The importance of rare versus abundant diazotrophs subcommunities in driving soil biological nitrogen fixation in alpine grassland along a natural aridity gradient

Shilong Lei , Jie Wang , Lirong Liao , Lu Zhang , Yanuo Zou , Wangcai Wang , Zilin Song , Chao Zhang , Kathrin Rousk

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250372

PDF (3355KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250372 DOI: 10.1007/s42832-025-0372-5
RESEARCH ARTICLE

The importance of rare versus abundant diazotrophs subcommunities in driving soil biological nitrogen fixation in alpine grassland along a natural aridity gradient

Author information +
History +
PDF (3355KB)

Abstract

Biological nitrogen fixation (BNF) facilitated by diazotrophs, which convert N2 to ammonia, plays a key role in nutrient supply of terrestrial ecosystems. However, the differential contributions of rare versus abundant subcommunities to nitrogen fixation dynamics remain poorly characterized, especially in alpine ecosystem. This study examined BNF changes and shifts in abundant and rare soil diazotrophic taxa along an aridity gradient (arid, semi-arid, semi-humid, and humid) across the Tibetan Plateau. We found a significantly higher N fixation rate, vegetation coverage and biomass, nifH gene abundance, and diazotroph diversity in semi-arid and arid habitats than in semi-humid and humid habitats. Rare subcommunity composition explained more of the variation in N fixation rates than did the abundant subcommunities, suggesting greater roles of diazotrophic rare taxa in supplying nitrogen availability in alpine grasslands. The main influence factors of nitrogen fixation are aridity, plant coverage and soil C:N ratio. Structural equation modeling indicated that soil factors (e.g., bulk density, C:N ratio) and climatic factors (aridity and temperature) affected the composition of rare subcommunity through altering plant coverage and biomass, consequently affecting soil nitrogen fixation. This study establishes rare diazotrophs as critical regulators of soil nitrogen fixation and deciphers their mediation in climate-altered N-cycling processes in alpine ecosystems.

Graphical abstract

Keywords

aridity / abundant and rare subcommunities / alpine ecosystem / plant community / soil microbial function

Highlight

● We evaluated the relationship of soil biological nitrogen fixation of alpine grassland to the diazotrophic communities along a natural aridity gradient.

● Compared to abundant communities of diazotrophs, rare communities responded sensitively to the aridity.

● Diazotrophic rare taxa play greater roles than abundant taxa in supplying N availability in alpine grasslands.

● Soil and climatic factors affected the diazotrophic rare composition through altering functional plant coverage and biomass.

● Our results provide novel insights into the mechanism by which climate changes affect the alpine ecosystem’s N processes.

Cite this article

Download citation ▾
Shilong Lei, Jie Wang, Lirong Liao, Lu Zhang, Yanuo Zou, Wangcai Wang, Zilin Song, Chao Zhang, Kathrin Rousk. The importance of rare versus abundant diazotrophs subcommunities in driving soil biological nitrogen fixation in alpine grassland along a natural aridity gradient. Soil Ecology Letters, 2026, 8(1): 250372 DOI:10.1007/s42832-025-0372-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avolio, M.L., Forrestel, E.J., Chang, C.C., La Pierre, K.J., Burghardt, K.T., Smith, M.D., 2019. Demystifying dominant species. New Phytologist223, 1106–1126.

[2]

Banerjee, S., Schlaeppi, K., van der Heijden, M.G.A., 2018. Keystone taxa as drivers of microbiome structure and functioning. Nature Reviews Microbiology16, 567–576.

[3]

Banerjee, S., Zhao, C., Garland, G., Edlinger, A., García-Palacios, P., Romdhane, S., Degrune, F., Pescador, D.S., Herzog, C., Camuy-Velez, L.A., Bascompte, J., Hallin, S., Philippot, L., Maestre, F.T., Rillig, M.C., van der Heijden, M.G.A., 2024. Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe. Nature Communications15, 327.

[4]

Barron, A.R., Wurzburger, N., Bellenger, J.P., Wright, S.J., Kraepiel, A.M.L., Hedin, L.O., 2009. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils. Nature Geoscience2, 42–45.

[5]

Batbaatar, A., Carlyle, C.N., Bork, E.W., Chang, S.X., Cahill, J.F.Jr., 2022. Multi‐year drought alters plant species composition more than productivity across northern temperate grasslands. Journal of Ecology110, 197–209.

[6]

Berdugo, M., Maestre, F.T., Kéfi, S., Gross, N., Bagousse-Pinguet, Y.L., Soliveres, S., 2019. Aridity preferences alter the relative importance of abiotic and biotic drivers on plant species abundance in global drylands. Journal of Ecology107, 190–202.

[7]

Brouzes, R., Mayfield, C.I., Knowles, R., 1971. Effect of oxygen partial pressure on nitrogen fixation and acetylene reduction in a sandy loam soil amended with glucose. Plant and Soil35, 481–494.

[8]

Che, R.X., Deng, Y.C., Wang, F., Wang, W.J., Xu, Z.H., Hao, Y.B., Xue, K., Zhang, B., Tang, L., Zhou, H.K., Cui, X.Y., 2018. Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils. Science of the Total Environment639, 997–1006.

[9]

Chen, H., Ju, P.J., Zhu, Q.A., Xu, X.L., Wu, N., Gao, Y.H., Feng, X.J., Tian, J.Q., Niu, S.L., Zhang, Y.J., Peng, C.H., Wang, Y.F., 2022a. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment3, 701–716.

[10]

Chen, W.Q., Wang, J.Y., Chen, X., Meng, Z.X., Xu, R., Duoji, D.Z., Zhang, J.H., He, J., Wang, Z.G., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022b. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry172, 108766.

[11]

Chu, H.Y., Sun, H.B., Tripathi, B.M., Adams, J.M., Huang, R., Zhang, Y.J., Shi, Y., 2016. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environmental Microbiology18, 1523–1533.

[12]

Cottrell, M.T., David, K.L., 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnology and Oceanography48, 168–178.

[13]

Cui, Y.X., Wang, X., Zhang, X.C., Ju, W.L., Duan, C.J., Guo, X.B., Wang, Y.Q., Fang, L.C., 2020. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology and Biochemistry147, 107814.

[14]

Dai, X.L., Song, D.L., Guo, Q.K., Zhou, W., Liu, G.R., Ma, R.P., Liang, G.Q., He, P., Sun, G., Yuan, F.S., Liu, Z.B., 2021. Predicting the influence of fertilization regimes on potential N fixation through their effect on free-living diazotrophic community structure in double rice cropping systems. Soil Biology and Biochemistry156, 108220.

[15]

Darnajoux, R., Zhang, X.N., McRose, D.L., Miadlikowska, J., Lutzoni, F., Kraepiel, A.M.L., Bellenger, J.P., 2017. Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytologist213, 680–689.

[16]

Dixon, P., 2003. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science14, 927–930.

[17]

Duan, C.J., Wang, Y.H., Wang, Q., Ju, W.L., Zhang, Z.Q., Cui, Y.X., Beiyuan, J.Z., Fan, Q.H., Wei, S.Y., Li, S.Q., Fang, L.C., 2022. Microbial metabolic limitation of rhizosphere under heavy metal stress: Evidence from soil ecoenzymatic stoichiometry. Environmental Pollution300, 118978.

[18]

Dynarski, K.A., Houlton, B.Z., 2018. Nutrient limitation of terrestrial free‐living nitrogen fixation. New Phytologist217, 1050–1061.

[19]

Fayiah, M., Dong, S.K., Li, Y., Xu, Y.D., Gao, X.X., Li, S., Shen, H., Xiao, J.N., Yang, Y.F., Wessell, K., 2019. The relationships between plant diversity, plant cover, plant biomass and soil fertility vary with grassland type on Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment286, 106659.

[20]

Feng, W., Zhang, Y.Q., Lai, Z.R., Qin, S.G., Yan, R., Sun, Y.F., She, W.W., 2021. Soil bacterial and eukaryotic co-occurrence networks across a desert climate gradient in northern China. Land Degradation & Development32, 1938–1950.

[21]

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology37, 4302–4315.

[22]

Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., Bolker, B., Ellison, S., Firth, D., Friendly, M., Gorjanc, G., Graves, S., Heiberger, R., Krivitsky, P., Laboissiere, R., Maechler, M., Monette, G., Murdoch, D., Nilsson, H., Ogle, D., Ripley, B., Short, T., Venables, W., Walker, S., Winsemius, D., Zeileis, A., R-Core, 2024. car: companion to applied regression. .

[23]

Golodets, C., Sternberg, M., Kigel, J., Boeken, B., Henkin, Z., Seligman, N.G., Ungar, E.D., 2015. Climate change scenarios of herbaceous production along an aridity gradient: vulnerability increases with aridity. Oecologia177, 971–979.

[24]

Gupta, V.V.S. R., Zhang, B.Z., Penton, C.R., Yu, J.L., Tiedje, J.M., 2019. Diazotroph diversity and nitrogen fixation in summer active perennial grasses in a mediterranean region agricultural soil. Frontiers in Molecular Biosciences6, 115.

[25]

He, Z.B., Liu, D., Shi, Y., Wu, X.J., Dai, Y.X., Shang, Y.W., Peng, J.J., Cui, Z.L., 2022. Broader environmental adaptation of rare rather than abundant bacteria in reforestation succession soil. Science of the Total Environment828, 154364.

[26]

Hedin, L.O., Brookshire, E.N.J., Menge, D.N.L., Barron, A.R., 2009. The nitrogen paradox in tropical forest ecosystems. Annual Review of Ecology, Evolution, and Systematics40, 613–635.

[27]

Hu, J.L., Richwine, J.D., Keyser, P.D., Li, L.D., Yao, F., Jagadamma, S., DeBruyn, J.M., 2021. Nitrogen fertilization and native C4 grass species alter abundance, activity, and diversity of soil diazotrophic communities. Frontiers in Microbiology12, 675693.

[28]

Ji, Y.D., Li, Y., Yao, N., Biswas, A., Zou, Y.F., Meng, Q.T., Liu, F.G., 2021. The lagged effect and impact of soil moisture drought on terrestrial ecosystem water use efficiency. Ecological Indicators133, 108349.

[29]

Jia, L.P., Cheng, X.L., Fang, L.C., Huang, X.G., 2023. Nitrogen removal in improved subsurface wastewater infiltration system: mechanism, microbial indicators and the limitation of phosphorus. Journal of Environmental Management335, 117456.

[30]

Jiao, S., Wang, J.M., Wei, G.H., Chen, W.M., Lu, Y.H., 2019. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances. Chemosphere235, 248–259.

[31]

Jiao, S., Yang, Y.F., Xu, Y.Q., Zhang, J., Lu, Y.H., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. The ISME Journal14, 202–216.

[32]

Ju, W. L., Sardans, J., Bing, H.J., Wang, J., Ma, D.K., Cui, Y.X., Duan, C.J., Li, X.K., Fan, Q.H., Peñuelas, J., Fang, L.C., 2024. Diversified vegetation cover alleviates microbial resource limitations within soil aggregates in tailings. Environmental Science & Technology58, 18744–18755.

[33]

Lei, S.L., Wang, X.T., Wang, J., Zhang, L., Liao, L.R., Liu, G.B., Wang, G.L., Song, Z.L., Zhang, C., 2024. Effect of aridity on the β-diversity of alpine soil potential diazotrophs: insights into community assembly and co-occurrence patterns. mSystems9, e01042–23.

[34]

Li, C.C., Jin, L., Zhang, C., Li, S.Z., Zhou, T., Hua, Z.Y., Wang, L.F., Ji, S.P., Wang, Y.F., Gan, Y.D., Liu, J., 2023a. Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress. iMeta2, e79.

[35]

Li, C.H., Ma, B.L., Zhang, T.Q., 2002. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L. ) planted in large pots under field exposure. Canadian Journal of Soil Science82, 147–154.

[36]

Li, W.T., Kuzyakov, Y., Zheng, Y.L., Li, P.F., Li, G.L., Liu, M., Alharbi, H.A., Li, Z.P., 2022. Depth effects on bacterial community assembly processes in paddy soils. Soil Biology and Biochemistry165, 108517.

[37]

Li, X., Luo, X.S., Wang, A.C., Chen, W.L., Huang, Q.Y., 2023b. Control factors of soil diazotrophic community assembly and nitrogen fixation rate across eastern China. Geoderma432, 116410.

[38]

Li, Z.J., Liang, M.W., Li, Z.Y., Mariotte, P., Tong, X.Z., Zhang, J.H., Dong, L., Zheng, Y., Ma, W.H., Zhao, L.Q., Wang, L.X., Wen, L., Tuvshintogtokh, I., Gornish, E.S., Dang, Z.H., Liang, C.Z., Li, F.Y., 2021. Plant functional groups mediate effects of climate and soil factors on species richness and community biomass in grasslands of Mongolian Plateau. Journal of Plant Ecology14, 679–691.

[39]

Liang, Y.T., Xiao, X., Nuccio, E.E., Yuan, M.T., Zhang, N., Xue, K., Cohan, F.M., Zhou, J.Z., Sun, B., 2020. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environmental Microbiology22, 1327–1340.

[40]

Litchman, E., Villéger, S., Zinger, L., Auguet, J.C., Thuiller, W., Munoz, F., Kraft, N.J.B., Philippot, L., Violle, C., 2024. Refocusing the microbial rare biosphere concept through a functional lens. Trends in Ecology & Evolution39, 923–936.

[41]

Liu, H.W., Zhang, H.Y., Powell, J., Delgado-Baquerizo, M., Wang, J.T., Singh, B., 2023. Warmer and drier ecosystems select for smaller bacterial genomes in global soils. iMeta2, e70.

[42]

Ma, P.F., Zhao, J.X., Zhang, H.Z., Zhang, L., Luo, T.X., 2023. Increased precipitation leads to earlier green-up and later senescence in Tibetan alpine grassland regardless of warming. Science of the Total Environment871, 162000.

[43]

Martins da Costa, E., Almeida Ribeiro, P.R., Soares de Carvalho, T., Pereira Vicentin, R., Balsanelli, E., Maltempi de Souza, E., Lebbe, L., Willems, A., de Souza Moreira, F.M., 2020. Efficient nitrogen-fixing bacteria isolated from soybean nodules in the semi-arid region of northeast Brazil are classified as Bradyrhizobium brasilense (symbiovar sojae). Current Microbiology77, 1746–1755.

[44]

Metze, D., Schnecker, J., Canarini, A., Fuchslueger, L., Koch, B.J., Stone, B.W., Hungate, B.A., Hausmann, B., Schmidt, H., Schaumberger, A., Bahn, M., Kaiser, C., Richter, A., 2023. Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions. Nature Communications14, 5895.

[45]

Miao, L., Qiao, Y.G., Bai, Y.X., Feng, W., Qin, S.G., Zhang, Y.Q., 2023. Abundant culturable diazotrophs within Actinomycetia rather than rare taxa are underlying inoculants for nitrogen promotion in desert soil. Applied Soil Ecology184, 104774.

[46]

Nippert, J.B., Knapp, A.K., 2007. Linking water uptake with rooting patterns in grassland species. Oecologia153, 261–272.

[47]

Oberski, D., 2014. lavaan. survey: an r package for complex survey analysis of structural equation models. Journal of Statistical Software57, 1–27.

[48]

Ouyang, Y., Evans, S.E., Friesen, M.L., Tiemann, L.K., 2018. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: a meta-analysis of field studies. Soil Biology and Biochemistry127, 71–78.

[49]

Pan, H.B., Gao, H., Peng, Z.H., Chen, B.B., Chen, S., Liu, Y., Gu, J., Wei, X.R., Chen, W.M., Wei, G.H., Jiao, S., 2022. Aridity threshold induces abrupt change of soil abundant and rare bacterial biogeography in dryland ecosystems. mSystems7, e01309–21.

[50]

Pan, J.X., Zhang, X.Y., Liu, S., Liu, N., Liu, M.J., Chen, C., Zhang, X.Y., Niu, S.L., Wang, J.S., 2024. Precipitation alleviates microbial C limitation but aggravates N and P limitations along a 3000-km transect on the Tibetan Plateau. CATENA247, 108535.

[51]

Pedrós-Alió, C., 2006. Marine microbial diversity: can it be determined. Trends in Microbiology14, 257–263.

[52]

Petro, C., Carrell, A.A., Wilson, R.M., Duchesneau, K., Noble-Kuchera, S., Song, T.Z., Iversen, C.M., Childs, J., Schwaner, G., Chanton, J.P., Norby, R.J., Hanson, P.J., Glass, J.B., Weston, D.J., Kostka, J.E., 2023. Climate drivers alter nitrogen availability in surface peat and decouple N2 fixation from CH4 oxidation in the Sphagnum moss microbiome. Global Change Biology29, 3159–3176.

[53]

Ramírez, P.B., Fuentes-Alburquenque, S., Díez, B., Vargas, I., Bonilla, C.A., 2020. Soil microbial community responses to labile organic carbon fractions in relation to soil type and land use along a climate gradient. Soil Biology and Biochemistry141, 107692.

[54]

Reed, S.C., Cleveland, C.C., Townsend, A.R., 2011. Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annual Review of Ecology, Evolution, and Systematics42, 489–512.

[55]

Reed, S.C., Seastedt, T.R., Mann, C.M., Suding, K.N., Townsend, A.R., Cherwin, K.L., 2007. Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Applied Soil Ecology36, 238–242.

[56]

Rojas‐Botero, S., Teixeira, L.H., Prucker, P., Kloska, V., Kollmann, J., Le Stradic, S., 2023. Root traits of grasslands rapidly respond to climate change, while community biomass mainly depends on functional composition. Functional Ecology37, 1841–1855.

[57]

Rousk, K., Sorensen, P.L., Michelsen, A., 2018. What drives biological nitrogen fixation in high arctic tundra: moisture or temperature. Ecosphere9, e02117.

[58]

Rui, J.P., Hu, J.J., Wang, F.X., Zhao, Y.W., Li, C., 2022. Altitudinal niches of symbiotic, associative and free-living diazotrophs driven by soil moisture and temperature in the alpine meadow on the Tibetan Plateau. Environmental Research211, 113033.

[59]

Sharma, C., Sharma, P., Kumar, A., Walia, Y., Kumar, R., Umar, A., Ibrahim, A.A., Akhtar, Mohd. S., Alkhanjaf, A.A.M., Baskoutas, S., 2023. A review on ecology implications and pesticide degradation using nitrogen fixing bacteria under biotic and abiotic stress conditions. Chemistry and Ecology39, 753–774.

[60]

Soliveres, S., Manning, P., Prati, D., Gossner, M.M., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Blüthgen, N., Boch, S., Böhm, S., Börschig, C., Buscot, F., Diekötter, T., Heinze, J., Hölzel, N., Jung, K., Klaus, V.H., Klein, A.M., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E.K., Müller, J., Oelmann, Y., Overmann, J., Pašalić, E., Renner, S.C., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Türke, M., Venter, P., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M., Allan, E., 2016. Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences371, 20150269.

[61]

Sorensen, P.L., Michelsen, A., 2011. Long-term warming and litter addition affects nitrogen fixation in a subarctic heath. Global Change Biology17, 528–537.

[62]

Stanton, D.E., Batterman, S.A., Von Fischer, J.C., Hedin, L.O., 2019. Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology100, e02795.

[63]

Tang, K., Liang, Y.G., Yuan, B., Meng, J.Y., Feng, F.Y., 2023. Spatial distribution and core community of diazotrophs in Biological soil crusts and subsoils in temperate semi-arid and arid deserts of China. Frontiers in Microbiology14, 1074855.

[64]

Taylor, B.N., Menge, D.N.L., 2018. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants4, 655–661.

[65]

Tschapek, M., Giambiagi, N., 1955. Nitrogen fixation of Azotobacter in soil —Its inhibition by oxygen. Archiv für Mikrobiologie21, 376–390.

[66]

Van Langenhove, L., Depaepe, T., Verryckt, L.T., Fuchslueger, L., Donald, J., Leroy, C., Krishna Moorthy, S.M., Gargallo-Garriga, A., Ellwood, M.D.F., Verbeeck, H., Van Der Straeten, D., Peñuelas, J., Janssens, I.A., 2021. Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. Science of the Total Environment754, 142202.

[67]

Wang, C., Guo, L., Cai, Z.J., Chen, J., Shen, R.F., 2024. Different contributions of rare microbes to driving soil nitrogen cycles in acidic soils under manure fertilization. Applied Soil Ecology196, 105281.

[68]

Wang, C., Guo, L., Shen, R.F., 2023a. Rare microbial communities drive ecosystem multifunctionality in acidic soils of southern China. Applied Soil Ecology189, 104895.

[69]

Wang, J.P., Zhao, Q., Zhong, Y.Q., Ji, S.H., Chen, G.R., He, Q.Q., Wu, Y.H., Bing, H.J., 2023b. Biological nitrogen fixation in barren soils of a high-vanadium region: roles of carbon and vanadium. Soil Biology and Biochemistry186, 109163.

[70]

Wang, Y.Q., Shao, M.A., Zhu, Y.J., Sun, H., Fang, L.C., 2018. A new index to quantify dried soil layers in water-limited ecosystems: a case study on the Chinese Loess Plateau. Geoderma322, 1–11.

[71]

Winbourne, J.B., Houlton, B.Z., 2018. Plant-soil feedbacks on free-living nitrogen fixation over geological time. Ecology99, 2496–2505.

[72]

Wu, G.L., Huang, Z., Liu, Y.F., Cui, Z., Liu, Y., Chang, X.F., Tian, F.P., López-Vicente, M., Shi, Z.H., 2019. Soil water response of plant functional groups along an artificial legume grassland succession under semi-arid conditions. Agricultural and Forest Meteorology278, 107670.

[73]

Yang, B.J., Qiao, N., Xu, X.L., Ouyang, H., 2011. Symbiotic nitrogen fixation by legumes in two Chinese grasslands estimated with the 15N dilution technique. Nutrient Cycling in Agroecosystems91, 91–98.

[74]

Zhang, C., Lei, S.L., Wu, H.Y., Liao, L.R., Wang, X.T., Zhang, L., Liu, G.B., Wang, G.L., Fang, L.C., Song, Z.L., 2024. Simplified microbial network reduced microbial structure stability and soil functionality in alpine grassland along a natural aridity gradient. Soil Biology and Biochemistry191, 109366.

[75]

Zhang, L., Wang, X.T., Wang, J., Liao, L.R., Lei, S.L., Liu, G.B., Zhang, C., 2022a. Alpine meadow degradation depresses soil nitrogen fixation by regulating plant functional groups and diazotrophic community composition. Plant and Soil473, 319–335.

[76]

Zhang, Y., Wang, R.Z., Sardans, J., Wang, B., Gu, B.T., Li, Y.Y., Liu, H.Y., Peñuelas, J., Jiang, Y., 2023. Resprouting ability differs among plant functional groups along a soil acidification gradient in a meadow: a rhizosphere perspective. Journal of Ecology111, 631–644.

[77]

Zhang, Y.M., Wu, G., Jiang, H.C., Yang, J., She, W.Y., Khan, I., Li, W.J., 2018. Abundant and rare microbial biospheres respond differently to environmental and spatial factors in Tibetan hot springs. Frontiers in Microbiology9, 2096.

[78]

Zhang, Z.Q., Lu, Y.H., Wei, G.H., Jiao, S., 2022b. Rare species-driven diversity–ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio13, e00449–22.

[79]

Zhao, W.Q., Kou, Y.P., Wang, X.H., Wu, Y.H., Bing, H.J., Liu, Q., 2020. Broad-scale distribution of diazotrophic communities is driven more by aridity index and temperature than by soil properties across various forests. Global Ecology and Biogeography29, 2119–2130.

[80]

Zheng, M.H., Xu, M.C., Li, D.J., Deng, Q., Mo, J.M., 2023. Negative responses of terrestrial nitrogen fixation to nitrogen addition weaken across increased soil organic carbon levels. Science of the Total Environment877, 162965.

[81]

Zhu, C., Friman, V.P., Li, L., Xu, Q.C., Guo, J.J., Guo, S.W., Shen, Q.R., Ling, N., 2022. Meta-analysis of diazotrophic signatures across terrestrial ecosystems at the continental scale. Environmental Microbiology24, 2013–2028.

[82]

Zielke, M., Ekker, A.S., Olsen, R.A., Spjelkavik, S., Solheim, B., 2002. The influence of Abiotic Factors on biological nitrogen fixation in different types of vegetation in the high Arctic, Svalbard. Arctic, Antarctic, and Alpine Research34, 293–299.

[83]

Zou, J.X., Yao, Q., Liu, J.J., Li, Y.S., Song, F.Q., Liu, X.B., Wang, G.H., 2020. Changes of diazotrophic communities in response to cropping systems in a Mollisol of Northeast China. PeerJ8, e9550.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3355KB)

Supplementary files

Supplementary materials

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/