Yang, Ximei Zhang, Haiyan Ren. Increasing aridity reduces soil protist diversity and weakens its link to ecosystem functioning in grassland ecosystem, northern China. Soil Ecology Letters, 2026, 8(1): 260376 DOI:10.1007/s42832-026-0376-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adl, M.S., Gupta, V.S., 2006. Protists in soil ecology and forest nutrient cycling. Canadian Journal of Forest Research36, 1805–1817.

[2]

Adl, S.M., Bass, D., Lane, C.E., Lukeš, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., Cárdenas, P., Čepička, I., Chistyakova, L., del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A.A., Hoppenrath, M., James, T.Y., Karnkowska, A., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D.J.G., Lara, E., Le Gall, L., Lynn, D.H., Mann, D.G., Massana, R., Mitchell, E.A.D., Morrow, C., Park, J.S., Pawlowski, J.W., Powell, M.J., Richter, D.J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F.W., Torruella, G., Youssef, N., Zlatogursky, V., Zhang, Q.Q., 2019. Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology66, 4–119.

[3]

Allen, A.P., Brown, J.H., Gillooly, J.F., 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science297, 1545–1548.

[4]

Asadi Zarch, M.A., Sivakumar, B., Malekinezhad, H., Sharma, A., 2017. Future aridity under conditions of global climate change. Journal of Hydrology554, 451–469.

[5]

Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software67, 1–48.

[6]

Bodur, S.O., Samuel, S.O., Polat, M.F., Aycan, M., Asiloglu, R., 2025. Protists exhibit community-level adaptation and functional redundancy under gradient soil salinity. Science of the Total Environment981, 179606.

[7]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[8]

Cepuder, P., Evett, S., Heng, L.K., Hignett, C., Laurent, J.P., Ruelle, P., 2008. Field Estimation of Soil Water Content: A Practical Guide to Methods, Instrumentation and Sensor Technology. VIENNA:Intenational Atomic Energy Agency,24, .

[9]

Chase, J.M., 2007. Drought mediates the importance of stochastic community assembly. Proceedings of the National Academy of Sciences104, 17430–17434.

[10]

Chase, J.M., 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science328, 1388–1391.

[11]

Chen, Q.L., Hu, H.W., Sun, A.Q., Zhu, Y.G., He, J.Z., 2022. Aridity decreases soil protistan network complexity and stability. Soil Biology and Biochemistry166, 108575.

[12]

Clarholm, M., 1981. Protozoan grazing of bacteria in soil—impact and importance. Microbial Ecology7, 343–350.

[13]

Ding, J.Y., Eldridge, D.J., 2022. Drivers of soil biodiversity vary with organism type along an extensive aridity gradient. Applied Soil Ecology170, 104271.

[14]

Dupont, A.Ö.C., Griffiths, R.I., Bell, T., Bass, D., 2016. Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environmental Microbiology18, 2010–2024.

[15]

Fadil, S.A., Janetopoulos, C., 2022. The polarized redistribution of the contractile vacuole to the rear of the cell is critical for streaming and is regulated by PI(4,5)P2-mediated exocytosis. Frontiers in Cell and Developmental Biology9, 765316.

[16]

Geisen, S., Mitchell, E.A.D., Adl, S., Bonkowski, M., Dunthorn, M., Ekelund, F., Fernández, L.D., Jousset, A., Krashevska, V., Singer, D., Spiegel, F.W., Walochnik, J., Lara, E., 2018. Soil protists: a fertile frontier in soil biology research. FEMS Microbiology Reviews42, 293–323.

[17]

Gibbons, S.M., Lekberg, Y., Mummey, D.L., Sangwan, N., Ramsey, P.W., Gilbert, J.A., 2017. Invasive plants rapidly reshape soil properties in a grassland ecosystem. mSystems2, .

[18]

Ginger, M.L., Portman, N., McKean, P.G., 2008. Swimming with protists: perception, motility and flagellum assembly. Nature Reviews Microbiology6, 838–850.

[19]

Guillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., Boutte, C., Burgaud, G., de Vargas, C., Decelle, J., del Campo, J., Dolan, J.R., Dunthorn, M., Edvardsen, B., Holzmann, M., Kooistra, W.H.C.F., Lara, E., Le Bescot, N., Logares, R., Mahé, F., Massana, R., Montresor, M., Morard, R., Not, F., Pawlowski, J., Probert, I., Sauvadet, A.L., Siano, R., Stoeck, T., Vaulot, D., Zimmermann, P., Christen, R., 2012. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Research41, D597–D604.

[20]

Herve, M., 2025. Testing and Plotting Procedures for Biostatistics [Online]. Available at the website of CRAN.

[21]

Howells, A.E.G., De Martini, F., Gile, G.H., Shock, E.L., 2023. An examination of protist diversity in serpentinization-hosted ecosystems of the Samail Ophiolite of Oman. Frontiers in Microbiology14, 1139333.

[22]

Hu, W.G., Ran, J.Z., Dong, L.W., Du, Q.J., Ji, M.F., Yao, S.R., Sun, Y., Gong, C.M., Hou, Q.Q., Gong, H.Y., Chen, R.F., Lu, J.L., Xie, S.B., Wang, Z.Q., Huang, H., Li, X.W., Xiong, J.L., Xia, R., Wei, M.H., Zhao, D.M., Zhang, Y.H., Li, J.H., Yang, H.X., Wang, X.T., Deng, Y., Sun, Y., Li, H.L., Zhang, L., Chu, Q.P., Li, X.W., Aqeel, M., Manan, A., Akram, M.A., Liu, X.H., Li, R., Li, F., Hou, C., Liu, J.Q., He, J.S., An, L.Z., Bardgett, R.D., Schmid, B., Deng, J.M., 2021. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications12, 5350.

[23]

Hu, Z.H., Liu, H.Y., Yang, J.J., Hua, B., Bahn, M., Pang, S., Li, T.T., Yang, W., Wu, H.H., Han, X.G., Zhang, X.M., 2024. Tradeoff between productivity and stability across above- and below-ground communities. Journal of Integrative Plant Biology66, 2321–2324.

[24]

Janatková, K., Řeháková, K., Doležal, J., Šimek, M., Chlumská, Z., Dvorský, M., Kopecký, M., 2013. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environmental Microbiology15, 2505–2516.

[25]

Jassey, V.E.J., Signarbieux, C., Hättenschwiler, S., Bragazza, L., Buttler, A., Delarue, F., Fournier, B., Gilbert, D., Laggoun-Défarge, F., Lara, E., Mills, R.T.E., Mitchell, E.A.D., Payne, R.J., Robroek, B.J.M., 2015. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Scientific Reports5, 16931.

[26]

Jing, X., Sanders, N.J., Shi, Y., Chu, H.Y., Classen, A.T., Zhao, K., Chen, L.T., Shi, Y., Jiang, Y.X., He, J.S., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications6, 8159.

[27]

Lai, J.S., Zou, Y., Zhang, S., Zhang, X.G., Mao, L.F., 2022. glmm. hp: an R package for computing individual effect of predictors in generalized linear mixed models. Journal of Plant Ecology15, 1302–1307.

[28]

Lefcheck, J.S., 2016. PIECEWISESEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution7, 573–579.

[29]

Li, Y., Lei, S.N., Cheng, Z.Q., Jin, L.Y., Zhang, T., Liang, L.M., Cheng, L.J., Zhang, Q.Y., Xu, X.H., Lan, C.H., Lu, C.J., Mo, M.H., Zhang, K.Q., Xu, J.P., Tian, B.Y., 2023. Microbiota and functional analyses of nitrogen-fixing bacteria in root-knot nematode parasitism of plants. Microbiome11, 48.

[30]

Liao, H., Hao, X.L., Qin, F., Delgado-Baquerizo, M., Liu, Y.R., Zhou, J.Z., Cai, P., Chen, W.L., Huang, Q.Y., 2023. Microbial autotrophy explains large-scale soil CO2 fixation. Global Change Biology29, 231–242.

[31]

Mahé, F., de Vargas, C., Bass, D., Czech, L., Stamatakis, A., Lara, E., Singer, D., Mayor, J., Bunge, J., Sernaker, S., Siemensmeyer, T., Trautmann, I., Romac, S., Berney, C., Kozlov, A., Mitchell, E.A.D., Seppey, C.V.W., Egge, E., Lentendu, G., Wirth, R., Trueba, G., Dunthorn, M., 2017. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nature Ecology & Evolution1, 0091.

[32]

Malik, A.A., Swenson, T., Weihe, C., Morrison, E.W., Martiny, J.B.H., Brodie, E.L., Northen, T.R., Allison, S.D., 2020. Drought and plant litter chemistry alter microbial gene expression and metabolite production. The ISME Journal14, 2236–2247.

[33]

Nguyen, B.A.T., Chen, Q.L., He, J.Z., Hu, H.W., 2020. Oxytetracycline and ciprofloxacin exposure altered the composition of protistan consumers in an agricultural soil. Environmental Science & Technology54, 9556–9563.

[34]

Nguyen, B.A.T., Dumack, K., Trivedi, P., Islam, Z., Hu, H.W., 2023. Plant associated protists—untapped promising candidates for agrifood tools. Environmental Microbiology25, 229–240.

[35]

Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Solymos, P., Stevens, H.M.H., Szöcs, E., Wagner, H.H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Cáceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B.R., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouelette, M.H., Cunha, E.R., Smith, T.W., Stier, A., ter Braak, C., Weedon, J., 2022. Vegan Community Ecology Package Version 2.6–2 April 2022. The Comprehensive R Archive Network.

[36]

Oliverio, A.M., Geisen, S., Delgado-Baquerizo, M., Maestre, F.T., Turner, B.L., Fierer, N., 2020. The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances6, eaax8787.

[37]

Perrin, A.J., Dorrell, R.G., 2024. Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis. BMC Biology22, 279.

[38]

Qu, Y.N., Yang, X.C., Zhang, M.H., Chen, J.D., Sui, Y.S., Zhang, X.C., Zeng, Y.Z., Huang, M.P., Gao, Y.F., Ochoa-Hueso, R., Shi, B.K., Zhao, D.Q., Yang, T.X., Sun, W., 2025. Bacterial and fungal diversity and species interactions inversely affect ecosystem functions under drought in a semi-arid grassland. Microbiological Research293, 128075.

[39]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[40]

R Core Team, 2023. R: A Language and Environment for Statistical Computing [Online]. Available at the website of CRAN.

[41]

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal4, 1340–1351.

[42]

Santos-Medellín, C., Liechty, Z., Edwards, J., Nguyen, B., Huang, B.H., Weimer, B. C., Sundaresan, V., 2021. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nature Plants7, 1065–1077.

[43]

Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, M., Venter, P.C., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M., Allan, E., 2016. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature536, 456–459.

[44]

Stefan, G., Cornelia, B., Jörg, R., Michael, B., 2014. Soil water availability strongly alters the community composition of soil protists. Pedobiologia57, 205–213.

[45]

Stoeck, T., Bass, D., Nebel, M., Christen, R., Jones, M.D.M., Breiner, H.W., Richards, T.A., 2010. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Molecular Ecology19, 21–31.

[46]

Titcomb, G., Mantas, J.N., Hulke, J., Rodriguez, I., Branch, D., Young, H., 2021. Water sources aggregate parasites with increasing effects in more arid conditions. Nature Communications12, 7066.

[47]

Xiong, W., Song, Y.Q., Yang, K.M., Gu, Y.A., Wei, Z., Kowalchuk, G.A., Xu, Y.C., Jousset, A., Shen, Q.R., Geisen, S., 2020. Rhizosphere protists are key determinants of plant health. Microbiome8, 27.

[48]

Xu, M.J., Zhu, X.Z., Chen, S.P., Pang, S., Liu, W., Gao, L.L., Yang, W., Li, T.T., Zhang, Y.H., Luo, C., He, D.D., Wang, Z.P., Fan, Y., Han, X.G., Zhang, X.M., 2022. Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. iScience25, 103893.

[49]

Yang, B., Wu, L., Yang, Z.S., Zhang, Z.H., Feng, W.J., Zheng, W.C., Xu, C., 2025. The patterns and environmental factors of diversity, co-occurrence networks, and assembly processes of protistan communities in bulk soils of forests. Microorganisms13, 1249.

[50]

Yang, J.J., Xu, M.J., Pang, S., Gao, L.L., Zhang, Z.J., Wang, Z.P., Zhang, Y.H., Han, X.G., Zhang, X.M., 2022. Disturbance-level-dependent post-disturbance succession in a Eurasian steppe. Science China Life Sciences65, 142–150.

[51]

Yu, B., Chao, D.Y., Zhao, Y., 2024. How plants sense and respond to osmotic stress. Journal of Integrative Plant Biology66, 394–423.

[52]

Zhang, B.B., Zhang, H., Jing, Q., Wu, Y.X., Ma, S.Q., 2020. Differences in species diversity, biomass, and soil properties of five types of alpine grasslands in the Northern Tibetan Plateau. PLoS One15, e0228277.

[53]

Zhang, J.W., Feng, Y.Z., Berdugo, M., Sáez-Sandino, T., Coleine, C., García-Velázquez, L., Wang, J.T., Delgado-Baquerizo, M., 2025. Vegetation fine-tunes aridity thresholds in soil biodiversity and function worldwide. Plant and Soil508, 879–889.

[54]

Zhang, R.Y., Tian, D.S., Wang, J.S., Pan, J.X., Zhu, J.T., Li, Y., Yan, Y.J., Song, L., Wang, S., Chen, C., Niu, S.L., 2022. Dryness weakens the positive effects of plant and fungal β diversities on above- and belowground biomass. Global Change Biology28, 6629–6639.

[55]

Zhou, J.Z., Deng, Y., Zhang, P., Xue, K., Liang, Y.T., Van Nostrand, J.D., Yang, Y.F., He, Z.L., Wu, L.Y., Stahl, D.A., Hazen, T.C., Tiedje, J.M., Arkin, A.P., 2014. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America111, E836–E845.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2383KB)

Supplementary files

Supplementary materials

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/