Rhizosphere core microbes are associated with efficient potassium utilization in field-grown wheat

Fengye Pan , Wenchong Shi , Yu Wang , Yingdi Zhu , Chenxi Kou , Jiaqi Liang , Xiaocun Zhang , Xiaoliang Wu , Mingcong Li , Bo Zhou , Fanmei Kong , Zheng Gao

Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250368

PDF (3954KB)
Soil Ecology Letters ›› 2026, Vol. 8 ›› Issue (1) : 250368 DOI: 10.1007/s42832-025-0368-1
RESEARCH ARTICLE

Rhizosphere core microbes are associated with efficient potassium utilization in field-grown wheat

Author information +
History +
PDF (3954KB)

Abstract

Soil microbes are of vital importance in crop function and nutrient utilization. However, the core mechanisms and contributions of rhizosphere microbiota for potassium-efficient wheat varieties remain ambiguous. This article examined 24 wheat varieties, by which significant differences in rhizosphere microbial diversity and structure between potassium-efficient and -inefficient groups have been observed. It is revealed that both bacterial and fungal communities have strong correlations with wheat potassium utilization efficiency (KUE). Furthermore, this correlation is more bound up with the abundant taxa than the rare taxa. Notably, bacterial communities are demonstrated to have more substantial associations with yield and KUE compared to its counterpart, i.e., fungal and archaeal communities. The potassium-efficient group exhibited a more complex microbial network, where bacteria occupied a more prominent ecological niche than those of fungi and archaea. Core microorganisms, primarily Bacillus and Pseudobacillus, enhance wheat KUE directly or indirectly by shaping key microbial consortium and soil microbial communities. The experiment showed that soil microorganisms make a difference in the growth and nutrient accumulation of wheat. And core microorganisms significantly facilitate wheat growth and reinforce efficient potassium nutrient absorption and utilization. This study highlighted the rhizosphere microbiome differences among wheat varieties with different potassium utilization capacities, identified and characterized the core microorganisms in the rhizosphere of potassium-efficient wheat, and revealed their potential to improve wheat potassium nutrient uptake and utilization. These findings provide valuable insights for developing wheat breeding strategies aiming at enhancing potassium utilization.

Graphical abstract

Keywords

wheat / potassium / rhizosphere core microorganisms / nutrient use efficiency

Highlight

● Significant differences in rhizosphere microbial communities of wheat varieties.

● Abundant taxa are more closely associated with wheat potassium nutrient indicators.

● Stronger correlation between bacteria and potassium use efficiency, yield.

● Core microorganisms contribute to the potassium use efficiency in wheat.

Cite this article

Download citation ▾
Fengye Pan, Wenchong Shi, Yu Wang, Yingdi Zhu, Chenxi Kou, Jiaqi Liang, Xiaocun Zhang, Xiaoliang Wu, Mingcong Li, Bo Zhou, Fanmei Kong, Zheng Gao. Rhizosphere core microbes are associated with efficient potassium utilization in field-grown wheat. Soil Ecology Letters, 2026, 8(1): 250368 DOI:10.1007/s42832-025-0368-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azarbad, H., Constant, P., Giard-Laliberté, C., Bainard, L.D., Yergeau, E., 2018. Water stress history and wheat genotype modulate rhizosphere microbial response to drought. Soil Biology and Biochemistry126, 228–236.

[2]

Bai, B., Liu, W.D., Qiu, X.Y., Zhang, J., Zhang, J.Y., Bai, Y., 2022. The root microbiome: community assembly and its contributions to plant fitness. Journal of Integrative Plant Biology64, 230–243.

[3]

Bakker, P.A.H.M., Pieterse, C.M.J., De Jonge, R., Berendsen, R.L., 2018. The soil-borne legacy. Cell172, 1178–1180.

[4]

Busby, P.E., Soman, C., Wagner, M.R., Friesen, M.L., Kremer, J., Bennett, A., Morsy, M., Eisen, J.A., Leach, J.E., Dangl, J.L., 2017. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology15, e2001793.

[5]

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods13, 581–583.

[6]

Chang, J.J., Tian, L., Leite, M.F.A., Sun, Y., Shi, S.H., Xu, S.Q., Wang, J.L., Chen, H.P., Chen, D.Z., Zhang, J.F., Tian, C.J., Kuramae, E.E., 2022. Nitrogen, manganese, iron, and carbon resource acquisition are potential functions of the wild rice Oryza rufipogon core rhizomicrobiome. Microbiome10, 196.

[7]

Chen, S.M., Waghmode, T.R., Sun, R.B., Kuramae, E.E., Hu, C.S., Liu, B.B., 2019. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Microbiome7, 136.

[8]

DeAngelis, K.M., Brodie, E.L., Desantis, T.Z., Andersen, G.L., Lindow, S.E., Firestone, M.K., 2009. Selective progressive response of soil microbial community to wild oat roots. The ISME Journal3, 168–178.

[9]

Du, C.H., Xu, R.L., Zhao, X., Liu, Y., Zhou, X.H., Zhang, W.Q., Zhou, X.N., Hu, N.Y., Zhang, Y.H., Sun, Z.C., Wang, Z. M., 2023. Association between host nitrogen absorption and root-associated microbial community in field-grown wheat. Applied Microbiology and Biotechnology107, 7347–7364.

[10]

Edwards, J., Johnson, C., Santos-Medellín, C., Lurie, E., Podishetty, N.K., Bhatnagar, S., Eisen, J.A., Sundaresan, V., 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America112, E911–E920.

[11]

Fan, K.K., Delgado-Baquerizo, M., Guo, X.S., Wang, D.Z., Zhu, Y.G., Chu, H.Y., 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal15, 550–561.

[12]

Fan, X.Y., Ge, A.H., Qi, S.S., Guan, Y.F., Wang, R., Yu, N., Wang, E.T., 2025. Root exudates and microbial metabolites: signals and nutrients in plant-microbe interactions. Science China Life Sciences68, 2290–2302.

[13]

Feng, H.C., Fu, R.X., Hou, X.Q., Lv, Y., Zhang, N., Liu, Y.P., Xu, Z.H., Miao, Y.Z., Krell, T., Shen, Q.R., Zhang, R.F., 2021. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root-microbe rhizosphere interactions. International Journal of Molecular Sciences22, 6655.

[14]

Gu, Y.A., Yan, W.H., Chen, Y., Liu, S.J., Sun, L., Zhang, Z., Lei, P., Wang, R., Li, S., Banerjee, S., Friman, V.P., Xu, H., 2025. Plant growth-promotion triggered by extracellular polymer is associated with facilitation of bacterial cross-feeding networks of the rhizosphere. The ISME Journal19, wraf040.

[15]

Hamonts, K., Trivedi, P., Garg, A., Janitz, C., Grinyer, J., Holford, P., Botha, F.C., Anderson, I.C., Singh, B.K., 2018. Field study reveals core plant microbiota and relative importance of their drivers. Environmental Microbiology20, 124–140.

[16]

Hellequin, E., Monard, C., Chorin, M., Le Bris, N., Daburon, V., Klarzynski, O., Binet, F., 2020. Responses of active soil microorganisms facing to a soil biostimulant input compared to plant legacy effects. Scientific Reports10, 13727.

[17]

Huang, Z., Cui, C.H., Cao, Y.J., Dai, J.H., Cheng, X.Y., Hua, S.W., Wang, W.T., Duan, Y., Petropoulos, E., Wang, H., Zhou, L.X., Fang, W.P., Zhong, Z.T., 2022. Tea plant-legume intercropping simultaneously improves soil fertility and tea quality by changing Bacillus species composition. Horticulture Research9, uhac046.

[18]

Jiao, S., Chen, W.M., Wei, G.H., 2022. Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. Global Change Biology28, 1038–1047.

[19]

Jiao, S., Xu, Y.Q., Zhang, J., Hao, X., Lu, Y.H., 2019. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems4, e0031318.

[20]

Jiao, S., Zhang, B.G., Zhang, G.Z., Chen, W.M., Wei, G.H., 2021. Stochastic community assembly decreases soil fungal richness in arid ecosystems. Molecular Ecology30, 4338–4348.

[21]

Kou, C.X., Song, F.Y., Li, D.D., Xu, H.Y., Zhang, S.X., Yang, W., Shi W.C., Gao Z., 2024. A necessary considering factor for crop resistance: Precise regulation and effective utilization of beneficial microorganisms. New Crops1(c), 100023.

[22]

Li, D.X., Li, T., Gu, J., Wang, Y.L., Chen, X.Q., Lu, D.J., Tao, Y.Y., Cui, Z.L., Chen, X.P., Lu, J.W., Nie, J., Wang, H.Y., Zhou, J.M., 2024. Potassium resources management systems in Chinese agriculture: yield gaps and environmental costs. Resources, Conservation and Recycling202, 107397.

[23]

Li, K.K., Chen, L., Shi, W.J., Hu, C.H., Sha, Y., Feng, G.Z., Wang, E.T., Chen, W.X., Sui, X.H., Mi, G.H., 2023. Impacts of maize hybrids with different nitrogen use efficiency on root-associated microbiota based on distinct rhizosphere soil metabolites. Environmental Microbiology25, 473–492.

[24]

Ling, N., Wang, T.T., Kuzyakov, Y., 2022. Rhizosphere bacteriome structure and functions. Nature Communications13, 836.

[25]

Liu, L., Gao, Y., Gao, Z.Y., Zhu, L., Yan, R., Yang, W.J., Yang, Y., Liu, J.S., 2023. The core microbiota as a predictor of soil functional traits promotes soil nutrient cycling and wheat production in dryland farming. Functional Ecology37, 2325–2337.

[26]

Liu, L.M., Chen, H.H., Liu, M., Yang, J.R., Xiao, P., Wilkinson, D.M., Yang, J., 2019. Response of the eukaryotic plankton community to the cyanobacterial biomass cycle over 6 years in two subtropical reservoirs. The ISME Journal13, 2196–2208.

[27]

Luo, C.H., He, Y.J., Chen, Y.P., 2025. Rhizosphere microbiome regulation: unlocking the potential for plant growth. Current Research in Microbial Sciences8, 100322.

[28]

Luo, J.P., Gu, S.H., Guo, X.Y., Liu, Y.K., Tao, Q., Zhao, H.P., Liang, Y.C., Banerjee, S., Li, T.Q., 2022. Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance. Environmental Science & Technology56, 12975–12987.

[29]

Lv, M.H., Shi, W.C., LI, M.C., Zhou, B., Liu, Y.X., Gao, Z., 2024. Ms gene and Mr gene: microbial-mediated spatiotemporal communication between plants. iMeta3, e210.

[30]

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara R, Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2013. Vegan: Community Ecology Package. R package, version 2.0–10.

[31]

Qiao, Y.Z., Wang, T.T., Huang, Q.W., Guo, H.Y., Zhang, H., Xu, Q.C., Shen, Q.R., Ling, N., 2024. Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence. Soil Biology and Biochemistry188, 109231.

[32]

Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Métraux, J.P., L'haridon, F., 2016. The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytologist210, 1033–1043.

[33]

Rojas, A., Holguin, G., Glick, B.R., Bashan, Y., 2001. Synergism between Phyllobacterium sp. (N2fixer) and Bacillus licheniformis (Psolubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiology Ecology 35, 181–187.

[34]

Shade, A., Stopnisek, N., 2019. Abundance-occupancy distributions to prioritize plant core microbiome membership. Current Opinion in Microbiology49, 50–58.

[35]

Sharma, S., Singh, P., Ali, H.M., Siddiqui, M.H., Iqbal, J., 2023. Tillage, green manuring and crop residue management impacts on crop productivity, potassium use efficiency and potassium fractions under rice-wheat system. Heliyon9, e17828.

[36]

Shayanthan, A., Ordoñez, P.A.C., Oresnik, I.J., 2022. The role of synthetic microbial communities (SynCom) in sustainable agriculture. Frontiers in Agronomy4, 896307.

[37]

Tao, C.Y., Li, R., Xiong, W., Shen, Z.Z., Liu, S.S., Wang, B.B., Ruan, Y.Z., Geisen, S., Shen, Q.R., Kowalchuk, G.A., 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome8, 137.

[38]

Tewari, R.K., Yadav, N., Gupta, R., Kumar, P., 2021. Oxidative stress under macronutrient deficiency in plants. Journal of Soil Science and Plant Nutrition21, 832–859.

[39]

Tian, B.L., Zhu, M.K., Pei, Y.C., Ran, G.Y., Shi, Y., Ding, J.Q., 2022. Climate warming alters the soil microbial association network and role of keystone taxa in determining wheat quality in the field. Agriculture, Ecosystems & Environment326, 107817.

[40]

Tian, B.Y., Zhang, C.J., Ye, Y., Wen, J.M., Wu, Y.M., Wang, H.Z., Li, H.M., Cai, S.X., Cai, W.T., Cheng, Z.Q., Lei, S.N., Ma, R.Q., Lu, C.J., Cao, Y., Xu, X.H., Zhang, K.Q., 2017. Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems & Environment247, 149–156.

[41]

Toju, H., Peay, K.G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K., Kiers, E.T., 2018. Core microbiomes for sustainable agroecosystems. Nature Plants4, 247–257.

[42]

Wang, C.H., Li, Y.J., Li, M.J., Zhang, K.F., Ma, W.J., Zheng, L., Xu, H.Y., Cui, B.F., Liu, R., Yang, Y.Q., Zhong, Y.J., Liao, H., 2021a. Functional assembly of root-associated microbial consortia improves nutrient efficiency and yield in soybean. Journal of Integrative Plant Biology63, 1021–1035.

[43]

Wang, J.M., Li, M.X., Li, J.W., 2021b. Soil pH and moisture govern the assembly processes of abundant and rare bacterial communities in a dryland montane forest. Environmental Microbiology Reports13, 862–870.

[44]

Wang, X., Zhang, Q., Zhang, Z.J., Li, W.J., Liu, W.C., Xiao, N.J., Liu, H.Y., Wang, L.Y., Li, Z.X., Ma, J., Liu, Q.Y., Ren, C.J., Yang, G.H., Zhong, Z.K., Han, X.H., 2023. Decreased soil multifunctionality is associated with altered microbial network properties under precipitation reduction in a semiarid grassland. iMeta2, e106.

[45]

Wang, X.L., Wang, M.X., Xie, X.G., Guo, S.Y., Zhou, Y., Zhang, X.B., Yu, N., Wang, E.T., 2020. An amplification-selection model for quantified rhizosphere microbiota assembly. Science Bulletin65, 983–986.

[46]

Wu, J., Song, Y., Wan, G.Y., Sun, L.Q., Wang, J.X., Zhang, Z.S., Xiang, C.B., 2025. Boosting crop yield and nitrogen use efficiency: the hidden power of nitrogen-iron balance. New Crops2, 100047.

[47]

Xun, W.B., Liu, Y.P., Li, W., Ren, Y., Xiong, W., Xu, Z.H., Zhang, N., Miao, Y.Z., Shen, Q.R., Zhang, R.F., 2021. Specialized metabolic functions of keystone taxa sustain soil microbiome stability. Microbiome9, 35.

[48]

Xun, W.B., Liu, Y.P., Ma, A.Y., Yan, H., Miao, Y.Z., Shao, J.H., Zhang, N., Xu, Z.H., Shen, Q.R., Zhang, R.F., 2024. Dissection of rhizosphere microbiome and exploiting strategies for sustainable agriculture. New Phytologist242, 2401–2410.

[49]

Xun, W.B., Ren, Y., Yan, H., Ma, A.Y., Liu, Z.H., Wang, L.L., Zhang, N., Xu, Z.H., Miao, Y.Z., Feng, H.C., Shen, Q.R., Zhang, R.F., 2023. Sustained inhibition of maize seed-borne Fusarium using a Bacillus-dominated rhizospheric stable core microbiota with unique cooperative patterns. Advanced Science10, 2205215.

[50]

Yang, H.S., Fang, C., Li, Y.F., Wu, Y.C., Fransson, P., Rillig, M.C., Zhai, S.L., Xie, J.J., Tong, Z.Y., Zhang, Q., Sheteiwy, M.S., Li, F.M., Weih, M., 2022. Temporal complementarity between roots and mycorrhizal fungi drives wheat nitrogen use efficiency. New Phytologist236, 1168–1181.

[51]

Yang, W., Zhao, Y.N., Yang, Y., Zhang, M.S., Mao, X.X., Guo, Y.J., Li, X.Y., Tao, B., Qi, Y.Z., Ma, L., Liu, W.J., Li, B.W., Di, H.J., 2023. Co-application of biochar and microbial inoculants increases soil phosphorus and potassium fertility and improves soil health and tomato growth. Journal of Soils and Sediments23, 947–957.

[52]

Yue, H., Sun, X.M., Wang, T.T., Zhang, A.L., Han, D.J., Wei, G.H., Song, W.N., Shu, D.T., 2024. Host genotype-specific rhizosphere fungus enhances drought resistance in wheat. Microbiome12, 44.

[53]

Yue, H., Yue, W.J., Jiao, S., Kim, H., Lee, Y.H., Wei, G.H., Song, W.N., Shu, D.T., 2023. Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome11, 70.

[54]

Zhang, J.C., Lu, Y.H., 2016. Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments. Frontiers in Microbiology7, 1316.

[55]

Zhang, J.X., Yang, Y.Y., Zhao, L., Li, Y.Z., Xie, S.G., Liu, Y., 2015. Distribution of sediment bacterial and archaeal communities in Plateau freshwater lakes. Applied Microbiology and Biotechnology99, 3291–3302.

[56]

Zhang, J.Y., Liu, Y.X., Zhang, N., Hu, B., Jin, T., Xu, H.R., Qin, Y., Yan, P.X., Zhang, X.N., Guo, X.X., 2019. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology37, 676–684.

[57]

Zhang, L.Y., Zhang, M.L., Huang, S.Y., Li, L.J., Gao, Q., Wang, Y., Zhang, S.Q., Huang, S.M., Yuan, L., Wen, Y.C., Liu, K.L., Yu, X.C., Li, D.C., Zhang, L., Xu, X.P., Wei, H.L., He, P., Zhou, W., Philippot, L., Ai, C., 2022. A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications13, 3361.

[58]

Zhang, N., Wang, Z.Q., Shao, J.H., Xu, Z.H., Liu, Y.P., Xun, W.B., Miao, Y.Z., Shen, Q.R., Zhang, R.F., 2023. Biocontrol mechanisms of Bacillus: improving the efficiency of green agriculture. Microbial Biotechnology16, 2250–2263.

[59]

Zuo, S.P., Li, X.W., Ma, Y.Q., Yang, S.Y., 2014. Soil microbes are linked to the allelopathic potential of different wheat genotypes. Plant and Soil378, 49–58.

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3954KB)

Supplementary files

Supplementary materials

54

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/