Warming and increased precipitation synergy undermines soil multifunctionality through enhanced bacterial–fungal competition in semi-arid grasslands

Xiting Li , Jiayin Shao , Siyi Li , Yuxin Wang , Lucas P. Canisares , Yuanjun Zhu , Zhouping Shangguan , Lei Deng , Weiming Yan , Yangquanwei Zhong

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250369

PDF (4203KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250369 DOI: 10.1007/s42832-025-0369-0
RESEARCH ARTICLE

Warming and increased precipitation synergy undermines soil multifunctionality through enhanced bacterial–fungal competition in semi-arid grasslands

Author information +
History +
PDF (4203KB)

Abstract

Soil microbial communities play a crucial role in maintaining multiple soil functions in terrestrial ecosystems. However, evidence linking soil microbial communities to soil multifunctionality under warming and precipitation changes remains limited. In this study, we conducted a three-year climate change experiment in a semi-arid grassland to explore the effects of warming (using open top chambers) and precipitation change (increased or decreased by 40%), as well as their interactive effects on soil microbial communities and multifunctionality. Our results indicated that the impacts of climate change became more pronounced in the third year compared to the first year after the experimental treatments were initiated. In addition, warming amplified the negative effects on soil microbial diversity, interactions, and multifunctionality under increased precipitation. Notably, the combination of warming and increased precipitation negatively impaired soil multifunctionality by intensifying competition between bacteria and fungi. Our results show that the structure of soil microbial communities, network complexity, and multifunctionality were more sensitive under the concurrence of warming and increased precipitation in semi-arid grasslands, due to their long-term adaptive mechanisms to dry environments. Therefore, it is essential to incorporate the interactions among soil microbes into future predictions of soil multifunctionality under complex climate change scenarios in semi-arid grasslands.

Graphical abstract

Keywords

soil multifunctionality / microbial network complexity / bacterial–fungal competition / soil microbial interactions / warming and precipitation change

Highlight

● Bacterial and fungal responded differently to warming and precipitation change.

● Warming amplifies the negative effects of precipitation on both bacteria and fungi.

● Warming and humidification intensify competition between bacteria and fungi.

● Enhanced bacteria and fungi competition impair soil multifunctionality.

Cite this article

Download citation ▾
Xiting Li, Jiayin Shao, Siyi Li, Yuxin Wang, Lucas P. Canisares, Yuanjun Zhu, Zhouping Shangguan, Lei Deng, Weiming Yan, Yangquanwei Zhong. Warming and increased precipitation synergy undermines soil multifunctionality through enhanced bacterial–fungal competition in semi-arid grasslands. Soil Ecology Letters, 2026, 8(1): 250369 DOI:10.1007/s42832-025-0369-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahram, M., Hildebrand, F., Forslund, S.K., Anderson, J.L., Soudzilovskaia, N.A., Bodegom, P.M., Bengtsson-Palme, J., Anslan, S., Coelho, L.P., Harend, H., Huerta-Cepas, J., Medema, M.H., Maltz, M.R., Mundra, S., Olsson, P.A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., Tedersoo, L., Bork, P., 2018. Structure and function of the global topsoil microbiome. Nature560, 233–237.

[2]

Barnes, A.D., Deslippe, J.R., Potapov, A.M., Romero-Olivares, A.L., Schipper, L.A., Alster, C.J., 2024. Does warming erode network stability and ecosystem multifunctionality. Trends in Ecology & Evolution39, 892–894.

[3]

Barnes, A.D., Jochum, M., Lefcheck, J.S., Eisenhauer, N., Scherber, C., O’Connor, M.I., de Ruiter, P., Brose, U., 2018. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends in Ecology & Evolution33, 186–197.

[4]

Becker, J., Eisenhauer, N., Scheu, S., Jousset, A., 2012. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecology Letters15, 468–474.

[5]

Bell, T.H., Klironomos, J.N., Henry, H.A.L., 2010. Seasonal responses of extracellular enzyme activity and microbial biomass to warming and nitrogen addition. Soil Science Society of America Journal74, 820–828.

[6]

Berry, D., Widder, S., 2014. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Frontiers in Microbiology5, 219.

[7]

Blazewicz, S.J., Schwartz, E., Firestone, M.K., 2014. Growth and death of bacteria and fungi underlie rainfall‐induced carbon dioxide pulses from seasonally dried soil. Ecology95, 1162–1172.

[8]

Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., . . . Asnicar, F. J. N. b. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. 37( 8), 852–857.

[9]

Brose, U., Dunne, J.A., Montoya, J.M., Petchey, O.L., Schneider, F.D., Jacob, U., 2012. Climate change in size-structured ecosystems. Philosophical Transactions of the Royal Society B: Biological Sciences367, 2903–2912.

[10]

Castro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., Schadt, C.W., 2010. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology76, 999–1007.

[11]

Chen, H.Y., Jing, Q.F., Liu, X., Zhou, X.H., Fang, C.M., Li, B., Zhou, S.R., Nie, M., 2022a. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecology Letters25, 2489–2499.

[12]

Chen, J., Luo, Y.Q., Xia, J.Y., Jiang, L.F., Zhou, X.H., Lu, M., Liang, J.Y., Shi, Z., Shelton, S., Cao, J.J., 2015. Stronger warming effects on microbial abundances in colder regions. Scientific Reports5, 18032.

[13]

Chen, W.Q., Wang, J.Y., Chen, X., Meng, Z.X., Xu, R., Duoji, D., Zhang, J.H., He, J., Wang, Z.G., Chen, J., Liu, K.X., Hu, T.M., Zhang, Y.J., 2022b. Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry172, 108766.

[14]

Chen, Y., Qin, W.K., Zhang, Q.F., Wang, X.D., Feng, J.G., Han, M.G., Hou, Y.H., Zhao, H.Y., Zhang, Z.H., He, J.S., Torn, M.S., Zhu, B., 2024. Whole-soil warming leads to substantial soil carbon emission in an alpine grassland. Nature Communications15, 4489.

[15]

Chen, Y.P., Chen, G.S., Robinson, D., Yang, Z.J., Guo, J.F., Xie, J.S., Fu, S.L., Zhou, L.X., Yang, Y.S., 2016. Large amounts of easily decomposable carbon stored in subtropical forest subsoil are associated with r-strategy-dominated soil microbes. Soil Biology and Biochemistry95, 233–242.

[16]

DeForest, J.L., 2009. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry41, 1180–1186.

[17]

Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K., 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications7, 10541.

[18]

Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C., Langille, M.G.I., 2020. PICRUSt2 for prediction of metagenome functions. Nature Biotechnology38, 685–688.

[19]

Evans, S.E., Wallenstein, M.D., 2012. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter. Biogeochemistry109, 101–116.

[20]

Faust, K., Raes, J., 2012. Microbial interactions: from networks to models. Nature Reviews Microbiology10, 538–550.

[21]

Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D., Harper, C.W., 2008. Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology14, 1600–1608.

[22]

Fernandez, C.W., Kennedy, P.G., 2016. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils. New Phytologist209, 1382–1394.

[23]

Gao, C.G., Bezemer, T.M., de Vries, F.T., van Bodegom, P.M., 2024. Trade-offs in soil microbial functions and soil health in agroecosystems. Trends in Ecology & Evolution39, 895–903.

[24]

Harrison, S., Spasojevic, M.J., Li, D.J., 2020. Climate and plant community diversity in space and time. Proceedings of the National Academy of Sciences of the United States of America117, 4464–4470.

[25]

Hoeppner, S.S., Dukes, J.S., 2012. Interactive responses of old‐field plant growth and composition to warming and precipitation. Global Change Biology18, 1754–1768.

[26]

Hu, P.L., Zhang, W., Kuzyakov, Y., Xiao, L.M., Xiao, D., Xu, L., Chen, H.S., Zhao, J., Wang, K.L., 2023. Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biology and Biochemistry177, 108925.

[27]

Hu, W.G., Ran, J.Z., Dong, L.W., Du, Q.J., Ji, M.F., Yao, S.R., Sun, Y., Gong, C.M., Hou, Q.Q., Gong, H.Y., Chen, R.F., Lu, J.L., Xie, S.B., Wang, Z.Q., Huang, H., Li, X.W., Xiong, J.L., Xia, R., Wei, M.H., Zhao, D.M., Zhang, Y.H., Li, J.H., Yang, H.X., Wang, X.T., Deng, Y., Sun, Y., Li, H.L., Zhang, L., Chu, Q.P., Li, X.W., Aqeel, M., Manan, A., Akram, M.A., Liu, X.H., Li, R., Li, F., Hou, C., Liu, J.Q., He, J.S., An, L.Z., Bardgett, R.D., Schmid, B., Deng, J.M., 2021. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nature Communications12, 5350.

[28]

Hu, Y.L., Wang, S., Niu, B., Chen, Q.Y., Wang, J., Zhao, J.X., Luo, T.X., Zhang, G.X., 2020. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environmental Research189, 109917.

[29]

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., Kopriva, S., 2017. The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Frontiers in Plant Science8, 1617.

[30]

Jiao, S., Lu, Y.H., Wei, G.H., 2022. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology28, 140–153.

[31]

Jing, X., Sanders, N.J., Shi, Y., Chu, H.Y., Classen, A.T., Zhao, K., Chen, L.T., Shi, Y., Jiang, Y.X., He, J.S., 2015. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications6, 8159.

[32]

Langfelder, P., Horvath, S., 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics9, 559.

[33]

Li, G.L., Kim, S., Han, S.H., Chang, H.N., Du, D.L., Son, Y., 2018. Precipitation affects soil microbial and extracellular enzymatic responses to warming. Soil Biology and Biochemistry120, 212–221.

[34]

Li, H., Yang, S., Semenov, M.V., Yao, F., Ye, J., Bu, R.C., Ma, R.A., Lin, J.J., Kurganova, I., Wang, X.G., Deng, Y., Kravchenko, I., Jiang, Y., Kuzyakov, Y., 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology27, 2763–2779.

[35]

Li, X.K., Leizeaga, A., Rousk, J., Hugelius, G., Manzoni, S., 2023. Drying intensity and acidity slow down microbial growth recovery after rewetting dry soils. Soil Biology and Biochemistry184, 109115.

[36]

Liu, W.X., Zhang, Z., Wan, S.Q., 2009. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology15, 184–195.

[37]

Liu, X.D., Ma, Q.H., Yu, H.Y., Li, Y.B., Li, L., Qi, M., Wu, W.J., Zhang, F., Wang, Y.H., Zhou, G.S., Xu, Z.Z., 2021. Climate warming-induced drought constrains vegetation productivity by weakening the temporal stability of the plant community in an arid grassland ecosystem. Agricultural and Forest Meteorology307, 108526.

[38]

Ma, B., Wang, H.Z., Dsouza, M., Lou, J., He, Y., Dai, Z.M., Brookes, P.C., Xu, J.M., Gilbert, J.A., 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. The ISME Journal10, 1891–1901.

[39]

Ma, F.F., Yan, Y.J., Svenning, J.C., Quan, Q., Peng, J.L., Zhang, R.Y., Wang, J.S., Tian, D.S., Zhou, Q.P., Niu, S.L., 2024. Opposing effects of warming on the stability of above‐ and belowground productivity in facing an extreme drought event. Ecology105, e4193.

[40]

Maynard, D.S., Crowther, T.W., Bradford, M.A., 2017. Competitive network determines the direction of the diversity–function relationship. Proceedings of the National Academy of Sciences of the United States of America114, 11464–11469.

[41]

Meng, C., Tian, D.S., Zeng, H., Li, Z.L., Chen, H.Y.H., Niu, S.L., 2020. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Science of the Total Environment705, 135992.

[42]

Morriën, E., Hannula, S.E., Snoek, L.B., Helmsing, N.R., Zweers, H., De Hollander, M., Soto, R.L., Bouffaud, M.L., Buée, M., Dimmers, W., Duyts, H., Geisen, S., Girlanda, M., Griffiths, R.I., Jørgensen, H.B., Jensen, J., Plassart, P., Redecker, D., Schmelz, R.M., Schmidt, O., Thomson, B.C., Tisserant, E., Uroz, S., Winding, A., Bailey, M.J., Bonkowski, M., Faber, J.H., Martin, F., Lemanceau, P., De Boer, W., Van Veen, J.A., Van Der Putten, W.H., 2017. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications8, 14349.

[43]

Nguyen, N.H., Song, Z.W., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology20, 241–248.

[44]

Nielsen, U.N., Ball, B.A., 2015. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi‐arid ecosystems. Global Change Biology21, 1407–1421.

[45]

Preece, C., Verbruggen, E., Liu, L., Weedon, J.T., Peñuelas, J., 2019. Effects of past and current drought on the composition and diversity of soil microbial communities. Soil Biology and Biochemistry131, 28–39.

[46]

Purcell, A.M., Hayer, M., Koch, B.J., Mau, R.L., Blazewicz, S.J., Dijkstra, P., Mack, M.C., Marks, J.C., Morrissey, E.M., Pett‐Ridge, J., Rubin, R.L., Schwartz, E., Van Gestel, N.C., Hungate, B.A., 2022. Decreased growth of wild soil microbes after 15 years of transplant-induced warming in a montane meadow. Global Change Biology28, 128–139.

[47]

Qin, S.Q., Zhang, D.Y., Wei, B., Yang, Y.H., 2024. Dual roles of microbes in mediating soil carbon dynamics in response to warming. Nature Communications15, 6439.

[48]

Romdhane, S., Spor, A., Aubert, J., Bru, D., Breuil, M.C., Hallin, S., Mounier, A., Ouadah, S., Tsiknia, M., Philippot, L., 2022. Unraveling negative biotic interactions determining soil microbial community assembly and functioning. The ISME Journal16, 296–306.

[49]

Rousk, J., Brookes, P.C., Bååth, E., 2011. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiology Ecology76, 89–99.

[50]

Ruan, Y., Ling, N., Jiang, S.J., Jing, X., He, J.S., Shen, Q.R., Nan, Z.B., 2024. Warming and altered precipitation independently and interactively suppress alpine soil microbial growth in a decadal-long experiment. eLife12, RP89392.

[51]

Schindlbacher, A., Rodler, A., Kuffner, M., Kitzler, B., Sessitsch, A., Zechmeister-Boltenstern, S., 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biology and Biochemistry43, 1417–1425.

[52]

Semchenko, M., Leff, J.W., Lozano, Y.M., Saar, S., Davison, J., Wilkinson, A., Jackson, B.G., Pritchard, W.J., De Long, J.R., Oakley, S., Mason, K.E., Ostle, N.J., Baggs, E.M., Johnson, D., Fierer, N., Bardgett, R.D., 2018. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Science Advances4, eaau4578.

[53]

Séneca, J., Söllinger, A., Herbold, C.W., Pjevac, P., Prommer, J., Verbruggen, E., Sigurdsson, B.D., Peñuelas, J., Janssens, I.A., Urich, T., Tveit, A.T., Richter, A., 2021. Increased microbial expression of organic nitrogen cycling genes in long-term warmed grassland soils. ISME Communications1, 69.

[54]

Sheik, C.S., Beasley, W.H., Elshahed, M.S., Zhou, X.H., Luo, Y.Q., Krumholz, L.R., 2011. Effect of warming and drought on grassland microbial communities. The ISME Journal5, 1692–1700.

[55]

Shi, L.L., Zhang, H.Z., Liu, T., Mao, P., Zhang, W.X., Shao, Y.H., Fu, S.L., 2018. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest. Environmental Pollution235, 293–301.

[56]

Shi, Y., Zhang, K.P., Li, Q., Liu, X., He, J.S., Chu, H.Y., 2020. Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. Science of the Total Environment714, 136794.

[57]

Solomon, S., Qin, D.H., Manning, M., Marquis, M., Averyt, K., Tignor, M.M.B., Miller, H.L.Jr., Chen, Z.L., 2007. Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University Press333.

[58]

Sun, K., Cai, J.F., Liu, X.L., Yang, L.J., Li, H.L., Wang, G.M., Xu, X.L., Yu, F.H., 2023. Effects of nitrogen and phosphorus supply levels and ratios on soil microbial diversity-ecosystem multifunctionality relationships in a coastal nontidal wetland. Science of the Total Environment874, 162472.

[59]

Tang, Y.Q., Winterfeldt, S., Brangarí, A.C., Hicks, L.C., Rousk, J., 2023. Higher resistance and resilience of bacterial growth to drought in grasslands with historically lower precipitation. Soil Biology and Biochemistry177, 108889.

[60]

Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications10, 4841.

[61]

Wang, C., Wang, X., Zhang, Y., Morrissey, E., Liu, Y., Sun, L.F., Qu, L.R., Sang, C.P., Zhang, H., Li, G.C., Zhang, L.L., Fang, Y.T., 2023a. Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon. ISME Communications3, 86.

[62]

Wang, C.Q., Kuzyakov, Y., 2024. Mechanisms and implications of bacterial–fungal competition for soil resources. The ISME Journal18, wrae073.

[63]

Wang, K., Xue, K., Liu, W.J., Zhang, B., Wu, W.C., Zhao, R.C., Cui, L.Z., Wang, Z.S., Zhou, S.T., Tang, L., Dong, J.F., Du, J.Q., Hao, Y.B., Cui, X.Y., Wang, S.P., Wang, Y.F., 2024. Warming decouples associations between microbial network complexity and ecosystem multifunctionality in alpine grasslands. Agriculture, Ecosystems & Environment374, 109189.

[64]

Wang, X., Zhang, Q., Zhang, Z.J., Li, W.J., Liu, W.C., Xiao, N.J., Liu, H.Y., Wang, L.Y., Li, Z.X., Ma, J., Liu, Q.Y., Ren, C.J., Yang, G.H., Zhong, Z.K., Han, X.H., 2023b. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta2, e106.

[65]

Wei, X.T., Han, B., Wu, B., Shao, X.Q., Qian, Y.Q., 2023. Stronger effects of simultaneous warming and precipitation increase than the individual factor on soil bacterial community composition and assembly processes in an alpine grassland. Frontiers in Microbiology14, 1237850.

[66]

Wu, M.H., Chen, S.Y., Chen, J.W., Xue, K., Chen, S.L., Wang, X.M., Chen, T., Kang, S.C., Rui, J.P., Thies, J.E., Bardgett, R.D., Wang, Y.F., 2021. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proceedings of the National Academy of Sciences of the United States of America118, e2025321118.

[67]

Xiao, Y., Wang, J., Wang, B., Fan, B., Zhou, G., 2025. Soil microbial network complexity predicts soil multifunctionality better than soil microbial diversity during grassland-farmland-shrubland conversion on the Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment379, 109356.

[68]

Xu, Y.T., Cui, K., Zhang, X.S., Diwu, G.D., Zhu, Y.J., Deng, L., Zhong, Y.Q.W., Yan, W.M., 2025. Shifts in fungal Communities drive soil profile nutrient cycling during grassland restoration. mBio16, e02834–24.

[69]

Xue, K., Xie, J.P., Zhou, A.F., Liu, F.F., Li, D.J., Wu, L.Y., Deng, Y., He, Z.L., Van Nostrand, J.D., Luo, Y.Q., Zhou, J.Z., 2016. Warming alters expressions of microbial functional genes important to ecosystem functioning. Frontiers in Microbiology7, 668.

[70]

Xue, Y.Y., Chen, H.H., Yang, J.R., Liu, M., Huang, B.Q., Yang, J., 2018. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. The ISME Journal12, 2263–2277.

[71]

Yan, W.M., Wang, W.J., Chen, W.G., Cui, K., Zhang, X.S., Shangguan, Z.P., Zhong, Y.Q.W., 2025. Variations in soil available nitrogen rather than nitrogen functional gene abundances dominate terrestrial soil N2O emissions under mineral nitrogen addition and warming. Global Ecology and Biogeography34, e70058.

[72]

Yang, A., Song, B., Zhang, W.X., Zhang, T.N., Li, X.W., Wang, H.T., Zhu, D., Zhao, J., Fu, S.L., 2024. Chronic enhanced nitrogen deposition and elevated precipitation jointly benefit soil microbial community in a temperate forest. Soil Biology and Biochemistry193, 109397.

[73]

Yuan, M.M., Guo, X., Wu, L.W., Zhang, Y., Xiao, N.J., Ning, D.L., Shi, Z., Zhou, X.S., Wu, L.Y., Yang, Y.F., Tiedje, J.M., Zhou, J.Z., 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.

[74]

Yue, K., Fornara, D.A., Yang, W.Q., Peng, Y., Peng, C.H., Liu, Z.L., Wu, F.Z., 2017. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecology Letters20, 663–672.

[75]

Zhang, N.L., Wan, S.Q., Guo, J.X., Han, G.D., Gutknecht, J., Schmid, B., Yu, L., Liu, W.X., Bi, J., Wang, Z., Ma, K.P., 2015. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands. Soil Biology and Biochemistry89, 12–23.

[76]

Zhong, Y.Q.W., Yan, W.M., Canisares, L.P., Wang, S., Brodie, E.L., 2023. Alterations in soil pH emerge as a key driver of the impact of global change on soil microbial nitrogen cycling: Evidence from a global meta‐analysis. Global Ecology and Biogeography32, 145–165.

[77]

Zhong, Y.Q.W., Zhang, B.P., Zhu, Y.J., Shangguan, Z.P., Li, T.T., Deng, L., Chen, J., Yan, W.M., 2025. Shifts in the fungal community promote soil carbon accumulation in microaggregates during long‐term secondary succession. Functional Ecology39, 2029–2043.

[78]

Zhou, Y.Q., Sun, B.Y., Xie, B.H., Feng, K., Zhang, Z.J., Zhang, Z., Li, S.Z., Du, X.F., Zhang, Q., Gu, S.S., Song, W., Wang, L.L., Xia, J.Y., Han, G.X., Deng, Y., 2021. Warming reshaped the microbial hierarchical interactions. Global Change Biology27, 6331–6347.

[79]

Zhou, Z.H., Wang, C.K., Luo, Y.Q., 2018. Response of soil microbial communities to altered precipitation: a global synthesis. Global Ecology and Biogeography27, 1121–1136.

[80]

Zhu, K., Chiariello, N.R., Tobeck, T., Fukami, T., Field, C.B., 2016. Nonlinear, interacting responses to climate limit grassland production under global change. Proceedings of the National Academy of Sciences of the United States of America113, 10589–10594.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4203KB)

Supplementary files

supplementary material

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/