Stage-specific microbial dynamics underpin ecosystem restoration on tropical coral islands

Wenjia Wu , Senhao Wang , Zhe Lu , Yue Li , Jing Zhang , Luhui Kuang , Jun Wang , Shuguang Jian , Dongming Liu , Hai Ren , Zhanfeng Liu

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250370

PDF (5392KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250370 DOI: 10.1007/s42832-025-0370-7
RESEARCH ARTICLE

Stage-specific microbial dynamics underpin ecosystem restoration on tropical coral islands

Author information +
History +
PDF (5392KB)

Abstract

Despite the recognized benefits of diverse vegetation for terrestrial biodiversity and ecosystem services, its role in island ecosystem restoration remains poorly understood. We established five artificial vegetation types (grassland, windbreak and sand fixation, shelterbelt, public green space, roadside trees) on tropical coralislands and compared their soil properties and microbial communities with those of native forests. Artificial vegetation showed different levels of soil properties (except total potassium), microbial biomass (excluding fungi), enzyme activities, diversity indices (excluding fungi). Additionally, the community composition and network structure of soil microbes in artificial vegetation were distinct from those in native forests. Both ecosystems exhibited co-limitation by carbon and phosphorus. Fungi dominated in early restoration stages, while bacteria emerged as keystone drivers in later phases. Initial fungal inoculation accelerated vegetation establishment, and late-stage labile carbon inputs enhanced bacterial-mediated ecosystem stability. Phosphorus supplementation is recommended to alleviate nutrient co-limitation given that phosphorus is indispensable for microbial growth. Future research should focus on long-term dynamics to better assess restoration sustainability.

Graphical abstract

Keywords

tropical coral islands / ecosystem restoration / soil microbial community / nutrient limitation

Highlight

● Soil properties and biodiversity in artificial vegetation on tropical coastal islands did not reach levels comparable to native forests over short-term restoration.

● Bacteria were key drivers in later restoration stages, whereas fungi acted as keystone taxa during early restoration of tropical coral islands.

● Soil microbial communities in both native forests and plantations on tropical coral islands were co-limited by carbon (C) and phosphorus (P).

Cite this article

Download citation ▾
Wenjia Wu, Senhao Wang, Zhe Lu, Yue Li, Jing Zhang, Luhui Kuang, Jun Wang, Shuguang Jian, Dongming Liu, Hai Ren, Zhanfeng Liu. Stage-specific microbial dynamics underpin ecosystem restoration on tropical coral islands. Soil Ecology Letters, 2026, 8(1): 250370 DOI:10.1007/s42832-025-0370-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A’Bear, A.D., Jones, T.H., Kandeler, E., Boddy, L., 2014. Interactive effects of temperature and soil moisture on fungal-mediated wood decomposition and extracellular enzyme activity. Soil Biology and Biochemistry70, 151–158.

[2]

Backer, R., Rokem, J.S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D.L., 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science9, 1473.

[3]

Barnard, R.L., Osborne, C.A., Firestone, M.K., 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal7, 2229–2241.

[4]

Benayas, J.M.R., Newton, A.C., Diaz, A., Bullock, J.M., 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science325, 1121–1124.

[5]

Bossio, D.A., Scow, K.M., 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology35, 265–278.

[6]

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America108, 4516–4522.

[7]

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A., Kinzig, A.P., Daily, G.C., Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012. Biodiversity loss and its impact on humanity. Nature486, 59–67.

[8]

Chen, L.Y., Liu, L., Mao, C., Qin, S.Q., Wang, J., Liu, F.T., Blagodatsky, S., Yang, G.B., Zhang, Q.W., Zhang, D.Y., Yu, J.C., Yang, Y.H., 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency. Nature Communications9, 3951.

[9]

Coban, O., De Deyn, G.B., van der Ploeg, M., 2022. Soil microbiota as game-changers in restoration of degraded lands. Science375, abe0725.

[10]

Critical Ecosystems Partnership Fund, 2021. Explore the Biodiversity Hotspots [Online]. .

[11]

Culbertson, K.A., Treuer, T.L.H., Mondragon-Botero, A., Ramiadantsoa, T., Reid, J.L., 2022. The eco-evolutionary history of Madagascar presents unique challenges to tropical forest restoration. Biotropica54, 1081–1102.

[12]

de Vries, F.T., Liiri, M.E., Bjørnlund, L., Bowker, M.A., Christensen, S., Setälä, H.M., Bardgett, R.D., 2012. Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change2, 276–280.

[13]

Drenovsky, R.E., Pietrasiak, N., Short, T.H., 2019. Global temporal patterns in plant nutrient resorption plasticity. Global Ecology and Biogeography28, 728–743.

[14]

Elmajdoub, B., Marschner, P., 2015. Response of microbial activity and biomass to soil salinity when supplied with glucose and cellulose. Journal of Soil Science and Plant Nutrition15, 816–832.

[15]

Epp Schmidt, D.J., Pouyat, R., Szlavecz, K., Setälä, H., Kotze, D.J., Yesilonis, I., Cilliers, S., Hornung, E., Dombos, M., Yarwood, S.A., 2017. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nature Ecology & Evolution1, 0123.

[16]

Fahrudin, Sakti, A.D., Komara, H.Y., Sumarga, E., Choiruddin, A., Hendrawan, V.S.A., Hati, T., Anna, Z., Wikantika, K., 2024. Optimizing afforestation and reforestation strategies to enhance ecosystem services in critically degraded regions. Trees, Forests and People18, 100700.

[17]

Fan, K.K., Chu, H.Y., Eldridge, D.J., Gaitan, J.J., Liu, Y.R., Sokoya, B., Wang, J.T., Hu, H.W., He, J.Z., Sun, W., Cui, H.Y., Alfaro, F.D., Abades, S., Bastida, F., Díaz-López, M., Bamigboye, A.R., Berdugo, M., Blanco-Pastor, J.L., Grebenc, T., Duran, J., Illán, J.G., Makhalanyane, T.P., Mukherjee, A., Nahberger, T.U., Peñaloza-Bojacá, G.F., Plaza, C., Verma, J.P., Rey, A., Rodríguez, A., Siebe, C., Teixido, A.L., Trivedi, P., Wang, L., Wang, J.Y., Yang, T.X., Zhou, X.Q., Zhou, X.B., Zaady, E., Tedersoo, L., Delgado-Baquerizo, M., 2023. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. Nature Ecology & Evolution7, 113–126.

[18]

Geisen, S., Wall, D.H., van der Putten, W.H., 2019. Challenges and opportunities for soil biodiversity in the Anthropocene. Current Biology29, R1036–R1044.

[19]

German, D.P., Weintraub, M.N., Grandy, A.S., Lauber, C.L., Rinkes, Z.L., Allison, S.D., 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry43, 1387–1397.

[20]

Hector, A., Bagchi, R., 2007. Biodiversity and ecosystem multifunctionality. Nature448, 188–190.

[21]

Hill, B.H., Elonen, C.M., Seifert, L.R., May, A.A., Tarquinio, E., 2012. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers. Ecological Indicators18, 540–551.

[22]

Huang, Q.Y., Lin, Q.M., Xu, J.M., 2015. Soil Biochemistry. Beijing: Higher Education Press69.

[23]

Kou, X.C., Ma, N.N., Zhang, X.K., Xie, H.T., Zhang, X.D., Wu, Z.F., Liang, W.J., Li, Q., Ferris, H., 2020. Frequency of stover mulching but not amount regulates the decomposition pathways of soil micro-foodwebs in a no-tillage system. Soil Biology and Biochemistry144, 107789.

[24]

Kueffer, C., Kinney, K., 2017. What is the importance of islands to environmental conservation. Environmental Conservation44, 311–322.

[25]

Liu, G.S., 1996. Soil physical and chemical analysis and description of soil profiles. Beijing: Standards Press of China.

[26]

Lu, C.H., 2000. Analytical methods for soils and agricultural chemistry. Beijing: Scientific and Technology Press.

[27]

Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., Whittingham, M.J., Fischer, M., 2018. Redefining ecosystem multifunctionality. Nature Ecology & Evolution2, 427–436.

[28]

Ochoa-Hueso, R., Eldridge, D.J., Delgado-Baquerizo, M., Soliveres, S., Bowker, M.A., Gross, N., Le Bagousse-Pinguet, Y., Quero, J.L., García-Gómez, M., Valencia, E., Arredondo, T., Beinticinco, L., Bran, D., Cea, A., Coaguila, D., Dougill, A.J., Espinosa, C.I., Gaitán, J., Guuroh, R.T., Guzman, E., Gutiérrez, J.R., Hernández, R.M., Huber-Sannwald, E., Jeffries, T., Linstädter, A., Mau, R.L., Monerris, J., Prina, A., Pucheta, E., Stavi, I., Thomas, A.D., Zaady, E., Singh, B.K., Maestre, F.T., 2018. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology106, 242–253.

[29]

Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., Méndez, A., 2012. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils48, 511–517.

[30]

Poti, M., Hugé, J., Shanker, K., Koedam, N., Dahdouh-Guebas, F., 2022. Learning from small islands in the Western Indian Ocean (WIO): a systematic review of responses to environmental change. Ocean & Coastal Management227, 106268.

[31]

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research41, D590–D596.

[32]

Raiesi, F., Beheshti, A., 2014. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Applied Soil Ecology75, 63–70.

[33]

Ren, H., Jian, S.G., Zhang, Q.M., Wang, F.G., Shen, T., Wang, J., 2017. Plants and vegetation on South China Sea Islands. Ecology and Environmental Sciences26, 1639–1648.

[34]

Schittko, C., Onandia, G., Bernard-Verdier, M., Heger, T., Jeschke, J.M., Kowarik, I., Maaß, S., Joshi, J., 2022. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. Journal of Ecology110, 916–934.

[35]

Schmidt, S.K., Porazinska, D., Concienne, B.L., Darcy, J.L., King, A.J., Nemergut, D.R., 2016. Biogeochemical stoichiometry reveals P and N limitation across the post-glacial landscape of Denali National Park, Alaska. Ecosystems19, 1164–1177.

[36]

Sinsabaugh, R.L., 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry42, 391–404.

[37]

Sinsabaugh, R.L., Hill, B.H., Follstad Shah, J.J., 2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature462, 795–798.

[38]

Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, A.R., Cusack, D., Frey, S., Gallo, M.E., Gartner, T.B., Hobbie, S.E., Holland, K., Keeler, B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M.P., Wallenstein, M.D., Zak, D.R., Zeglin, L.H., 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters11, 1252–1264.

[39]

Soong, J.L., Fuchslueger, L., Marañon-Jimenez, S., Torn, M.S., Janssens, I.A., Penuelas, J., Richter, A., 2020. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Global Change Biology26, 1953–1961.

[40]

Wang, J., Hui, D.F., Ren, H., Liu, Z.F., Yang, L., 2013a. Effects of understory vegetation and litter on plant nitrogen (N), phosphorus (P), N:P ratio and their relationships with growth rate of indigenous seedlings in subtropical plantations. PLoS One8, e84130.

[41]

Wang, M., Qu, L.Y., Ma, K.M., Yuan, X., 2013b. Soil microbial properties under different vegetation types on Mountain Han. Science China Life Sciences56, 561–570.

[42]

Wang, S.H., Mori, T., Zou, S., Zheng, H.F., Heděnec, P., Zhu, Y.J., Wang, W.R., Li, A.D., Liu, N., Jian, S.G., Liu, Z.F., Tan, X.P., Mo, J.M., Zhang, W., 2022. Changes in vegetation types affect soil microbial communities in tropical islands of southern China. Global Ecology and Conservation37, e02162.

[43]

Wei, Y.Q., Xiong, X., Ryo, M., Badgery, W.B., Bi, Y.X., Yang, G.W., Zhang, Y.J., Liu, N., 2022. Repeated litter inputs promoted stable soil organic carbon formation by increasing fungal dominance and carbon use efficiency. Biology and Fertility of Soils58, 619–631.

[44]

Wetzel, F.T., Beissmann, H., Penn, D.J., Jetz, W., 2013. Vulnerability of terrestrial island vertebrates to projected sea-level rise. Global Change Biology19, 2058–2070.

[45]

Wu, W.J., Kuang, L.H., Li, Y., He, L.F., Mou, Z.J., Wang, F.M., Zhang, J., Wang, J., Li, Z.A., Lambers, H., Sardans, J., Peñuelas, J., Geisen, S., Liu, Z.F., 2021. Faster recovery of soil biodiversity in native species mixture than in Eucalyptus monoculture after 60 years afforestation in tropical degraded coastal terraces. Global Change Biology27, 5329–5340.

[46]

Wu, W.J., Wang, J., Yan, B.Y., Mou, Z.J., Yuan, Y., Li, Y., Zhang, J., Kuang, L.H., Cai, H.Y., Tong, F.C., Jian, S.G., Lu, H.F., Ren, H., Liu, Z.F., 2024. Giant African snail invasion homogenizes seasonal soil biodiversity in tropical coral islands. Plant and Soil500, 571–585.

[47]

Yuan, Z.Q., Ali, A., Ruiz-Benito, P., Jucker, T., Mori, A.S., Wang, S.P., Zhang, X.K., Li, H., Hao, Z.Q., Wang, X.G., Loreau, M., 2020. Above- and below-ground biodiversity jointly regulate temperate forest multifunctionality along a local-scale environmental gradient. Journal of Ecology108, 2012–2024.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5392KB)

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/