Fungal denitrification dominates soil N2O emissions after vegetation restoration in the karst region

Huifang Xu , Chengyi Lao , Teng Yu , Ziwei Wan , Pengpeng Duan , Kongcao Xiao , Dejun Li

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250373

PDF (2921KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250373 DOI: 10.1007/s42832-025-0373-4
RESEARCH ARTICLE

Fungal denitrification dominates soil N2O emissions after vegetation restoration in the karst region

Author information +
History +
PDF (2921KB)

Abstract

Denitrification is the primary contributor to soil N2O emissions. Although bacterial denitrification has been extensively studied in diverse ecosystems, the contribution of fungal denitrification to soil N2O emissions in karst areas remains unexplored, especially after vegetation restoration. In this study, we compared cropland (control) with a naturally restored forest (60 years old) by collecting 24 soil samples from both land use types. We analyzed the abundance, community structure, and contribution to soil N2O emissions of denitrifying fungi under different land use types using inhibitor methods, quantitative PCR (qPCR), and Illumina MiSeq sequencing. We found that after vegetation restoration, the abundance of nirK-containing denitrifying fungi (7.72 × 109 ± 1.82 × 109 copies g–1) was nearly threefold higher than in cropland (2.61 × 109 ± 0.29 × 109 copies g–1). Moreover, vegetation restoration markedly altered the community composition of nirK-containing denitrifying fungi, leading to an enrichment of Fusarium, Trichoderma, Chloridium and Aspergillus. Additionally, the contribution of fungal denitrification to N2O emissions was greater after vegetation restoration (35.40%) than in cropland (28.70%). Furthermore, the increase in fungal nirK-derived N2O after vegetation restoration was closely related with high soil nitrate nitrogen (NO3-N) and sand. Our research underscores the significance of fungal denitrification in driving soil N2O emissions after vegetation restoration in karst areas.

Graphical abstract

Keywords

fungal denitrification / N2O / vegetation restoration / karst

Highlight

● Vegetation restoration significantly increased the abundance of nirK gene.

● Vegetation restoration markedly altered the community of nirK -type denitrifiers.

● Vegetation restoration markedly increased the N2O emission of nirK -type denitrifiers.

● pH and soil texture control the abundance/community structure of nirK gene.

● NO3-N and sand are key factors of the N2O emission of nirK -type denitrifiers.

Cite this article

Download citation ▾
Huifang Xu, Chengyi Lao, Teng Yu, Ziwei Wan, Pengpeng Duan, Kongcao Xiao, Dejun Li. Fungal denitrification dominates soil N2O emissions after vegetation restoration in the karst region. Soil Ecology Letters, 2026, 8(1): 250373 DOI:10.1007/s42832-025-0373-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldossari, N., Ishii, S., 2021. Fungal denitrification revisited - recent advancements and future opportunities. Soil Biology and Biochemistry157, 108250.

[2]

Al-Kaisi, M.M., Yin, X.H., Licht, M.A., 2005. Soil carbon and nitrogen changes as affected by tillage system and crop biomass in a corn-soybean rotation. Applied Soil Ecology30, 174–191.

[3]

Ananyeva, N.D., Ivashchenko, K.V., Stolnikova, E.V., Stepanov, A.L., Kudeyarov, V.N., 2015. Specific features of determination of the net production of nitrous oxide by soils. Eurasian Soil Science48, 608–619.

[4]

Bao, S.D., 2000. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: Agricultural Press of China.

[5]

Beare, M.H., Neely, C.L., Coleman, D.C., Hargrove, W.L., 1990. A substrate-induced respiration (SIR) method for measurement of fungal and bacterial biomass on plant residues. Soil Biology and Biochemistry22, 585–594.

[6]

Bender, S.F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H.R., Köhl, L., Giles, M., Daniell, T.J., van der Heijden, M.G.A., 2014. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. The ISME Journal8, 1336–1345.

[7]

Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J.E., Bittinger, K., Brejnrod, A., Brislawn, C.J., Brown, C.T., Callahan, B.J., Caraballo-Rodríguez, A.M., Chase, J., Cope, E.K., Da Silva, R., Diener, C., Dorrestein, P.C., Douglas, G.M., Durall, D.M., Duvallet, C., Edwardson, C.F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J.M., Gibbons, S.M., Gibson, D.L., Gonzalez, A., Gorlick, K., Guo, J.R., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G.A., Janssen, S., Jarmusch, A.K., Jiang, L.J., Kaehler, B.D., Kang, K.B., Keefe, C.R., Keim, P., Kelley, S.T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M.G. I., Lee, J., Ley, R., Liu, Y.X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B.D., McDonald, D., McIver, L.J., Melnik, A.V., Metcalf, J.L., Morgan, S.C., Morton, J.T., Naimey, A.T., Navas-Molina, J.A., Nothias, L.F., Orchanian, S.B., Pearson, T., Peoples, S.L., Petras, D., Preuss, M.L., Pruesse, E., Rasmussen, L.B., Rivers, A., Robeson, M.S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S.J., Spear, J.R., Swafford, A.D., Thompson, L.R., Torres, P.J., Trinh, P., Tripathi, A., Turnbaugh, P.J., Ul-Hasan, S., van der Hooft, J.J.J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., Walters, W., Wan, Y.H., Wang, M.X., Warren, J., Weber, K.C., Williamson, C.H.D., Willis, A.D., Xu, Z.Z., Zaneveld, J.R., Zhang, Y.L., Zhu, Q.Y., Knight, R., Caporaso, J.G., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology37, 852–857.

[8]

Bösch, Y., Jones, C.M., Finlay, R., Karlsson, M., Larsbo, M., Keller, T., Hallin, S., 2022. Minimizing tillage modifies fungal denitrifier communities, increases denitrification rates and enhances the genetic potential for fungal, relative to bacterial, denitrification. Soil Biology and Biochemistry170, 108718.

[9]

Bösch, Y., Pold, G., Saghaï, A., Karlsson, M., Jones, C.M., Hallin, S., 2023. Distribution and environmental drivers of fungal denitrifiers in global soils. Microbiology Spectrum11, e0006123.

[10]

Canini, F., Geml, J., D'Acqui, L.P., Buzzini, P., Turchetti, B., Onofri, S., Ventura, S., Zucconi, L., 2021. Fungal diversity and functionality are driven by soil texture in Taylor Valley, Antarctica. Fungal Ecology50, 101041.

[11]

Che, R.X., Qin, J.L., Tahmasbian, I., Wang, F., Zhou, S.T., Xu, Z.H., Cui, X.Y., 2018. Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes. Soil Biology and Biochemistry120, 145–152.

[12]

Chen, H.H., Mothapo, N.V., Shi, W., 2014. The significant contribution of fungi to soil N2O production across diverse ecosystems. Applied Soil Ecology73, 70–77.

[13]

Degens, B.P., Sparling, G.P., Abbott, L.K., 1996. Increasing the length of hyphae in a sandy soil increases the amount of water-stable aggregates. Applied Soil Ecology3, 149–159.

[14]

Delang, C.O., Yuan, Z., 2015. China’s Grain for Green Program: A Review of the Largest Ecological Restoration and Rural Development Program in the World. Cham: Springer.

[15]

Deveautour, C., Rojas-Pinzon, P.A., Veloso, M., Rambaud, J., Duff, A.M., Wall, D., Carolan, R., Philippot, L., Richards, K.G., O'Flaherty, V., Brennan, F., 2022. Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: a national-scale field study. Soil Biology and Biochemistry168, 108637.

[16]

Duan, P.P., Wang, C.Q., Wanek, W., Yang, X.Y., Hu, P.L., Wang, K.L., Li, D.J., 2025. Soil microbial phosphorus limitation constrains carbon use efficiency in subtropical forests. Soil Biology and Biochemistry210, 109937.

[17]

Duré, A.B., Cristaldi, J.C., Guevara Cuasapud, L.A., Dalosto, S.D., Rivas, M.G., Ferroni, F.M., González, P.J., Montich, G.G., Brondino, C.D., 2023. Molecular and kinetic properties of copper nitrite reductase from Sinorhizobium meliloti 2011 upon substituting the interfacial histidine ligand coordinated to the type 2 copper active site for glycine. Journal of Inorganic Biochemistry241, 112155.

[18]

Fan, Z.Z., Lu, S.Y., Liu, S., Guo, H., Wang, T., Zhou, J.X., Peng, X.W., 2019. Changes in plant rhizosphere microbial communities under different vegetation restoration patterns in karst and non-karst ecosystems. Scientific Reports9, 8761.

[19]

Filonchyk, M., Peterson, M.P., Zhang, L.F., Hurynovich, V., He, Y., 2024. Greenhouse gases emissions and global climate change: examining the influence of CO2, CH4, and N2O. Science of the Total Environment935, 173359.

[20]

Fish, J.A., Chai, B.L., Wang, Q., Sun, Y.N., Brown, C.T., Tiedje, J.M., Cole, J.R., 2013. FunGene: the functional gene pipeline and repository. Frontiers in Microbiology4, 291.

[21]

Govaerts, B., Mezzalama, M., Sayre, K.D., Crossa, J., Nicol, J.M., Deckers, J., 2006. Long-term consequences of tillage, residue management, and crop rotation on maize/wheat root rot and nematode populations in subtropical highlands. Applied Soil Ecology32, 305–315.

[22]

Harris, E., Diaz-Pines, E., Stoll, E., Schloter, M., Schulz, S., Duffner, C., Li, K., Moore, K.L., Ingrisch, J., Reinthaler, D., Zechmeister-Boltenstern, S., Glatzel, S., Brüggemann, N., Bahn, M., 2021. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Science Advances7, eabb7118.

[23]

Herold, M.B., Baggs, E.M., Daniell, T.J., 2012. Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biology and Biochemistry54, 25–35.

[24]

Higgins, S.A., Welsh, A., Orellana, L.H., Konstantinidis, K.T., Chee-Sanford, J.C., Sanford, R.A., Schadt, C.W., Löffler, F.E., 2016. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils. Applied and Environmental Microbiology82, 2919–2928.

[25]

Hu, H.W., Chen, D.L., He, J.Z., 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews39, 729–749.

[26]

Hu, P.L., Xiao, J., Zhang, W., Xiao, L.M., Yang, R., Xiao, D., Zhao, J., Wang, K.L., 2020. Response of soil microbial communities to natural and managed vegetation restoration in a subtropical karst region. CATENA195, 104849.

[27]

Hu, P.L., Zhang, W., Chen, H.S., Xu, L., Xiao, J., Luo, Y.Q., Wang, K.L., 2022. Lithologic control of microbial-derived carbon in forest soils. Soil Biology and Biochemistry167, 108600.

[28]

Huang, Y., Jing, J.Q., Yan, M.L., Hazard, C., Chen, Y.H., Guo, C.B., Xiao, X., Lin, J.J., 2021. Contribution of pathogenic fungi to N2O emissions increases temporally in intensively managed strawberry cropping soil. Applied Microbiology and Biotechnology105, 2043–2056.

[29]

Jiang, J., Wang, Y.P., Yu, M.X., Li, K., Shao, Y.J., Yan, J.H., 2016. Responses of soil buffering capacity to acid treatment in three typical subtropical forests. Science of the Total Environment563–564, 1068–1077.

[30]

Ju, X.T., Gao, Q., Christie, P., Zhang, F.S., 2007. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: a 15N tracer study. Environmental Pollution146, 534–542.

[31]

Keuschnig, C., Gorfer, M., Li, G.F., Mania, D., Frostegård, Å., Bakken, L., Larose, C., 2020. NO and N2O transformations of diverse fungi in hypoxia: evidence for anaerobic respiration only in Fusarium strains. Environmental Microbiology22, 2182–2195.

[32]

Laughlin, R.J., Stevens, R.J., 2002. Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Science Society of America Journal66, 1540–1548.

[33]

Li, D.J., Yang, Y., Chen, H., Xiao, K.C., Song, T.Q., Wang, K.L., 2017. Soil gross nitrogen transformations in typical karst and Nonkarst forests, Southwest China. Journal of Geophysical Research: Biogeosciences122, 2831–2840.

[34]

Li, H.C., van den Bulcke, J., Kibleur, P., Mendoza, O., De Neve, S., Sleutel, S., 2022. Soil textural control on moisture distribution at the microscale and its effect on added particulate organic matter mineralization. Soil Biology and Biochemistry172, 108777.

[35]

Li, X.F., Gao, D.Z., Li, Y., Zheng, Y.L., Dong, H.P., Liang, X., Liu, M., Hou, L.J., 2023. Increased nitrogen loading facilitates nitrous oxide production through fungal and chemodenitrification in estuarine and coastal sediments. Environmental Science & Technology57, 2660–2671.

[36]

Liang, W.J., Tang, J.X., Li, Y., Song, S.Z., Jiang, X.Y., Hao, L.Y., Tao, S.Y., He, M.M., 2025. Biochar and bentonite application improves aeolian sandy soil health and enhances soil carbon sequestration and emission reduction potential. Scientific Reports15, 2205.

[37]

Liaud, N., Giniés, C., Navarro, D., Fabre, N., Crapart, S., Gimbert, I.H., Levasseur, A., Raouche, S., Sigoillot, J.C., 2014. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biology and Biotechnology1, 1.

[38]

Lin, Y.X., Ye, G.P., Luo, J.F., Di, H.J., Lindsey, S., Fan, J.B., Liu, D.Y., Ding, W.X., 2021. Long-term organic fertilization regulates the abundance of major nitrogen-cycling-related genes in aggregates from an acidic Ultisol. Applied Soil Ecology165, 104014.

[39]

Liu, J.B., Hou, H.J., Zhang, W.Z., 2023. Fungi contribute more to N2O emissions than bacteria in two paddy soils with different textures. European Journal of Soil Biology115, 103476.

[40]

Liu, J.L., Le, T.H., Zhu, H.N., Yao, Y., Zhu, H.L., Cao, Y., Zhao, Z., 2020. Afforestation of cropland fundamentally alters the soil fungal community. Plant and Soil457, 279–292.

[41]

Liu, L.B., Wu, Y.Y., Hu, G., Zhang, Z.H., Cheng, A.Y., Wang, S.J., Ni, J., 2016. Biomass of karst evergreen and deciduous broad-leaved mixed forest in central Guizhou province, Southwestern China: a comprehensive inventory of a 2 ha plot. Silva Fennica50, 1492.

[42]

Liu, X., Zhang, W., Wu, M., Ye, Y.Y., Wang, K.L., Li, D.J., 2019. Changes in soil nitrogen stocks following vegetation restoration in a typical karst catchment. Land Degradation & Development30, 60–72.

[43]

Lourenço, K.S., de Assis Costa, O.Y., Cantarella, H., Kuramae, E.E., 2022. Ammonia-oxidizing bacteria and fungal denitrifier diversity are associated with N2O production in tropical soils. Soil Biology and Biochemistry166, 108563.

[44]

Maeda, K., Spor, A., Edel-Hermann, V., Heraud, C., Breuil, M.C., Bizouard, F., Toyoda, S., Yoshida, N., Steinberg, C., Philippot, L., 2015. N2O production, a widespread trait in fungi. Scientific Reports5, 9697.

[45]

Magoč, T., Salzberg, S.L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics27, 2957–2963.

[46]

Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal17, 10–12.

[47]

Mothapo, N., Chen, H.H., Cubeta, M.A., Grossman, J.M., Fuller, F., Shi, W., 2015. Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biology and Biochemistry83, 160–175.

[48]

Mothapo, N.V., Chen, H.H., Cubeta, M.A., Shi, W., 2013. Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biology and Biochemistry66, 94–101.

[49]

Mukhtar, H., Lin, C.M., Wunderlich, R.F., Cheng, L.C., Ko, M.C., Lin, Y.P., 2021. Climate and land cover shape the fungal community structure in topsoil. Science of the Total Environment751, 141721.

[50]

Novinscak, A., Goyer, C., Zebarth, B.J., Burton, D.L., Chantigny, M.H., Filion, M., 2016. Novel P450nor gene detection assay used to characterize the prevalence and diversity of soil fungal denitrifiers. Applied and Environmental Microbiology82, 4560–4569.

[51]

Pauwels, R., Graefe, J., Bitterlich, M., 2023. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way. Mycorrhiza33, 165–179.

[52]

Philippot, L., Hallin, S., Schloter, M., 2007. Ecology of denitrifying prokaryotes in agricultural soil. Advances in Agronomy96, 249–305.

[53]

Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal4, 1340–1351.

[54]

Rousk, J., Brookes, P.C., Bååth, E., 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology75, 1589–1596.

[55]

Sánchez-Rangel, D., Hernández-Domínguez, E.E., Pérez-Torres, C.A., Ortiz-Castro, R., Villafán, E., Rodríguez-Haas, B., Alonso-Sánchez, A., López-Buenfil, A., Carrillo-Ortiz, N., Hernández-Ramos, L., Ibarra-Laclette, E., 2018. Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics19, 721.

[56]

Seguel, A., Cumming, J.R., Klugh-Stewart, K., Cornejo, P., Borie, F., 2013. The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza23, 167–183.

[57]

Senbayram, M., Well, R., Shan, J., Bol, R., Burkart, S., Jones, D.L., Wu, D., 2020. Rhizosphere processes in nitrate-rich barley soil tripled both N2O and N2 losses due to enhanced bacterial and fungal denitrification. Plant and Soil448, 509–522.

[58]

Sessitsch, A., Weilharter, A., Gerzabek, M.H., Kirchmann, H., Kandeler, E., 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology67, 4215–4224.

[59]

Shi, Q.H., Liu, Y.T., Shi, A.Q., Cai, Z.D., Nian, H., Hartmann, M., Lian, T.X., 2020. Rhizosphere soil fungal communities of aluminum-tolerant and -sensitive soybean genotypes respond differently to aluminum stress in an acid soil. Frontiers in Microbiology11, 1177.

[60]

Shoun, H., Fushinobu, S., Jiang, L., Kim, S.W., Wakagi, T., 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philosophical Transactions of the Royal Society B: Biological Sciences367, 1186–1194.

[61]

Tomao, A., Antonio Bonet, J., Castaño, C., de-Miguel, S., 2020. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. Forest Ecology and Management457, 117678.

[62]

Tyagi, S., Paudel, R., 2014. Effect of different pH on the growth and sporulation of Fusarium oxysporum: the causal organism of wilt disease of tomato. International Journal of Basic and Applied Biology2, 103–106.

[63]

Wan, X.Y., Yang, X.Y., Zhang, Y.L., Hu, P.L., Duan, P.P., Li, D.J., Wang, K.L., 2024. Lithology-driven soil properties control of N2O production by ammonia oxidizers in subtropical forest soils. Geoderma446, 116910.

[64]

Wan, Z.W., Wang, L., Huang, G.Q., Rasul, F., Awan, M.I., Cui, H.M., Liu, K.L., Yu, X.C., Tang, H.Y., Wang, S.B., Xu, H.F., 2023. nirS and nosZII bacterial denitrifiers as well as fungal denitrifiers are coupled with N2O emissions in long-term fertilized soils. Science of the Total Environment897, 165426.

[65]

Wang, K.L., Zhang, C.H., Chen, H.S., Yue, Y.M., Zhang, W., Zhang, M.Y., Qi, X.K., Fu, Z.Y., 2019. Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology34, 2743–2763.

[66]

Watanabe, T., Okada, K., 2005. Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of Botany95, 379–385.

[67]

Wei, W., Isobe, K., Shiratori, Y., Nishizawa, T., Ohte, N., Ise, Y., Otsuka, S., Senoo, K., 2015. Development of PCR primers targeting fungal nirK to study fungal denitrification in the environment. Soil Biology and Biochemistry81, 282–286.

[68]

Wei, W., Isobe, K., Shiratori, Y., Nishizawa, T., Ohte, N., Otsuka, S., Senoo, K., 2014. N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer. Soil Biology and Biochemistry69, 157–167.

[69]

Wheeler, K.A., Hurdman, B.F., Pitt, J.I., 1991. Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. International Journal of Food Microbiology12, 141–149.

[70]

Wu, K., Lu, X.Y., Chen, L.Z., Qin, J.Z., Li, C.X., Zhao, Q.L., Ye, Z.F., 2023. Evaluating the inhibitory effects of Nitrobenzene short-term stress on denitrification performance: electron behaviors, bacterial and fungal community. Chemosphere343, 140014.

[71]

Xu, H.F., Sheng, R., Xing, X.Y., Zhang, W.Z., Hou, H.J., Liu, Y., Qin, H.L., Chen, C.L., Wei, W.X., 2019. Characterization of fungal nirK-containing communities and N2O emission from fungal denitrification in arable soils. Frontiers in Microbiology10, 117.

[72]

Xu, M.L., Wang, Y.S., Mu, Z.T., Li, S.W., Li, H.L., 2021. Dissolution of copper oxide nanoparticles is controlled by soil solution pH, dissolved organic matter, and particle specific surface area. Science of the Total Environment772, 145477.

[73]

Xu, X.Y., Liu, X.R., Li, Y., Ran, Y., Liu, Y.P., Zhang, Q.C., Li, Z., He, Y., Xu, J.M., Di, H.J., 2017. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biology and Biochemistry107, 168–179.

[74]

Yu, Y.X., Zhao, C.Y., Zheng, N.G., Jia, H.T., Yao, H.Y., 2019. Interactive effects of soil texture and salinity on nitrous oxide emissions following crop residue amendment. Geoderma337, 1146–1154.

[75]

Zhang, Y.H., Xu, X.L., Li, Z.W., Liu, M.X., Xu, C.H., Zhang, R.F., Luo, W., 2019. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of the Total Environment650, 2657–2665.

[76]

Zheng, N.G., Yu, Y.X., Wang, J., Chapman, S.J., Yao, H.Y., Zhang, Y.Y., 2020. The conversion of subtropical forest to tea plantation changes the fungal community and the contribution of fungi to N2O production. Environmental Pollution265, 115106.

[77]

Zheng, Q., Ding, J.J., Lin, W., Yao, Z.P., Li, Q.Z., Xu, C.Y., Zhuang, S., Kou, X.Y., Li, Y.Z., 2022. The influence of soil acidification on N2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition. Environmental Pollution303, 119076.

[78]

Zhou, J.H., Liu, D.K., Xu, S.Q., Li, X.P., Zheng, J.Y., Han, F.P., Zhou, S.B., Na, M., 2024. Effects of vegetation restoration type on soil greenhouse gas emissions and associated microbial regulation on the Loess Plateau. Ecology and Evolution14, e70688.

[79]

Zhou, Y., Du, F.J., Xiong, K.N., Li, W., Zou, X.X., 2022. The development of rural residents' sense of place in an ecological restoration area: a case study from Huajiang Gorge, China. Mountain Research and Development42, R20–R28.

[80]

Zhou, Z.M., Takaya, N., Sakairi, M.A.C., Shoun, H., 2001. Oxygen requirement for denitrification by the fungus Fusarium oxysporum. Archives of Microbiology175, 19–25.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2921KB)

Supplementary files

supplementary material

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/